The present invention relates generally to hand tools, and more particularly, but not exclusively, to hand tools for the insertion and removal of cage nuts from hole racks.
Square hole racks are commonly used in industry, including for server storage, audio and visual equipment storage, electronic equipment storage, and other applications. Square hole racks often utilize cage nuts which engage the holes and provide support for shelves or equipment. The installation of cage nuts can be challenging, and can require through-hole engagement of an edge of the cage nut, a degree of force at an awkward angle to compress the spring steel of the cage nut, and disengagement from the cage nut after positioning the cage nut in the square hole rack. Excessive compression of the cage nut can deform or damage the cage nut. Release of a cage nut while compressed but before full engagement with the square hole rack can result in damage to equipment or the cage nut, injury to the operator, loss of the cage nut, and/or operator frustration. Many currently known devices and techniques to install cage nuts suffer from various drawbacks, particularly where installation time is limited, conditions where limited space is available within the square hole rack (e.g. devices are already installed immediately above or below the target installation position), and/or in high volume installations. Therefore, further technological developments are desirable in this area.
One embodiment of the present invention is a unique cage nut insertion tool. Other embodiments include apparatuses, systems, devices, methods, and combinations for the insertion and removal of cage nuts. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
For purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
Referencing
The cage nut tool 100 includes a beveled surface 106 at the first end 102 of the shaft 110, and a gripping member (a handle 114 in the example of
For purposes of clear description, the shaft 110 can be understood to have a vertically lower portion 126 (reference
Referencing
The cage nut tool 100 includes a channel 108 formed on the beveled surface 106. The channel 108 includes an opening 144 (defined by the lower and upper edges of the channel 108 on the beveled surface 106) that can traverse the beveled surface 106 at a constant vertical position relative to the angle 118 of the beveled surface 106. The opening 144 is parallel to the horizontal axis 142 of the shaft 110. The channel 108 includes a depth 134 which progresses vertically. Due to the positioning of the channel 108 on the beveled surface 106, the depth 134 is greater at one end of the channel (axially toward the second end 104) than the other (axially toward the first end 102). The depth 134 may progress vertically or near vertically, where an angle that is near vertical is an angle providing a sufficient engagement lip between the first end 102 and the channel 108 to engage a lip or rim of a target cage nut. For example, referencing
A distance 150 between an axial center of the channel 108 and the first end 102 is depicted, and the distance 150 is selected such that the tab 306 is engageable through a square hole 304 of a square hole rack 302. The range of distances 150 that are acceptable depend upon the specific dimensions of a target cage nut 308 and square hole 304. An example distance 150 is a channel 108 positioned such that the distance 150 is less than or equal to 2 mm.
An example tool 100 includes a grooved portion 112 positioned on a vertically upper portion 124 of the shaft 110. An axially forward extent 136 of the grooved portion 112 is positioned far enough forward such that the grooved portion 112 is at least partially positioned over the beveled surface 106. The grooved portion 112 may be formed by material removed from a shaft 110, and/or be formed in place. The grooved portion 112 includes a vertical depth 120. The magnitude of the vertical depth 120 depends upon the geometry of the shaft 110, the geometry of the target square hole 304, and the geometry of the cage nut 308. The grooved portion 112, in certain embodiments, aids in positioning the engagement lip formed by the channel 108 and first end 102 above the tab 306 of the engagement nut. A smaller hole 304 and/or greater vertical extent of the tab 306 before compression indicate a greater vertical depth 120 of the grooved portion 112. The range of vertical depths 120 that are acceptable depend upon the specific dimensions of a target cage nut 308 and square hole 304, and are readily determined by one of skill in the art having the available dimensions in view and the benefit of the disclosures herein. An example vertical depth 120 is between 3 mm and 5 mm.
The grooved portion 112 may be of any shape, including at least a radius of curvature, a circular radius of curvature, and/or an elliptical radius of curvature. The grooved portion 112 includes a lowest position 148, which is at the greatest vertical depth 120. The lowest position 148 can be positioned at any axial distance from the first end 102 that allows for convenient engagement of the cage nut tab 306. Exemplary and non-limiting grooved portions 112 include a lowest position 148 that is axially between 9 mm and 12 mm from the first end 102, and/or a lowest position 148 that is axially between 8 mm and 10 mm from an axial center of the channel 108. In certain embodiments, the grooved portion 112 includes a radius of curvature that equates to a portion of a circle having a diameter between 10 mm and 12 mm.
The shaft 110 has a cross-sectional geometry extending along the horizontal axis 142. The cross-sectional geometry can be bounded by the lower geometrical boundary 130 at the vertically lower portion 126, and an upper geometrical boundary 132 at a vertically upper portion 124. The shaft 110 can have any cross-sectional geometry, including without limitation to a circle, ellipse, hexagon, square, or rectangle. The geometry of the shaft 110 can also vary along the axial length. In certain embodiments, one or more of the beveled surface 106, the channel 108, and the grooved portion 112 are included completely within the cross-sectional geometry of the shaft 110. One of skill in the art will recognize that features included completely within the cross-section geometry of the shaft 110 can be formed by providing a shaft 110 having a sufficient axial extent, and removing portions of the shaft 110 to form the desired feature. In certain embodiments, the tool 100 includes a shaft 110 including a regular circular cross-section to at least the first end 102, with portions removed to form the beveled surface 106, the channel 108, and/or the grooved portion 112. Additionally or alternatively, a tool 100 includes the shaft having a feature beyond the axial extent of the first end 102, where the feature is removed during operations to form the tool 100. Example and non-limiting features include a screwdriver tip, chisel tip, or other tool feature.
A gripping member 114 can be coupled to the second end 104 of the shaft 110. The gripping member 114 can be of any form to permit a user to grasp the gripping member 114. The gripping member 114 can include a coating on the shaft 110, a flattened portion extending from the second end, or any number of handle configurations, one such handle configuration being illustrated in
Referring to
Referring to
An example procedure utilizing a cage nut tool is described following. The procedure includes an operation to insert a cage nut tool 100 into a cage nut receiving portion 304 of a square hole rack 302. The procedure includes an operation to engage a tab 306 of the cage nut 308 with a channel 108 formed on a beveled surface 106 of the first end 102, and an operation to compress the tab 306 of the cage nut 308. The procedure further includes an operation to withdraw the first end of the cage nut insertion tool, thereby engaging the cage nut 308 to the square hole rack 302. Certain further example operations of the procedure are described following. An example procedure includes an operation to extend the channel through the cage nut receiving portion of the square hole rack to a position vertically above the cage nut tab. A further example procedure includes an operation to engage a grooved portion of the cage nut insertion tool with an upper surface of the cage nut receiving portion of the square hole rack during the extending of the channel through the cage nut receiving portion of the square hole rack. Another example procedure includes lowering a handle portion of the cage nut insertion tool during the extending of the channel, and raising the handle portion during at least a portion of the withdrawing operation.
One embodiment of the present invention is an apparatus, comprising a shaft having a first end and a second end, the first end comprising a beveled surface and wherein the second end is coupled to a gripping member. The apparatus further comprises a channel formed on the beveled surface, wherein the channel comprises an opening, and wherein the opening traverses the beveled surface at a constant vertical position relative to an angle of the beveled surface.
In one form the shaft comprises a vertically lower portion comprising a side proximate to an outwardly projecting normal line from the beveled surface, and a vertically upper portion comprising a side opposing the vertically lower portion, the apparatus further comprising a grooved portion disposed on the vertically upper portion of the shaft, wherein the grooved portion at least partially extends over the beveled surface. In another form, the beveled surface, the channel, and the grooved portion are defined by a shaft cylinder geometry comprising a cylindrical shape having a cross-sectional shape corresponding to the shaft.
In yet another form, the shaft comprises a cross-sectional shape that is a 6 mm diameter circle. In still yet another form, the grooved portion comprises a curvature comprising at least one of a portion of a circle and a portion of an ellipse. In another form, the grooved portion comprises a portion of a circle having a radius between 10 and 12 mm.
In yet another form, the grooved portion comprises a vertical depth of between 3 and 5 mm. In still yet another form, the grooved portion comprises a circle having a radius of 11 mm and a vertical depth of 4 mm. In another form, the channel comprises a width perpendicular to the vertical that is between 0.6 and 1.0 mm. In still yet another form, the channel comprises a depth such that a remaining amount of material between the channel and the vertically upper portion of the shaft comprises a thickness between 0.6 and 1.0 mm. In yet another form, the beveled surface comprises a 30 degree bevel relative to an axis of the shaft.
Another embodiment is an article of manufacture, comprising a shaft having a beveled surface at a first end and a gripping member coupled to a second end, the shaft comprising a vertically lower portion comprising a side proximate to an outwardly projecting normal line from the beveled surface, and a vertically upper portion comprising a side opposing the vertically lower portion. The article of manufacture further comprises a channel formed on the beveled surface, wherein the channel comprises an opening, and wherein the opening traverses the beveled surface at a constant vertical position relative to an angle of the beveled surface, and wherein the channel comprises a depth that progresses vertically. The article of manufacture further comprises a grooved portion disposed on the vertically upper portion of the shaft, wherein the grooved portion extends at least partially over the beveled surface.
In one form, the grooved portion comprises a lowest position, wherein the lowest position is axially between 9 mm and 12 mm from the first end of the shaft, wherein axially is determined relative to an axis of the shaft. In another form, the lowest position is horizontally between 8 mm and 10 mm from an axial center of the channel. In yet another form, the grooved portion comprises a curvature comprising a portion of a circle having an 11 mm radius and a vertical depth comprising 4 mm. In still yet another form, the shaft comprises a geometrical cylinder having a vertical depth of 6 mm.
Another embodiment is a cage nut insertion tool, comprising a cylindrical shaft extending from a first end to a second end, wherein a handle is coupled to a second end of the shaft, and wherein the first end comprises a beveled surface having a rise of between 22.5 degrees and 45 degrees above a horizontal axis of the shaft, the tool comprising a vertical direction being defined by the rise direction of the beveled surface. The cage nut insertion tool further comprises a channel disposed on the beveled surface, the channel having an opening parallel to the horizontal axis of the shaft and having a depth which progresses vertically. The cage nut insertion tool further comprises a grooved portion on a vertically upper side of the shaft, the grooved portion partially extending over the beveled surface.
In one form, the cylindrical shaft comprises a circular cross-section having a diameter of 6 mm, wherein the channel comprises an axial width of 0.8 mm, and wherein the beveled surface includes a rise of 30 degrees above the horizontal axis of the shaft. In another form, the grooved portion further comprises a radius of curvature of 11 mm. In yet another form, the cage nut insertion tool further comprises a remainder portion between the vertically upper portion of the shaft and a deepest portion of the channel, wherein the remainder portion comprises 0.8 mm. In still yet another form, an axial center of the channel is positioned within 2 mm of the first end.
Another embodiment is a method, including inserting a first end of a cage nut insertion tool into a cage nut receiving portion of a square hole rack and engaging a cage nut tab of a cage nut with a channel formed on a beveled surface, the first end including the beveled surface. The method further includes compressing the cage nut and withdrawing the first end of the cage nut insertion tool, and thereby engaging the cage nut to the square hole rack.
In one form, the inserting further comprises extending the channel through the cage nut receiving portion of the square hole rack to a position vertically above the cage nut tab. In another form, the extending comprises engaging a grooved portion of the cage nut insertion tool with an upper surface of the cage nut receiving portion of a square hole rack. In still yet another form, the extending further comprises lowering a handle portion of the cage nut insertion tool, and wherein the withdrawing further comprises raising the handle portion of the cage nut insertion tool.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment(s), but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as permitted under the law. In reading the claims it is intended that when words such as “a,” “an,” “at least one” and “at least a portion” are used, there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. Further, when the language “at least a portion” and/or “a portion” is used the item may include a portion and/or the entire item unless specifically stated to the contrary.
The present application claims the benefit of U.S. Provisional Patent Application 61/747,074, filed Dec. 28, 2012, and is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61747074 | Dec 2012 | US |