This application is generally related to a rolling bearing assembly and is more particularly related to a cage for rolling elements in a rolling bearing assembly.
Rolling bearing assemblies are used in a wide range of automotive and various other mechanical applications. Known rolling bearing assemblies include an inner bearing ring, an outer bearing ring, a plurality of rolling elements, and a cage for guiding the plurality of rolling elements during rotation on the inner and outer rings. The inner and outer rings may be formed as separate elements and assembled with the rolling elements and the cage, or may be part of the mechanical assembly, for example with the inner ring being integral to a shaft. Lubricant is supplied in known rolling bearing assemblies in order to reduce friction and wear between the contact surfaces of the rolling elements, the cage, and the rings. In order to reduce costs, manufacturers sometimes use lower cost lubricants which include a lower content of friction reducing additives. In addition, in order to reduce parasitic drag and thus improve fuel economy, manufacturers sometimes lower the viscosity of the lubricants. It is desirable to find alternative ways to maintain an adequate film of lubricant on the contact surfaces of a bearing assembly despite using these lower cost and lower quality lubricants.
Additionally, the known cages for rolling bearing assemblies include crossbars having continuous lateral surfaces that support the rolling elements along an entire axial extent of the rolling elements and crossbar. These known crossbars physically wipe lubricant from the contact surfaces, resulting in increased friction and wear, which causes microscopic metallic particles to chip off of the contact surfaces and contaminate the lubricant. The metallic particles further degrade the friction reducing ability of the already compromised film of lubricant.
It would be desirable to provide an alternative cage configuration that reduces the amount of lubricant that the crossbars of the cage wipe from the contact surfaces of the rolling bearing elements while still providing adequate guidance for the rolling elements during rotation.
A rolling-element-cage assembly for a bearing is provided. The rolling-element-cage assembly includes a cage and a plurality of rolling elements supported in the cage. The cage includes a first radial flange, a second radial flange, and a plurality of crossbars extending therebetween that define a plurality of rolling element pockets. The plurality of crossbars each include lateral surfaces that border the plurality of rolling element pockets. Each of the lateral surfaces have a recess extending less than an axial length of the rolling elements along a medial portion of the crossbars. First and second axial end portions of the respective crossbars are located outside of the recesses such that each of the plurality of rolling elements is laterally supported by the first and second axial end portions of adjacent ones of the respective crossbars. The recesses on the lateral surface of the crossbar prevent lubricant from being wiped off of center portions of the plurality of rolling elements. This provides an improved film of lubricant on the plurality of rolling elements. The recesses also reduce the contact area with the cage, where spalling may occur which causes metallic particles to contaminate the lubricant, further reducing the ability of the lubricant to decrease friction and wear between the contact surfaces. The recesses also provide an improved flow path for the lubricant, which can help to reduce the operating temperature of the rolling-element-cage assembly in a rolling bearing arrangement during rotation.
Preferred arrangements with one or more features of the invention are described below and in the claims.
The foregoing Summary as well as the following Detailed Description will be best understood when read in conjunction with the appended drawings. In the Drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “inner,” “outer,” “inwardly,” and “outwardly” refer to directions towards and away from the parts referenced in the drawings. A reference to a list of items that are cited as “at least one of a, b, or c” (where a, b, and c represent the items being listed) means any single one of the items a, b, or c, or combinations thereof. The terminology includes the words specifically noted above, derivates thereof, and words of similar import.
As shown in
Having thus described various embodiments of the present rolling bearing assembly in detail, it is to be appreciated and will be apparent to those skilled in the art that many physical changes, only a few of which are exemplified in the detailed description above, could be made in the apparatus without altering the inventive concepts and principles embodied therein. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore to be embraced therein.
The following documents are incorporated herein by reference as if fully set forth: U.S. Provisional Patent Application No. 61/978,433, filed Apr. 11, 2014.
Number | Date | Country | |
---|---|---|---|
61978433 | Apr 2014 | US |