The present invention relates in general to wellbore operations and more particularly to offshore well installations.
It is often desired or necessary to use caissons, or outer tubular members, for conducting engineering operations and the like in water. Caissons may be used to provide a working space, to protect the internal member from external forces, and to protect the external environment from the surrounded area. One example of the use of caissons is in offshore well installations, wherein a drill stem or conductor extends from below the mud line or seafloor to a wellhead position above the water surface. The term conductor is used generally herein to include elongated members that may or may not be tubular as well as various tubular members and strings.
In view of the foregoing and other considerations, the present invention relates to apparatus, systems, and methods for substantially surrounding an elongated member with a space apart, outer tubular.
Accordingly, an example of a caisson includes an internal centralizer connected to the caisson, the centralizer positioning the caisson relative to the elongated member when the caisson is positioned about the elongated member.
An example of a caisson system that substantially surrounds a conductor that extends from below a mud line to a position above a water surface includes a caisson positioned about the conductor, the caisson having a lowest end positioned proximate to the mud line; a lower centralizer connected within the caisson and positioned about the conductor; and a second centralizer connected within the caisson and positioned about the conductor.
Another example of a caisson system that surrounds a conductor that extends from a head member positioned above a water surface to below a mud line includes a caisson positioned about the conductor, the caisson having a lowest end; a lower centralizer connected within the caisson proximate the lowest end of the caisson; and a second centralizer connected within the caisson above the lower centralizer relative to the mud line; wherein each centralizer includes a plurality of bow members extending between a first and a second collar, the first collar immovably connected within the caisson and the second collar moveable relative to the first collar, and each bow member curving inward from the caisson defining a bore disposing the conductor.
An example of a method of positioning a caisson about a conductor that extends from a head member positioned above a water surface through a mud line includes the steps of providing a caisson having a lower end, a lower centralizer positioned proximate to the lower end, and a second centralizer positioned a distance above the lower centralizer, each centralizer defining a bore having a static diameter proximate to the outside diameter of the conductor; lowering the caisson, over and about the head member and the conductor; passing the head member through the bore of the lower centralizer as the caisson is lowered; and passing the head member through the bore of the second centralizer as the caisson is lowered to the mud line.
The foregoing has outlined some of the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
The foregoing and other features and aspects of the present invention will be best understood with reference to the following detailed description of a specific embodiment of the invention, when read in conjunction with the accompanying drawings, wherein:
Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
As used herein, the terms “up” and “down”; “upper” and “lower”; and other like terms indicating relative positions to a given point or element are utilized to more clearly describe some elements. Commonly, these terms relate to a reference point as the surface from which drilling operations are initiated, or the wellhead, as being the top point and the total depth of the well being the lowest point, or in relation to the direction of movement from the surface of a body of water to the floor of the body of water.
For the purpose of clarity, caisson system 10 will be described with reference to an offshore well installation, wherein elongated member 16 is a pipe string referred to herein as a conductor. It is noted however, that caisson system 10 may be utilized in various installation in which it is desired to position a first tubular 12 about an inner elongated member, such as a pipe string, piling, or the like.
Conductor 16 is shown extending from above the mean water surface 18 to penetrating the seafloor, or mud line 20, into the earth 22. Positioned at the top end 24 of conductor 16 is a head member 26. Head member 26 may include numerous members or elements such as a blind flange, wellhead, Christmas tree, wellhead protector, wellhead caps and the like. In the illustrated example, head member 26 is a wellhead cap. Head member 26 commonly will have an outside diameter greater than the outside diameter of conductor 16.
Caisson 12 may be constructed from a selection of various materials that are adapted for the specific purpose and environmental conditions of the installation. The length of caisson 12 may vary based on various parameters, such as without limitation the water depth and the soil conditions at and below mud line 20. Commonly, caisson 12 will be constructed of multiple pipe joints that may be connected by various means such as welding and threading.
Caisson 12 may be driven into earth 22 and/or supported by tendons, guy lines, frame structures or other apparatus when installed. Caisson 12 may include a drive shoe 28 formed at or connected to the lowest end 30 of caisson 12 to aid in driving caisson 12 into earth 22. In the illustrated example, caisson 12 is driven into earth 22 as indicated by the hidden lines. Although not shown, caisson 12 may be installed via a drilling rig, be it a vessel or platform, or other lifting and support equipment such as a vessel mounted crane. Commonly, the first or lower joint 12a of caisson 12 is positioned over head 26 and then lowered around conductor 16. If needed, a subsequent joint 12b is positioned and connected to lower joint 12a by a connection 32, shown as a weld in this example. The process is continued until caisson 12 reaches mud line 20 and may then be driven, if desired, into earth 22.
In the examples described herein, one or more centralizers 14 are connected to internal surface 34 to facilitate positioning caisson 12 substantially concentrically about conductor 16. The utilization of centralizers 14 may also control the side-to-side movement of caisson 12 as it is being lowered over conductor 16 in the water column. In the example of
Refer now to
Bow members 38 are constructed of a durable, flexible or spring-like material such as steel or other durable metal. Each bow member 38 in
Bow members 38 are described herein as being concaved members, wherein ends 44 of each member and collars 36 provide an outside diameter. Each member 38 in
Referring now to
Based on the obtained dimensions, centralizer 14 may be constructed such that bore 48 is sized to dispose and contact conductor 16. For example, the diameter of bore 48 may be less than the outside diameter of conductor 16 or greater than the outside diameter of conductor 16. Centralizers 14 are then positioned inside of caisson 12 so that bore 48 is substantially concentrically aligned within caisson 12. Centralizers 14 are attached within caisson 12 by connecting one of the two collars 36 to caisson 12. Means for connecting such as bolting, tack welding, cementing and the like may also be utilized for the secure connection of centralizer 14 to caisson 12. In the example illustrated in
In the illustrated example, first or lower centralizer 14a is positioned within first caisson joint 12a proximate to drive shoe 28. Lower collar 36a, closest to drive shoe 28, is immovably connected to inner surface 34 by welding. Second collar 36b, the collar distal to drive shoe 28 in this example, is free to move relative to first collar 36a permitting the flexing of bow members 38. Second collar 36b, may be floating or connected to caisson 12 in a manner to allow longitudinal movement relative to first collar 36a as shown by the arrow in
A second centralizer 14b is connected in caisson 12 in a similar fashion as the first centralizer, with one of the collars moveable relative to the other collar. In the described examples, the second centralizer 14b is spaced from the first centralizer 14a a distance such that second centralizer 14b is in a disposed over and gripping position on conductor 16 proximate to or prior to first centralizer 14a passing through water level 18 during installation. In some examples first and second centralizers 14 may be connected in the same joint of caisson 12. In the illustrated example, second centralizer 14b is positioned and connected within a different joint of caisson 12 from the position of first centralizer 14a.
In installation, first caisson joint 12a is positioned over conductor 16 and lowed such that head 26 is positioned at bore 48. Lowering continues as head 26 forces bow members 38 to flex, one collar 36 moving relative to the other secured collar 36, allowing centralizer 14a to pass head 26. Second caisson joint 12b is then positioned and connected to first joint 12a at connection 32. It is noted, that one or more joints of caisson may be connected such that it may be run in caisson stands. Second centralizer 14b is lowered over head 26 in this example prior to first centralizer 14a passing into water 19. The pair of centralizers 14 substantially center conductor 16 relative to caisson 12 and resist lateral movement of caisson 12 when it is being lowered to mud line 20. Once drive shoe 28 encounters mud line 20 it may be driven into earth 22 as desired.
It is noted that various alterations other than those shown and described may be utilized without departing from the scope of the present invention. For example, as noted above either of the top or lower collar, relative to the lowest end of the caisson, may be immovably secured to the caisson. The moveable collar may be left unsecured and free of connection from caisson 12 or may be connected so as to be moveable longitudinally relative to the secured collar. Moveable connections such as sliding sleeves, tongue and track, and the like may be utilized. In another example, centralizers 14 may not include collars 36, but may have ends 44 connected to the inner wall of caisson 12 in the functional manner described in the examples.
Another example of an internal centralizer 14 is described with reference to
In this example collar 36a is the immovably secured collar, and is shown connected by welds 54 to inner surface 34. Collar 36b is movable relative to collar 36a. In the example illustrated in
From the foregoing detailed description of specific embodiments of the invention, it should be apparent that an internal centralizer, caisson system, and method of assembly and installation that are novel have been disclosed. Although specific examples have been disclosed herein in some detail, this has been done solely for the purposes of describing various features and aspects of the invention, and is not intended to be limiting with respect to the scope of the invention. It is contemplated that various substitutions, alterations, and/or modifications, including but not limited to those implementation variations which may have been suggested herein, may be made to the disclosed embodiments without departing from the spirit and scope of the invention as defined by the appended claims which follow.