The present application claims the benefits of priority of Chinese application number 200810026012.6, entitled CAISSON STRUCTURES AND METHODS FOR PRECISELY AND STABLY SINKING THE CAISSON STRUCTURES INTO GROUND, and filed in the name of Cixin, DING and Shudong, DING on Jan. 24, 2008. The entire content of the application is incorporated herein by reference.
The present application relates to an architectural structure, in particular to a caisson structure and a method for stably sinking the caisson structure into ground to achieve a precise final sinking.
Caissons, also known as open caisson or sinking well, are architectural structures used as deep foundation support for such as underground space building or high-rise building, and have a unique application range. For example, caissons may not be used in a hard enough soil environment where it may be convenient and economic to use a foundation pit construction technique other than the caisson technique. However, it will be preferred to use the caisson technique in a soft soil environment, because if conventional support structures are used, the porous and unstable soil can cause a sharp increase of costs, prolong the sinking period and put workers at a higher sinking risk.
Thus, caissons are widely used in alluvium environment such as close to rivers, lakes or seas. However, when a caisson is used in a soft soil foundation, serious accidents, such as sudden sinking, over sinking, center deviation, plane rotation, slant-wise sinking, distortion and cracking, soil pouring into the well and outside collapse, can easily happen due to improper design or operation. These are mainly caused by the intrinsic deficiency in vertical plan stiffness or minimum vertical profile torsional stiffness of some sections of the caisson. These are also caused by the current caisson structures and the sinking methods used, which cannot insure, in the sense of engineering, a stable and accurate sinking Consequently, most of caissons are rocky during sinking which can easily cause accidents. Thus, it has to rectify the caisson during the course of sinking so as to keep balance. This makes the sinking work more difficult, prolongs the sinking period and increases the sinking costs. For a long time past, many efforts have been made to overcome these disadvantages in associate with the conventional techniques but without success.
Currently, caisson having the maximum area can only meet the requirements of middle-scale foundation pits. It is difficult in the art to construct a caisson having a larger area, diameter (for circular caisson), length or width (for rectangular caisson) or inner lattice, or having more complex abnormal and asymmetric shape. This is due to the intrinsic deficiency of stiffness of the caisson. The intrinsic deficiency of stiffness restricts the development of caisson towards greater size, lower cost and more complexity, and in turn, limits the use of caisson.
It is an object of the present invention to provide a caisson structure which is not prone to deform or break and having a lower requirement on the stiffness of the caisson itself, so as to improve safety during sinking.
It is another object of the present invention to provide a method for stably and precisely sinking a caisson structure into ground. The method is used to ensure sinking in a controllable manner and to achieve an accurate final sinking. Thus, serious accidents that can easily happened in conventional techniques, such as sudden sinking, over sinking, center deviation, plane rotation, slant-wise sinking, distortion and cracking, soil pouring into the well and outside collapse, can be avoided.
To achieve the above objects, it is provided a caisson structure including enclosed well walls with internal surfaces and external surface placed opposite to the internal surfaces. A plurality of frame beams are provided between the internal surfaces and mutually intersected in a horizontal plane and a vertical plane. A bottom frame beam is provided close to a lowest end of the well walls. The internal surfaces are provided with internal support blocks at a first height, and the external surfaces are provided with external support blocks at a second height, with the second height greater than the first height. A bottom surface of the bottom frame beam is a plane without cutting edges, and the lowest end of the well walls is formed with cutting edges having an inclined surface.
In another aspect, the present invention provides a method for stably and precisely sinking a caisson structure into ground and achieve an accurate final sinking, comprising steps of:
(a) selecting a sinking area, and driving support piles into the ground within the area with a length of the support piles exposed above the ground;
(b) constructing a caisson structure within the area, the caisson structure including enclosed well walls with internal surfaces and external surface placed opposite to the internal surfaces, a plurality of frame beams being provided between the internal surfaces and mutually intersected in a horizontal plane and a vertical plane, a bottom frame beam being provided close to a lowest end of the well walls, the internal surfaces being provided with internal support blocks at a first height, and the external surfaces being provided with external support blocks at a second height, with the second height greater than the first height, and a bottom surface of the bottom frame beam being a plane without cutting edges, the bottom frame beam and the internal support blocks being supported by a group of internal support piles through internal hoisting jacks, the external support blocks being supported by a group of external support piles through a group of sets of heel blocks with one above another in vertical direction and external hoisting jacks located below nethermost heel blocks, position-limiting devices being provided surround each set of heel blocks so that the heel blocks are only movable in vertical direction, the first and second hoisting jack each comprising a base and a pusher movable within the base for a specific distance, the pusher being initially in a condition of extending out, each pusher of the hoisting jacks being fixed at a top end thereof to the internal support block and the bottom frame beam and suspended there below, all the hoisting jacks being divided into a first group and a second group which are staggered for description purpose;
(c) operating all the hoisting jacks to make the pushers move back into the bases for a predetermined distance, and keep a remaining stroke of at least 30 mm in length, so that the caisson undergoes a first sinking for the predetermined distance within the sinking area, and the cutting edges of the well walls insert into the ground;
(d) operating the first group of the hoisting jacks to make the pushers move for a length of 20 to 50 mm back into the bases, so that the second group of the hoisting jacks support the whole load of the caisson, while the first group is load-free, then removing the highest heel blocks of the sets of heel blocks between the external support blocks and the corresponding external hoisting jacks, followed by operating each external hoisting jack in the first group to make each pusher extend out further in relative to the base until the remaining heel blocks are in tight contact with the external support block, cutting off a length of the internal support piles below the internal hoisting jacks in the first group, so as to form a gap between the bases of the internal hoisting jacks in the first group and the internal support piles that are cut, operating the internal hoisting jacks in the first group to lower the bases of the internal hoisting jacks until the bases are in tight contact with top ends of the internal support piles that are cut, so that the first group and the second group of the hoisting jacks support the caisson together;
(e) operating the second group of the hoisting jacks to make the pushers move for a length of 20 to 50 mm back into the bases, so that the first group of the hoisting jacks support the whole load of the caisson, while the second group is load-free, then removing the highest heel blocks of the sets of heel blocks between the external support blocks and the corresponding external hoisting jacks, followed by operating each external hoisting jack in the second group to make each pusher extend out further in relative to the base until the remaining heel blocks are in tight contact with the external support block, cutting off a length of the internal support piles below the internal hoisting jacks in the second group, so as to form a gap between the bases of the internal hoisting jacks in the second group and the internal support piles that are cut, operating the internal hoisting jacks in the second group to lower the bases of the internal hoisting jacks until the bases are in tight contact with top ends of the internal support piles that are cut, so that the first group and the second group of the hoisting jacks support the caisson together;
(f) removing the position-limiting devices surrounding the external hoisting jacks;
(g) operating all the hoisting jacks to make the pushers move back into the bases for another predetermined distance, and keep a remaining stroke of at least 30 mm in length, so that the caisson undergoes a second sinking for the another predetermined distance within the sinking area;
(h) digging away a layer of soil in the bottom of the caisson to expose the internal support piles;
(i) repeating steps (d) to (h) such that the caisson sinks gradually into the ground until the heel blocks on each external hoisting jack are removed and each external hoisting jack directly supports the corresponding external support block;
(j) operating all the hoisting jacks to make the pushers move fully back into the bases, such that the caisson sinks to a predetermined depth;
(k) removing the hoisting jacks, and casting cap concrete on the top of the support piles until the caisson is supported completely by cap concrete, achieving an accurate final sinking
The advantages of the present invention reside in that: the requirements on the self stiffness of the caisson are greatly reduced due to the presence of many support blocks and the use of support piles and hoisting jacks evenly distributed under the caisson, the caisson is thus not prone to deform or break, so that the sinking safety is improved. In addition, the caisson can be stably and precisely sinked to the predetermined depth in the ground in a controllable manner through the mutual cooperation between the support blocks and the hoisting jacks, so that serious accidents that can easily happened in conventional techniques, such as sudden sinking, over sinking, center deviation, plane rotation, slant-wise sinking, distortion and cracking, soil pouring into the well and outside collapse, can be avoided.
a to 12d show the changes of the external support blocks, heel blocks, hoisting jacks and corresponding pipe piles during the sinking of the caisson.
a to 13d show the changes of the external support blocks, heel blocks, hoisting jacks and corresponding piles, and also the changes of the hoisting jacks below the bottom frame beam and the pipe piles supporting the hoisting jacks, during the sinking of the caisson.
The present invention will be described in greater detail and in reference to accompanied drawings.
The structure of the caisson will be described first. Referring to
The longitudinal and lateral frame beams located undermost (closest to the ground) constitute bottom horizontal frame beam 126 (see
Each frame beam is fixed to well wall 102 via a frame pillar 116 provided on internal surface 110 of well wall 102. In addition, when necessary, internal partition walls 124 can be arranged between frame beams, so as to further enhance the overall structure strength of the caisson 100.
In particular, a plurality of external support blocks 112 is provided on each external surface 108 of well walls 102 close to the top end of the caisson 100. External support blocks 112 have the same height (a first height) in relative to the bottom of the caisson. Similarly, a plurality of internal support blocks 114 is provided on each internal surface 110 of well walls 102 close to the top end of caisson 100. Internal support blocks 114 have the same height (a second height) in relative to the bottom of the caisson. Particularly, the second height is much greater in value than the first height. The requirements on the stiffness of the caisson is greatly reduced due to the presence of the external and internal support blocks and with the aid of the support piles and hoisting jacks evenly distributed below the caisson. In other words, it is not necessary for the sectional plane of the caisson to be very large to ensure safety of sinking and usage of the caisson. Referring to
The method for precisely sinking the caisson into the ground is described hereinafter. Supporting members in relative to the method is first discussed. Referring to
Hoisting jacks 120 for adjusting the height of the caisson are provided between the underground portion of pipe piles 108 and internal support blocks 114 (see
The relative positions between external support blocks 112 and hoisting jacks 120 and between heel blocks 122 and pipe piles 118 are described as below. Referring to
It should be noted that, the present invention is not limited to the rectangular caisson as set forth above. In contrast, caissons with other shapes, such as circular caisson, square caisson, regular polygon caisson and various asymmetric polygons caissons can also be a part of the invention.
The method of the present invention is carried out based on the alternation of the load of the caisson between support piles and the height adjustability of the hoisting jacks.
As shown in
c and 13c show the subsequent operation of the method. To facilitate description, heel blocks 122 outside the well wall are numbered from top to bottom with numeric value 1, 2, 3 . . . . Referring to
Next, cutting away a length of the internal pipe piles (pipe piles supporting the internal hoisting jacks, also referred as to internal support piles) at each top end. Then, rising the pusher of the internal hoisting jacks in the first group to support the parts between the bottom frame beam (or the internal support blocks) and the internal pipe piles. At this moment, the whole weight of the caisson covers on both the first and the second group of the hoisting jacks. Subsequently, cutting away a portion of the position-limiting walls 134 at the bottom end, in order to avoid any obstacle caused by the bottom end during sinking
The second group of hoisting jacks (comprising external and internal hoisting jacks) is lowered for a predetermined distance, such as 30 to 50 mm, and removes the uppermost heel block (No. 1) from two position-limiting walls 134 of external support blocks 112. Immediately after that, operating the external hoisting jacks in the second group to rise and contact with the heel block No. 2. The No. 2 block is now in contact with external support block 112. Next, cutting away a length of the internal pipe piles (pipe piles supporting the internal hoisting jacks, also referred as to internal support piles) at each top end. Then, rising the pusher of the internal hoisting jacks in the second group to support the parts between the bottom frame beam (or the internal support blocks) and the internal pipe piles. At this moment, the whole weight of the caisson covers on both the first and the second group of the hoisting jacks, and the heel block No. 1 on the external support block is removed. In the mean time, all the internal support piles are cut away a predetermined length. Subsequently, cutting away a portion of the position-limiting walls 134 at the bottom end, in order to avoid any obstacle caused by the bottom end during sinking
As shown in
The processes described in reference to
During operation, the internal pipe piles are cut away gradually. However, most portions of the pipe piles are embedded in the ground. Thus, soil around the pipe piles in the ground should be dug out. This is achieved with the aid of twin beam bridge gantry crane 500 and belt conveyer 600 used therewith shown in
Generally, the caisson structure provided by the present invention includes enclosed well walls with internal surfaces and external surface placed opposite to the internal surfaces. A plurality of frame beams are provided between the internal surfaces and mutually intersected in a horizontal plane and a vertical plane. A bottom frame beam is provided close to a lowest end of the well walls. The internal surfaces are provided with internal support blocks at a first height, and the external surfaces are provided with external support blocks at a second height, with the second height greater than the first height. A bottom surface of the bottom frame beam is a plane without cutting edges, and the lowest end of the well walls is formed with cutting edges having an inclined surface.
Preferably, the external support blocks include a base and a pair of position-limiting walls extending downward at the base. The base and the position-limiting walls extend vertically along the height direction of the well walls. A rectangular guiding rail is disposed within the position-limiting walls.
The method of the present invention comprises step of:
(a) selecting a sinking area, and driving support piles into the ground within the area with a length of the support piles exposed above the ground;
(b) constructing a caisson structure within the area, the caisson structure including enclosed well walls with internal surfaces and external surface placed opposite to the internal surfaces, a plurality of frame beams being provided between the internal surfaces and mutually intersected in a horizontal plane and a vertical plane, a bottom frame beam being provided close to a lowest end of the well walls, the internal surfaces being provided with internal support blocks at a first height, and the external surfaces being provided with external support blocks at a second height, with the second height greater than the first height, and a bottom surface of the bottom frame beam being a plane without cutting edges, the bottom frame beam and the internal support blocks being supported by a group of internal support piles through internal hoisting jacks, the external support blocks being supported by a group of external support piles through a group of sets of heel blocks with one above another in vertical direction and external hoisting jacks located below nethermost heel blocks, position-limiting devices being provided surround each set of heel blocks so that the heel blocks are only movable in vertical direction, the first and second hoisting jack each comprising a base and a pusher movable within the base for a specific distance, the pusher being initially in a condition of extending out, each pusher of the hoisting jacks being fixed at a top end thereof to the internal support block and the bottom frame beam and suspended there below, all the hoisting jacks being divided into a first group and a second group which are staggered for description purpose;
(c) operating all the hoisting jacks to make the pushers move back into the bases for a predetermined distance, and keep a remaining stroke of at least 30 mm in length, so that the caisson undergoes a first sinking for the predetermined distance within the sinking area, and the cutting edges of the well walls insert into the ground;
(d) operating the first group of the hoisting jacks to make the pushers move for a length of 20 to 50 mm back into the bases, so that the second group of the hoisting jacks support the whole load of the caisson, while the first group is load-free, then removing the highest heel blocks of the sets of heel blocks between the external support blocks and the corresponding external hoisting jacks, followed by operating each external hoisting jack in the first group to make each pusher extend out further in relative to the base until the remaining heel blocks are in tight contact with the external support block, cutting off a length of the internal support piles below the internal hoisting jacks in the first group, so as to form a gap between the bases of the internal hoisting jacks in the first group and the internal support piles that are cut, operating the internal hoisting jacks in the first group to lower the bases of the internal hoisting jacks until the bases are in tight contact with top ends of the internal support piles that are cut, so that the first group and the second group of the hoisting jacks support the caisson together;
(e) operating the second group of the hoisting jacks to make the pushers move for a length of 20 to 50 mm back into the bases, so that the first group of the hoisting jacks support the whole load of the caisson, while the second group is load-free, then removing the highest heel blocks of the sets of heel blocks between the external support blocks and the corresponding external hoisting jacks, followed by operating each external hoisting jack in the second group to make each pusher extend out further in relative to the base until the remaining heel blocks are in tight contact with the external support block, cutting off a length of the internal support piles below the internal hoisting jacks in the second group, so as to form a gap between the bases of the internal hoisting jacks in the second group and the internal support piles that are cut, operating the internal hoisting jacks in the second group to lower the bases of the internal hoisting jacks until the bases are in tight contact with top ends of the internal support piles that are cut, so that the first group and the second group of the hoisting jacks support the caisson together;
(f) removing the position-limiting devices surrounding the external hoisting jacks;
(g) operating all the hoisting jacks to make the pushers move back into the bases for another predetermined distance, and keep a remaining stroke of at least 30 mm in length, so that the caisson undergoes a second sinking for the another predetermined distance within the sinking area;
(h) digging away a layer of soil in the bottom of the caisson to expose the internal support piles;
(i) repeating steps (d) to (h) such that the caisson sinks gradually into the ground until the heel blocks on each external hoisting jack are removed and each external hoisting jack directly supports the corresponding external support block;
(j) operating all the hoisting jacks to make the pushers move fully back into the bases, such that the caisson sinks to a predetermined depth;
(k) removing the hoisting jacks, and casting cap concrete on the top of the support piles until the caisson is supported completely by the cap concrete, achieving an accurate final sinking
Specifically, the external support blocks include a base and a pair of position-limiting walls extending downward at the base. The base and the position-limiting walls extend vertically along the height direction of the well walls. A rectangular guiding rail is disposed within the position-limiting walls. The heel blocks are disposed in a space defined by the base, the position-limiting walls and the guiding rail. The two position-limiting walls are connected to each other via a position-limiting plate. The position-limiting walls, the guiding rail and position-limiting plate constitute the position-limiting device of the present invention. The support pile may be high strength concrete pipe pile or steel pipe pile, and the pipe piles should be driven into the bedrock bearing stratum.
The caisson can be stably and precisely sinked to the predetermined depth in the ground in a controllable manner through the mutual cooperation between the support blocks and the hoisting jacks, so that serious accidents that can easily happened in conventional techniques, such as sudden sinking, over sinking, center deviation, plane rotation, slant-wise sinking, distortion and cracking, soil pouring into the well and outside collapse, can be avoided.
The external and internal support blocks may be reinforced concrete structure or steel structure. The support blocks can be separate blocks, ring beam blocks or crown cantilever blocks. In addition, the hoisting jack can be any other mechanical lifting members without limiting to the structures provided in the present application. The external support blocks, internal support blocks, bottom frame beams can be used separately or in together, dependent on the designs of the caisson structures. In addition, the present methods can be used in caissons with larger area, more complex abnormal and asymmetric shapes or larger dimensions, and it can be used in a more soft soil environment. The methods are cost effective compared to the conventional methods.
Number | Date | Country | Kind |
---|---|---|---|
200810026012.6 | Jan 2008 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN09/70038 | 1/6/2009 | WO | 00 | 7/22/2010 |