Caisson Breakwater Module

Abstract
A caisson breakwater module having an upwave and a downwave side and incorporating an oscillating water column, the caisson breakwater comprising a base installed on the sea bed and a lid adapted to be positioned on top of said base, the base defining a water inlet on the upwave side and further defining a water oscillation chamber, and the lid defining a breakwater section on the upwave side, a turbine chamber, one or more air ducts connected with said turbine chamber and an additional substantially sealed chamber. The invention further relates to a breakwater comprising a plurality of such modules and a lid suitable for use in such modules.
Description

The present invention relates to a caisson breakwater, and more particularly relates to a caisson breakwater module incorporating an Oscillating Water Column (OWC). The present invention further relates to a breakwater structure comprising a plurality of such modules and to a lid particularly suitable for such a module.


BACKGROUND ART

Breakwater structures are structures that generally serve to reduce the erosion of a coast by reducing the intensity of wave actions. They may be built at or near the coast and may be used as a protective border of a harbour or port. It is also known to use them offshore (i.e. further away from the coast), with the same scope of protecting the coast e.g. a beach.


Breakwater structures may be built with one end linked to the coast or completely separated from the coast. It is known to provide floating breakwater structures or to construct them on a foundation on the sea bed. Breakwaters of different types are known: on the one hand, rubble mound breakwaters (using e.g. sloped mounds of e.g. stones to dissipate wave energy) and on the other hand caisson breakwaters (using caissons to substantially deflect waves).


Caisson breakwaters may comprise (reinforced) concrete caissons. The caissons may be manufactured in dry docks, towed and sunk by filling one or more cells in the caissons with sand, gravel or concrete, or any other kind of ballast.


Furthermore, Oscillating Water Column wave power plants are known. In these wave power plants, the rising and falling water surface within a chamber is used to produce an oscillating air current in which a turbine is placed. In general, a so-called Wells turbine is used to take advantage of the air flow in two directions. A generator may be operationally connected to the turbine in order to generate electricity.


EP 1 518 052 discloses an oscillating water column wave energy converter that is incorporated into a caisson breakwater. Another example of a combined breakwater structure with OWC is shown in WO 2010/067177. JP10246171 describes an OWC that comprises a de-energizing chamber between the water and a pipe leading towards an air turbine. GB 2 108 590 describes a liquid wave energy absorber built as a concrete structure having a base provided with ballast compartments, side walls and a rear wall extending upwards from the base, a roof, and a transverse wall extending between the side walls and down from the roof. The transverse wall terminates a distance above the base to form an opening.


Even though these particular prior art systems offer an advantageous combination of coastal protection and electricity generation from renewable energy, the prior art designs suffer from various drawbacks. In general, their designs do not take cost-efficiency and economic viability into account.


It is an object of the present invention to provide an improved breakwater structure.


SUMMARY OF THE INVENTION

In a first aspect, a caisson breakwater module is provided having an upwave and a downwave side and incorporating an oscillating water column. The caisson breakwater module comprises a base installed on the sea bed and a lid adapted to be positioned on top of said base. The base may define a water inlet on the upwave side and may further define a water oscillation chamber. The lid may define a breakwater section on the upwave side, a turbine chamber, one or more air ducts connected with said turbine chamber and an additional substantially sealed chamber.


A modular built-up of a caisson breakwater incorporating an OWC is thus provided. The separation in a base that is installed on (a foundation) in the sea bed, and a lid that is positioned on top of the base, makes separate manufacture and installation possible. The base may be manufactured in a dry dock, towed onto sea and subsequently sunk in place. The lid may be manufactured separately, e.g. comprising a plurality of moulded concrete sections, and may be transported separately.


Since the OWC is incorporated in a breakwater structure, installation and maintenance of the OWC may be easier and cheaper than in a floating structure. Additionally, a substantially sealed chamber is incorporated in the lid. Electrical cables and converters may be installed in the sealed chamber, such that they are protected from sea water and other environmental influences. And no submarine cables are needed for transporting electricity to the shore, since a direct connection to shore is available through the breakwater structure. The provided design may thus reduce life-cycle-cost of the breakwater/OWC. The electricity generated by the OWC may be used locally in e.g. a harbour located on the downwave side of the breakwater. A further aspect of being able to provide a converter system in the sealed chamber is that suitable AC current may be generated and directly injected into the electrical grid.


In some embodiments, the lid further defines an air chamber below the turbine chamber and comprises an opening for allowing communication between the water oscillation chamber and the air chamber. Optionally, a valve system may be foreseen to selectively close off communication between the water oscillation chamber and the air chamber. During high waves and/or storms, the turbine and related electrical systems may be protected by closing such a valve.


In some embodiments, the sealed chamber may be located substantially behind the breakwater section or between the air chamber and the breakwater section. According to this design, the space located behind the breakwater section may be advantageously used to house e.g. a converter.


In some embodiments, the one or more air ducts may have an opening on the upwave side. According to this feature, any noise created by the turbine and the moving water column and air column is directed towards the upwave side and away from e.g. a port and residencies located on the coast. Optionally, the one or more air ducts may also comprise a valve for selectively closing off the air duct. The OWC may thus be protected during high waves or storms.


In some embodiments, the lid may comprise a plurality of moulded concrete sections. By dividing the lid in prefabricated sections, the overall installation, and particularly the transport of the lid to the site may be facilitated.


In some implementations, one or more modules may comprise a wind turbine and/or photovoltaic panels. The electricity generated in a breakwater structure may thus be increased. It thus becomes possible to provide a breakwater around a port that can generate enough electricity for (almost) all electricity needs in the port. In some implementations, a module may further comprise a desalination plant. The energy generated may be used locally in the desalination plant. Desalinated water may be used either in a port or harbour, or in a village or city located at the coast.


In another aspect, a lid suitable for use in a module as substantially hereinbefore described is provided.


In yet another aspect, a breakwater comprising a plurality of modules substantially as hereinbefore described is provided. A breakwater may be provided that comprises only modules such as hereinbefore described. However, in other implementations, a number of such modules may be attached to an already existing breakwater in order to e.g. improve electricity provision.


Additional objects, advantages and features of embodiments of the invention will become apparent to those skilled in the art upon examination of the description, or may be learned by practice of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Particular embodiments of the present invention will be described in the following by way of non-limiting examples, with reference to the appended drawings, in which:



FIGS. 1
a-1d show various views of a module according to a first embodiment of the present invention;



FIGS. 2
a-2b show different views of a module according to a second embodiment of the present invention;



FIGS. 3
a-3c illustrate various views of a module according to a third embodiment of the present invention;



FIGS. 4
a-4d illustrate various views of a module according to a fourth embodiment of the present invention;



FIG. 5 illustrates an example of a module according to an embodiment of the present invention comprising various moulded sections; and



FIGS. 6
a-6c illustrate examples of implementations of a plurality of modules according to different embodiments of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS


FIG. 1
a illustrates a cross-sectional view of a first embodiment of a caisson breakwater module 100. The breakwater module has an upwave side 110, from which the waves strike upon the module and a downwave side 120, where the sea will generally be calmer. On the downwave side 120, e.g. a port or harbour may be located. The breakwater module may thus form a protective barrier for the port and any boats present in the port.


Reference sign 12 indicates the water level, whereas reference sign 11 indicates the height of the waves. The module comprises a base 20 installed on sea bed 5. A lid 50 may be placed on top of the base to form the breakwater module 100.


An Oscillating Water Column (OWC) is provided in the breakwater module. The OWC may comprise a substantially horizontal water inlet 25. Water enters through the inlet, and due to the sea's wave action, a water column will oscillate in water oscillation chamber 21. The oscillating water column causes an oscillating air flow through air chamber 53, through turbine 60 located in turbine chamber 51 and through a plurality of air ducts 58.


According to an advantageous embodiment of the present invention, the air ducts 58 may have openings on the upwave side of the breakwater module. Any noise created by the moving air will thus generally be expelled towards the sea, and much less towards the port (or coast).


Further foreseen on the breakwater module 100 is a breakwater section 52 on the upwave side. In this embodiment, the breakwater section 52 has a substantially staggered cross-section. A plurality of air duct outlets may be foreseen on the stepped structure of the breakwater section 52. The breakwater module 100 also comprises a substantially sealed chamber 57 which may house e.g. electrical converters electrically connected to the generator driven by turbine 60. The sealed chamber 57 may house any further electrical or electronic equipment. The sealed chamber 57 can be considered a “dry” chamber within the module, since it is substantially sealed from the water, as there is no direct connection with either the water oscillation chamber 21 or the turbine chamber 60, or the air ducts 58. With a proper conversion, the electricity generated and converted may be injected directly into the electrical grid.


Optionally valve systems may be provided e.g. between the water oscillation chamber and the air chamber and/or between the air chamber and the turbine chamber and/or in the air ducts. These valve systems may protect the turbine during high waves and storms.


On top of the turbine chamber 51, a generally flat top surface 56 is provided which may be adapted to be used as a promenade. Substantially on the downwave side of the module, on a rear section of the lid another flat surface 55 may be used as a road. If a plurality of modules is attached side-by-side, a promenade respectively a road may be formed. Traffic is thus made possible around the port by the caisson breakwater module, which furthermore generates electricity e.g. for its use in the port.


The base 20 thus defines a water inlet on the upwave side and a water oscillation chamber, and the lid defines a breakwater section on the upwave side, a turbine chamber, one or more air ducts connected with said turbine chamber and an additional substantially sealed chamber.


Base 20 comprises a front wall 31, a rear wall 34, and a first and second intermediate walls 32 and 33. First and second intermediate walls 32 and 33 substantially delimit the water oscillation chamber 21. Front ballast cells 23 and 24 are thus defined between front wall 31 and first intermediate wall 32. The front ballast cells may be filled with e.g. sand, rubble, rocks, or concrete. Similarly, a rear ballast cell 22 is defined between the second intermediate wall 22 and rear wall 34. The rear ballast cell may also be filled with any kind of ballast. The base 25 may thus be manufactured in dry docks, towed (floatingly) to its installation site, and locally sunk. Preferably, the base may have a sufficient weight such that it is fixed in position on the sea bottom through its weight alone, without the need of any additional fixation means. The water inlet 25 is defined in this embodiment as a through-hole through the front ballast cells 23 and 24.


With reference to FIGS. 1b and 1c, the method of filling the ballast cells may be understood. FIG. 1b shows a cross-sectional view along line A-A of FIG. 1a, whereas FIG. 1c shows a top view of base 20. In FIG. 1b, front wall 31, rear wall 34 and the intermediate walls 32 and 33 may be recognized. A wall 21c dividing the water oscillation chamber 21 into two separate chambers 21a and 21b may be foreseen. It should be noted that a similar separation into two separate sections may or may not be foreseen in the air chamber 53. Similarly, a single module will preferably comprise a single turbine 60, but in accordance with circumstances may comprise also two turbines.


From FIGS. 1b and 1c, it can be readily seen that the rear ballast cell 22 may easily be filled with ballast from the top, once the base 20 is sunk onto the seabed 5. In order to fill lower front ballast cell 23, filling channels 26a, 26c and 26b are foreseen in respectively the modules side-walls and wall 21c.



FIG. 1
d shows an isometric view of the first embodiment of the caisson breakwater module just described. In a possible implementation, a plurality of said modules may be positioned next to each other to form a breakwater structure protecting a coast or a port. A plurality of OWC's may thus be provided as well. In another implementation, one or more of the previously described modules may be added to an already existing breakwater structure to locally generate electricity. In a further example, a number of modules according to the invention may be combined with a number of prior art modules, not comprising an OWC.



FIGS. 2
a-2b show different views of a module according to a second embodiment. The same components as previously described are denoted using the same reference signs. The module according to this second embodiment has a number of differences with respect to the first module.


Firstly, the breakwater section 52′ comprises a substantially curved outer surface to deflect the waves. Also, the outlet(s) of the one or more air duct(s) 58′ may in this embodiment be arranged between the top of the breakwater section 52′ and the top of the lid. In this embodiment, a single outlet extending substantially over the entire width of the module may be foreseen.


Secondly, the water oscillation chamber 21′ is delimited by curved walls 25a and 25b extending between the water inlet 25 and the air chamber 53. With respect to the base, an additional central ballast cell 27 may be foreseen according to this embodiment. The shapes of front ballast cells 23′ and 24′ are changed due to the curved water oscillation chamber 21′.


The curved oscillation chamber according to this embodiment is able to use both the horizontal and the vertical component of the wave action. Further, the mouth of the water oscillation chamber 21′ breathing into air chamber 53 may be of smaller cross-section than the water inlet 25 at the other end of the chamber 21′. Hereby, the water pressure and air pressure of the air passing through the turbine may be increased.


A further difference with respect to the embodiment of FIG. 1 is that there is no clear separation between an air chamber and water oscillation chamber. In the module according to this embodiment, the air chamber and water oscillation chamber substantially form a single united chamber.



FIGS. 3
a-3c illustrate various views of a module according to a third embodiment. FIGS. 3a and 3c show isometric views, whereas FIG. 3b shows a cross-sectional view. In this embodiment, a promenade and/or road substantially above the turbine chamber may be dispensed with. Instead, the focus of the design of the third embodiment is to improve the (renewable) electricity generation of the breakwater structure.


To this end, a wind turbine 70 with a pole 75 may be provided. The mounting hole 54 for pole 75 may be foreseen on breakwater section 52′. Further, a plurality of photovoltaic panels 80 may be provided on top of the lid, e.g. on top of the turbine chamber. In accordance with FIG. 3b, the flat surface of the rear section of the lid may be configured as a promenade. Alternatively, this area could be used as a road. In yet another alternative, this available surface may also be used for installing (more) photovoltaic panels.



FIGS. 4
a-4d illustrate various views of a module according to a fourth embodiment. Similar components have once again been indicated with the same reference signs. From FIG. 4a, the sealed chamber 57, turbine chamber 51, water inlet 25, and wind turbine 70 are readily recognizable. Contrary to previously shown embodiments, the rear lid section behind the turbine chamber is not a substantially flat surface on top of base 20. Instead, in this embodiment, a covered space 97 underneath the deck is provided. This space may be substantially closed or open towards the sea. The covered space 97 may be divided into separate chambers 97a and 97b. These chambers may potentially serve many different purposes.


In the particular embodiment shown, the chambers are used for housing a desalination and water storage system. Desalination machinery 99 may be housed in chamber 97a. Fresh water resulting from the desalination process may be stored in chamber 97b. This fresh water may be used locally, e.g. in a port located on the downwave side of the breakwater.


The complete deck of the module may be occupied by photovoltaic panels 80. Additionally, in this embodiment a wind turbine may be provided. An access 90 may be provided on deck level. Through the access 90, maintenance personnel may reach e.g. the turbine chamber and or the sealed chamber 57. Stairs 91 may be provided internally of the module to facilitate his access.


The water inlet 25 may have a slightly different shape in this embodiment. In order to better support the weight, the upper edge of the water inlet chamber may be substantially arch-shaped.


Another aspect of this embodiment may be seen in FIG. 4c. According to this aspect, a valve 58b to selectively close-off the air duct may be provided. During high waves and/or storms, the turbine chamber can thus be protected. A similar valve system may e.g. be implemented between the turbine chamber and the air chamber to protect the turbine from water during storms. Additionally in this embodiment, the air outlet 58a may comprise a sound-absorbing material and/or structure.


In accordance with FIGS. 4c and 4d, instead of filling the decks with photovoltaic panels, these areas may also be used e.g. as a promenade.



FIG. 5 illustrates an example of a module according to an embodiment of the present invention comprising various moulded sections. Depending on the dimensions of the modules, transportation of e.g. the lid may become a problem.


It is possible to manufacture the lid as a single piece, but according to an aspect of the invention, the lid may also be split into separately moulded (reinforced) concrete sections. In this aspect, installation, transport and also manufacture may be facilitated. FIG. 5 illustrates a possible division between various modules of the lid of a breakwater module. It will be clear that other divisions are possible.


In the shown embodiment, the breakwater section may be split in two sub-sections. A sub-section 41 defining the foot of the breakwater section and adapted to be fitted on top of the base 20. Sub-section 42 may comprise the substantially curved breakwater surface and is adapted to be attached to sub-section 41. Further, the air chamber may be a single moulded section 43. Similarly, the turbine chamber 44 may be a single moulded section 44, adapted to be positioned on top of the air chamber. Suitable positioning and fastening flanges may be provided on each of the sections.


A deck section 45 may be positioned on top of the section 44 forming the turbine chamber, such that between these two sections, the outlet of the air duct is formed. Finally, the rear lid section with a flat top surface may e.g. be split into two sub-sections 46 and 47.


In other embodiments, a different division may be provided. For example, the breakwater section may be made of a single moulded piece combining sub-sections 41 and 42. Alternatively or additionally, rear lid sub-sections 46 and 47 may also be joined in a single moulded piece.


It will be clear that in accordance with circumstances, the dimensions of the modules (lid and base) may be varied. In calmer seas, the length of the module (the dimension in the upwave-downwave direction) may be smaller. Whereas in occasions where more coastal protection is required due to e.g. higher wave intensity, the module may be longer. Accordingly, the space available behind the turbine chamber, and thus also its practical uses may vary. In some embodiments of the invention, even no space may be available behind the turbine chamber.


Also, in accordance with wave characteristics of the sea (e.g. wave length, frequency, and height), the dimensions of e.g. the water oscillation chamber, water inlet and turbine may be adjusted.


A plurality of the modules, according to any of the shown embodiments, may be used to build a new breakwater structure. FIG. 6a illustrates such a use of a plurality of caisson breakwater modules 100. In some cases, these may be used to build e.g. a port on the downwave side 120, wherein the modules serve for docking ships. In other cases, they may serve mostly or only for coastal protection.


In other possible implementations, illustrated in FIGS. 6b and 6c, a number of these modules may be added to an already existing breakwater structure. According to the embodiment of FIG. 6b, modules 100 may be attached directly at the upwave side of pre-existing breakwater structure 150. This may be useful e.g. to provide renewable electricity and may form a reinforcement of the breakwater structure. The modules may be attached side-by-side or a gap may be provided between neighbouring modules.


In FIG. 6c, a plurality of modules 100 is installed in front of a pre-existing breakwater structure 150. A gap 180 of e.g. a few metres may be foreseen. In order to access the machinery of the Oscillating Water Columns, a gangway may be arranged between breakwater structure 150 and each of the modules 100. Similarly, a gangway or similar structure may be provided for connection of electricity cables from modules 100 to the shore.


In each of the embodiments of FIGS. 6a-6c, the modules used are generally identical. It will be clear however, that in any of these implementations, the kind of module used may be varied (e.g. some may have photovoltaic panels, whereas others do not. Or some may comprise desalination machinery, whereas others may comprise a wind turbine).


Generally, all shown embodiments, take advantage of the modular approach of the caisson breakwater. Further, the separation of base and lid may facilitate manufacture transport and installation. Additionally, the combination of energy conversion and coastal protection is beneficial. Furthermore, access and maintenance of the installations are facilitated. No submarine cables are needed in any of the embodiments for transporting electricity to the shore. And with the provision of the sealed chamber and turbine chamber, a beneficial optimization of space is acquired. In combination a very cost-effective design for various types of breakwaters is achieved.


In some of the shown embodiments, renewable electricity generation may be prioritized and combinations using wind energy, wave energy and solar energy are possible.


For reasons of completeness, various aspects of the present invention have been set out in the following numbered clauses:

  • Clause 1. A caisson breakwater module having an upwave and a downwave side and incorporating an oscillating water column,
    • the caisson breakwater comprising a base installed on the sea bed and a lid adapted to be positioned on top of said base,
    • the base defining a water inlet on the upwave side and further defining a water oscillation chamber, and
    • the lid defining a breakwater section on the upwave side, a turbine chamber, one or more air ducts connected with said turbine chamber and an additional substantially sealed chamber.
  • Clause 2. A module according to clause 1, the base comprising a bottom, a front wall, a rear wall, and one or more intermediate walls between the front and rear wall, the walls extending upwards from the bottom, and the base defining a water inlet below the sea level.
  • Clause 3. A module according to clause 1 or 2, wherein the lid is positioned substantially above mean sea level,
  • Clause 4. A module according to any of clauses 1-3, wherein the base has one or more ballast cells defined between the walls.
  • Clause 5. A module according to any of clauses 1-4, wherein the sealed chamber is located substantially behind the breakwater section.
  • Clause 6. A module according to any of clauses 1-5, wherein the lid further defines an air chamber below the turbine chamber and comprises an opening for allowing communication between the water oscillation chamber and the air chamber.
  • Clause 7. A module according to clause 6, further comprising a valve in said opening for selectively closing off communication between the water oscillation chamber and the air chamber.
  • Clause 8. A module according to clause 6 or 7, wherein the sealed chamber is located substantially between the air chamber and the breakwater section.
  • Clause 9. A module according to any of clauses 1-8, wherein the sealed chamber houses an electrical converter.
  • Clause 10. A module according to any of clauses 1-9, wherein the base comprises a rear base section behind the water oscillation chamber on the downwave side, and wherein the lid comprises a rear lid section with a substantially flat top surface extending behind the water oscillation chamber.
  • Clause 11. A module according to clause 10, wherein said flat top surface of the rear lid section is suitable for being used as a road.
  • Clause 12. A module according to any of clauses 1-11, wherein the lid comprises a central section having a substantially flat top surface extending in a downwave direction from the top of the breakwater section.
  • Clause 13. A module according to clause 12, wherein said top surface of the central section comprises a promenade.
  • Clause 14. A module according to any of clauses 1-13, wherein one or more of said air ducts have an opening on the upwave side.
  • Clause 15. A module according to clause 14, wherein one or more air ducts have an opening on the breakwater section.
  • Clause 16. A module according to any of clauses 1-15, wherein said breakwater section has a substantially continuously curved outer surface.
  • Clause 17. A module according to any of clauses 1-15, wherein said breakwater section has a staggered outer surface.
  • Clause 18. A module according to any of clauses 1-17, wherein one or more of said air ducts comprise a valve for selectively closing off the air duct.
  • Clause 19. A module according to any of clauses 1-18, wherein one or more of said air ducts may comprise a sound absorbing material and/or a sound absorbing structure.
  • Clause 20. A module according to any of clauses 1-19, wherein the lid comprises a plurality of moulded concrete sections.
  • Clause 21. A module according to any of clauses 1-20, further comprising a wind turbine.
  • Clause 22. A module according to clause 21, wherein a tower of the wind turbine is mounted in the breakwater section.
  • Clause 23. A module according to any of clauses 1-22, further comprising one or more photovoltaic panels.
  • Clause 24. A module according to any of clauses 1-23, further comprising a desalination plant and a storage chamber for storing fresh water.
  • Clause 25. A module according to any of clauses 1-24, wherein the base comprises one or more cells filled with ballast.
  • Clause 26. A module according to any of clauses 1-25, wherein the cross-section of the water inlet is larger than the cross-section of the oscillation chamber at its other end.
  • Clause 27. A breakwater comprising a plurality of modules according to any of clauses 1-26.
  • Clause 28. A lid suitable for a module according to any of clauses 1-26.


Although only a number of particular embodiments and examples of the invention have been disclosed herein, it will be understood by those skilled in the art that other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof are possible. Furthermore, the present invention covers all possible combinations of the particular embodiments described. Thus, the scope of the present invention should not be limited by particular embodiments, but should be determined only by a fair reading of the claims that follow.

Claims
  • 1. A caisson breakwater module having an upwave and a downwave side and incorporating an oscillating water column, the caisson breakwater comprising a base installed on the sea bed and a lid adapted to be positioned on top of said base substantially above mean sea level,the base comprising a bottom, a front wall, a rear wall, and one or more intermediate walls between the front wall and the rear wall, the walls extending upwards from the bottom, andthe base defining a water inlet below the sea level on the upwave side and further defining a water oscillation chamber, andthe lid defining a breakwater section on the upwave side, a turbine chamber, one or more air ducts connected with said turbine chamber and an additional substantially sealed chamber.
  • 2. A module according to claim 1, wherein the base has one or more ballast cells defined between the walls.
  • 3. A module according to claim 1, wherein the lid further defines an air chamber below the turbine chamber and comprises an opening for allowing communication between the water oscillation chamber and the air chamber and further comprising a valve in said opening for selectively closing off communication between the water oscillation chamber and the air chamber.
  • 4. A module according to claim 3, wherein the sealed chamber is located substantially between the air chamber and the breakwater section.
  • 5. A module according to claim 1, wherein the sealed chamber houses an electrical converter.
  • 6. A module according to claim 1, wherein the base comprises a rear base section behind the water oscillation chamber on the downwave side, and wherein the lid comprises a rear lid section with a substantially flat top surface extending behind the water oscillation chamber, and wherein said flat top surface of the rear lid section is suitable for being used as a road.
  • 7. A module according to claim 1, wherein the lid comprises a central section having a substantially flat top surface extending in a downwave direction from the top of the breakwater section, and wherein said top surface of the central section comprises a promenade.
  • 8. A module according to claim 1, wherein one or more air ducts have an opening on the breakwater section.
  • 9. A module according to claim 1, wherein said breakwater section has either a substantially continuously curved outer surface or a staggered outer surface.
  • 10. A module according to claim 1, wherein one or more of said air ducts comprise a valve for selectively closing off the air duct.
  • 11. A module according to claim 1, wherein one or more of said air ducts may comprise a sound absorbing material and/or a sound absorbing structure.
  • 12. A module according to claim 1, wherein the lid comprises a plurality of moulded concrete sections.
  • 13. A module according to claim 1, further comprising a wind turbine and/or one or more photovoltaic panels.
  • 14. A module according to claim 1, further comprising a desalination plant and a storage chamber for storing fresh water.
  • 15. A module according to claim 1, wherein the cross-section of the water inlet is larger than the cross-section of the oscillation chamber at its other end.
  • 16. A breakwater comprising a plurality of modules according to claim 1.
Priority Claims (1)
Number Date Country Kind
11382285.2 Sep 2011 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2012/067400 9/6/2012 WO 00 2/21/2014