1. Field of the Invention
The present invention relates to a tetracalcium phosphate (TTCP) for producing fast-setting, bioresorbable calcium phosphate cements (CPC), and in particular, to a tetracalcium phosphate having whiskers on the surface thereof for producing fast-setting, bioresorbable CPC having a high initial strength.
2. Description of the Related Art
U.S. Pat. No. 6,379,453B1 which is commonly assigned with the present invention discloses a process for producing a fast-setting, bioresorbable calcium phosphate cement comprising the following steps: obtaining a powder mixture from at least one calcium phosphate selected from the group consisting of Ca4(PO4)2O, Ca(HPO4)2H2O, CaHPO4, Ca8H2(PO4)6.5H2O, α-Ca3(PO4)2, β-Ca3(PO4)2, Ca2P2O7, Ca2H2P2O8, wherein the molar ratio of Ca to P in the mixture is roughly between 1 and 2; mixing the powder mixture in a phosphate-containing solution to obtain a powder/solution mixture having a concentration of less than 4 g powder mixture per ml solution; immediately heating the powder/solution mixture to a temperature of roughly 50° C.–350° C. to obtain a powder containing uniformly distributed submicron-sized apatite crystals; and mixing the apatite crystal-containing powder in a phosphate ion-containing solution to obtain a fast-setting, bioresorbable calcium phosphate cement.
An extensive study on the preparation of the fast-setting, bioresorbable calcium phosphate cement disclosed in U.S. Pat. No. 6,379,453B1 has been conducted by the same inventors and their co-workers, and found that a fast-setting, bioresorbable CPC having a high initial strength can be prepared from a unique calcium phosphate, tetracalcium phosphate (Ca4(PO4)2O, TTCP) particle having basic whiskers or fine crystals on the surface thereof, wherein said basic whiskers or fine crystals have a Ca/P ratio greater than 1.33. Therefore an object of the invention is to provide such a unique TTCP particle. Another object of the present invention is to provide a process for preparing said unique TTCP particle. A further object of the present invention is to provide a fast-setting, bioresorbable CPC calcium phosphate cement prepared from said unique TTCP particle.
The invention accomplishes the above object by providing a tetracalcium phosphate (Ca4(PO4)2O, TTCP) particle having basic calcium phosphate whiskers on a surface of said TTCP particle; said basic calcium phosphate whiskers having a length up to about 5000 nm and a width up to about 500 nm, and preferably, a length from about 1 nm to about 2000 nm and a width from about 1 nm to about 200 nm. Said basic calcium phosphate whiskers have a Ca/P molar ratio greater than 1.33, and preferably greater than 1.35 and less than 4.0. Said basic calcium phosphate whiskers have a non-stoichiometric chemical composition. Further, said basic calcium phosphate whiskers are substantially free of a hydroxyapatite phase, and comprises TTCP as a major phase.
The present invention discloses a process for preparing a tetracalcium phosphate (TTCP) powder comprising TTCP particles comprising basic calcium phosphate whiskers on surfaces of said TTCP particles, said process comprising the following steps:
a) mixing a TTCP powder with a whisker-inducing solution so that basic calcium phosphate whiskers start to grow on surfaces of TTCP particles of said TTCP powder;
b) terminating the growth of said calcium phosphate whiskers by drying the whisker-inducing solution in the mixture, so that said calcium phosphate whiskers have a length up to about 5000 nm and a width up to about 500 nm, and preferably, a length from about 1 nm to about 2000 nm and a width from about 1 nm to about 200 nm, said basic calcium phosphate whiskers have a Ca/P molar ratio greater than 1.33, preferably greater than 1.35 and less than 4.0, and said basic calcium phosphate whiskers have a non-stoichiometric chemical composition, preferably said basic calcium phosphate whiskers are substantially free of a hydroxyapatite phase, and comprises TTCP as a major phase.
Optionally, at least one additive selected from the group consisting of sodium phosphate (Na3PO4), disodium hydrogen phosphate (Na2HPO4), sodium dihydrogen phosphate (NaH2PO4), disodium hydrogen phosphate dodecahydrate (Na2HPO4.12H2O), disodium hydrogen phosphate heptahydrate (Na2HPO4.7H20), sodium phosphate dodecahydrate (Na3PO4.12H2O), orthophosphoric acid (H3PO4), calcium sulfate (CaSO4), Ca4(PO4)2O, CaHPO4.2H2O, CaHPO4, Ca8H2(PO4)6.5H2O, alpha-Ca3(PO4)2, beta-Ca3(PO4)2, Ca2P2O7, and Ca2H2P2O8, (NH4)3PO4, (NH4)2HPO4, and (NH4)H2PO4 together with said TTCP particles are mixed with the whisker-inducing solution in step a).
Optionally, said drying in step b) is carried out by heating the mixture resulting from step a) at a temperature less than about 1000° C. Preferably, said drying in step b) comprises separating the mixture resulting from step a) and heating the separated powder at a temperature of about 50 to 500° C.
The heating includes (but not limited to) the conventional oven/furnace heating, resistance heating, infrared heating, microwave heating, electron beam heating, ion beam heating, laser beam heating and plasma heating. Preferably said heating is conducted in vacuum, inert atmosphere or air atmosphere.
The whisker-inducing solution in step a) may be an acidic aqueous solution, a basic aqueous solution, an organic solvent or a substantially pure water. The acidic aqueous solution may contain at least one Ca or P source, or is free from Ca and P. The acidic aqueous solution can be selected from the group consisting of nitric acid (HNO3), hydrochloric acid (HCl), phosphoric acid (H3PO4), carbonic acid (H2CO3), sodium dihydrogen phosphate (NaH2PO4), sodium dihydrogen phosphate monohydrate, sodium dihydrogen phosphate dihydrate, potassium dihydrogen phosphate (KH2PO4), ammonium dihydrogen phosphate (NH4H2PO4), malic acid, acetic acid, lactic acid, citric acid, malonic acid, succinic acid, glutaric acid, tartaric acid, oxalic acid and their mixture.
The basic aqueous solution for use as the whisker-inducing solution in the method of the present invention may contain at least one Ca or P source, or is substantially free from Ca and P. The basic aqueous solution may be selected from the group consisting of ammonia, ammonium hydroxide, alkali metal hydroxide, alkali earth hydroxide, disodium hydrogen phosphate (Na2HPO4), disodium hydrogen phosphate dodecahydrate, disodium hydrogen phosphate heptahydrate, sodium phosphate dodecahydrate (Na3PO4.12H2O), dipotassium hydrogen phosphate (K2HPO4), potassium phosphate tribasic (K3PO4), diammonium hydrogen phosphate ((NH4)2HPO4), ammonium phosphate trihydrate ((NH4)3PO4.3H2O), sodium bicarbonate (NaHCO3), and their mixture.
Preferably, said whisker-inducing solution in step a) is a basic aqueous solution. More preferably, said basic aqueous solution is a diammonium hydrogen phosphate ((NH4)2HPO4), Na2HPO4, or K2HPO4 aqueous solution. A suitable diammonium hydrogen phosphate ((NH4)2HPO4) aqueous solution has a concentration of at least 5 wt %, preferably 10–60 wt %, based on the weight of said solution, and the mixing of said TTCP powder with this diammonium hydrogen phosphate ((NH4)2HPO4) aqueous solution in step a) is in a ratio of less than about 10 g powder per ml solution, preferably less than about 5 g powder per ml solution. In one of the preferred embodiment of the present invention, said concentration is about 33 wt %, and the mixing ratio is about 1 gm TTCP per 13 ml solution.
The present invention also discloses a calcium phosphate cement (CPC) powder comprising the TTCP powder of the present invention.
The following examples are intended to demonstrate the invention more fully without acting as a limitation upon its scope, since numerous modifications and variations will be apparent to those skilled in this art.
TTCP Preparation
The TTCP powder was fabricated in-house from the reaction of dicalcium pyrophosphate (Ca2P2O7) (Sigma Chem. Co., St. Louis, Mo., USA) and calcium carbonate (CaCO3) (Katayama Chem. Co., Tokyo, Japan) using the method suggested by Brown and Epstein [Journal of Research of the National Bureau of Standards—A Physics and Chemistry 6 (1965) 69A 12].
TEM Examination
A Hitachi Model-HF2000 200 kV field emission transmission electron microscope (TEM) equipped with a Noran Vayager Model 1000 energy dispersive spectroscopy (EDS) system was used for the study. The aperture size for microchemical analysis (Ca/P ratio) is 15 nm.
Ca4(PO4)2O (TTCP) powder as synthesized was sieved with a #325 mesh. The sieved powder has an average particle size of about 10 gin. An aqueous solution of diammonium hydrogen phosphate was prepared by dissolving 20 g of diammonium hydrogen phosphate, (NH4)2HPO4, in 40 ml deionized water. The resulting solution had a pH value of 8.02. To the TTCP powder the basic aqueous solution of diammonium hydrogen phosphate was added according to the ratio of 1 gm TTCP/13 ml solution. The TTCP powder was immersed in the basic aqueous solution for various periods of time of 1 minute, 5 minutes and 10 minutes, and filtered rapidly with a vacuum pump again. The resulting powder cake was dried in an oven at 50° C. The dried powder was dispersed in ethanol with supersonication. A drop of the dispersion was dripped on a single-side carbon sieve of #325 mesh having a diameter of 3 mm, and left dry to obtain a specimen coated with a thin carbon film for electrical conductivity for TEM examination. The microchemical analysis (Ca/P ratio) results of ten specimens (P1 to P10) for each treat time are shown in Table 1.
The procedures of Example I were repeated except that the basic aqueous solution was changed to 1M phosphorus acid aqueous solution having a pH of 0.8 and the immersion time was changed to 30 seconds. The results are shown in Table 2.
The procedures of Example 1 were repeated except that the basic aqueous solution was changed to a basic aqueous NaOH solution having a pH of 10.66 and the immersion time was changed to 30 seconds and 24 hours. For the specimens treated for 30 seconds no whisker was observed on TTCP surface. The results for the treat time of 24 hours are shown in Table 3.
The procedures of Example 1 were repeated except that the basic aqueous solution was changed to 0.16M HCl aqueous solution having a pH of 0.8 and the immersion time was changed to 30 seconds, 10 minutes, one hour and 24 hours. For the specimens treated for 30 seconds no whisker was observed on TTCP surface. The results for the remaining treat times are shown in Table 4.
Ca4(PO4)2O (TTCP) powder as synthesized was sieved with a #325 mesh and has an average particle size of about 10 gm. To the sieved TTCP powder a HCl aqueous solution having a pH of 0.8 was added according to the ratio of 1 gm TTCP/13 ml solution. The sieved TTCP powder was immersed in the HCl solution for 12 hours, filtered rapidly and washed with deionized water, and filtered rapidly with a vacuum pump again. The resulting powder cake was dried in an oven at 50° C. The dried powder was divided into halves, ground for 20 minutes and 120 minutes separately, and combined. A setting solution of diammonium hydrogen phosphate was prepared by dissolving 20 g of diammonium hydrogen phosphate, (NH4)2HPO4, in 40 ml deionized water. 100 g of the mixed ground powder and 35 ml of the setting solution were well mixed to form a paste, which was then filled in molds to form specimens for compression test. The specimens were removed from the molds 15 minutes after the mixing, and soaked in a Hanks' solution. The soaked specimens were removed from the Hanks' solution at various periods of soaking time, and were immediately subjected to the compression test without drying. The compression test was conducted according to a method commonly used in the literature. The cylindrical samples have a diameter of 6 mm and a length of 12 mm. Results: compressive strength is 27.4 MPa for the soaking time of 20 minutes, and 48 MPa for one-day soaking time.
Ca4(PO4)2O (TTCP) powder as synthesized was sieved with a #325 mesh and has an average particle size of about 10 gm. To the sieved TTCP powder the aqueous (NH4)2HPO4 solution prepared in Example 1 was added according to the ratio of 1 gm TTCP/13 ml solution. The sieved TTCP powder was immersed in the (NH4)2HPO4 solution for 5 minutes, filtered rapidly and washed with deionized water, and filtered rapidly with a vacuum pump again. The resulting powder cake was dried in an oven at 50° C. The dried powder was ground 120 minutes to obtain a powder A. The procedures in Example 5 were repeated to obtain a powder B except that the dried powder was ground ordy for a period of 300 minutes. A mixed powder of A and B in a ratio of 1:1 ratio was subjected to the compression tests following the procedures recited in Example 5. Results: compressive strength is 26 MPa for the soaking time of 20 minutes, and 42.8 MPa for one-day soaking time.
The procedures in Example 5 were repeated except that the HCl solution was changed to the aqueous (NH4)2HPO4 solution prepared in Example 1 and the soaking time was changed to 5 minutes. Results: compressive strength is 18.6 MPa for the soaking time of 20 minutes, and 48.8 MPa for one-day soaking time.
Ca4(PO4)2O (TTCP) powder as synthesized was sieved with a #325 mesh and ground for two hours. To the ground TTCP powder the powder B prepared in Example 5 was added and mixed in a ratio of 1:1. The resulting mixed powder was subjected to the compression tests following the procedures recited in Example 5. Results: compressive strength is 19.7 MPa for the soaking time of 20 minutes, and 43.6 MPa for one-day soaking time.
A TTCP powder was whisker-treated for 5 minutes according to the process described in Example 1. X-ray diffraction (XRD) was performed using an X-ray diffractometer (Rigaku D-max IIIV, Tokyo, Japan) with Ni-filtered CuKα radiation operated at 30 kV and 20 mA at a scanning speed of 1°/min. The phases were identified by matching each characteristic XRD peak with that compiled in JCPDS files.
Results: As indicated in
A TTCP powder was whisker-treated for 5 minutes according to the process described in Example 1. The resulting powder cake was dried in an oven at 50° C. The dried powder was ground for 120 minutes. A setting solution was prepared by dissolving 13.2 g (NH4)H2PO4 in 40 ml deionized water to obtain an initial solution having a pH value of 3.72, and adding KOH to the initial solution so that the pH value was adjusted to 7.5. 100 g of the ground powder and 35 ml of the setting solution were well mixed to form a paste for 1 minute, which was then filled in molds to form specimens for compression tests following the procedures recited in Example 5. Results: compressive strength is 9.6 MPa for the soaking time of 20 min.
The procedures in Example 10 were repeated except that the KOH was changed to NaOH and the final pH value of the setting solution was 7.8, and 20 ml of the setting solution was mixed with 100 g of the ground powder. Results: compressive strength is 10.3 MPa for the soaking time of 20 min.
A TTCP powder was prepared following the procedures recited in Example 10. A setting solution was prepared by dissolving 7.5 g (NH4)2HPO4, 2.5 g NaH2PO4.2H2O and 5 g K2HPO4 in 40 ml deionized water. The final pH value of the setting solution was 7.56. 100 g of the ground powder and 30 ml of the setting solution were well mixed to form a paste for 1 minute, which was then filled in molds to form specimens for compression tests following the procedures recited in Example 5. Results: compressive strength is 18.0 MPa for the soaking time of 20 min.
A TTCP powder was prepared following the procedures recited in Example 10. A setting solution was prepared by dissolving 3 g Na2HPO4.12H2O, 3 g NaH2PO4.2H2O and 7.5 g (NH4)2HPO4 in 40 ml deionized water. The final pH value of the setting solution was 7.38. 100 g of the ground powder and 30 ml of the setting solution were well mixed to form a paste for 1 minute, which was then filled in molds to form specimens for compression tests following the procedures recited in Example 5. Results: compressive strength is 20.8 MPa for the soaking time of 20 min.
A TTCP powder was prepared following the procedures recited in Example 10. A setting solution was prepared by mixing 37.68 ml of 85 wt % phosphoric acid and 100 ml deionized water, and then 73.8 ml of 28 wt % ammonia solution. The final pH value of the setting solution was 7.0. 100 g of the ground powder and 30 ml of the setting solution were well mixed to form a paste for 1 minute, which was then filled in molds to form specimens for compression tests following the procedures recited in Example 5. Results: compressive strength is 23.4 MPa for the soaking time of 20 min.
Although a “basic” whisker can be grown on TTCP surface by immersion in a variety of solutions, the process should be carefully controlled. For example, when the solution contains a P source in the absence of Ca, the immersion time should be long enough to grow a basic whisker (an “acidic” whisker is grown at the early stage due to the excess P ions in the solution). Yet the immersion time should not be too long either to avoid the basic whisker's growing too large, that can largely deteriorate the CPC properties.
On the other hand, when the solution does not contain P (e.g., HCl), acidic whisker is never grown on the surface of TTCP particles. All the observed whiskers on TTCP particles at all stages are basic in nature.
In addition to Ca/P ratio, the growth rate of a basic whisker is also sensitive to such process parameters as the type, pH, temperature and ion concentrations of the solution, to name a few.
Although the present invention has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except as and to the extent that they are included in the accompanying claims. Many modifications and variations are possible in light of the above disclosure.
This is a continuation application of, and claims the benefit of priority under 35 USC § 120 to, U.S. patent application Ser. No. 10/773,701, filed Feb. 6, 2004, which is a continuation-in-part application of U.S. patent application Ser. No. 10/607,023, filed Jun. 27, 2003, now U.S. Pat. No. 6,960,249 which is a continuation-in-part application of U.S. patent application Ser. No. 10/414,582, filed Apr. 16, 2003, which is a continuation-in-part application of U.S. patent application Ser. No. 09/615,384, filed Jul. 13 2000, now abandoned. The prior applications are commonly assigned with the present invention and are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3679360 | Rubin et al. | Jul 1972 | A |
4371484 | Inukai et al. | Feb 1983 | A |
4481175 | Iino et al. | Nov 1984 | A |
4518430 | Brown et al. | May 1985 | A |
4553272 | Mears | Nov 1985 | A |
4612053 | Brown et al. | Sep 1986 | A |
4623553 | Ries et al. | Nov 1986 | A |
RE33161 | Brown et al. | Feb 1990 | E |
RE33221 | Brown et al. | May 1990 | E |
4950296 | McIntyre | Aug 1990 | A |
4959104 | Iino et al. | Sep 1990 | A |
5017518 | Hirayama et al. | May 1991 | A |
5053212 | Constantz et al. | Oct 1991 | A |
5092888 | Iwamoto et al. | Mar 1992 | A |
5149368 | Liu et al. | Sep 1992 | A |
5152791 | Hakamatsuka et al. | Oct 1992 | A |
5164187 | Constantz et al. | Nov 1992 | A |
5180426 | Sumita | Jan 1993 | A |
5218035 | Liu | Jun 1993 | A |
5262166 | Liu et al. | Nov 1993 | A |
5336264 | Constanz et al. | Aug 1994 | A |
5338356 | Hirano et al. | Aug 1994 | A |
5342441 | Mandai et al. | Aug 1994 | A |
5409982 | Imura et al. | Apr 1995 | A |
5476647 | Chow et al. | Dec 1995 | A |
5492768 | Okimatsu et al. | Feb 1996 | A |
5496399 | Ison et al. | Mar 1996 | A |
5503164 | Friedman | Apr 1996 | A |
5522893 | Chow et al. | Jun 1996 | A |
5525148 | Chow et al. | Jun 1996 | A |
5536575 | Imura et al. | Jul 1996 | A |
5542973 | Chow et al. | Aug 1996 | A |
5545254 | Chow et al. | Aug 1996 | A |
5550172 | Regula et al. | Aug 1996 | A |
5569490 | Imura et al. | Oct 1996 | A |
5605713 | Boltong | Feb 1997 | A |
5607685 | Cimbollek et al. | Mar 1997 | A |
5652016 | Imura et al. | Jul 1997 | A |
5683461 | Lee et al. | Nov 1997 | A |
5683496 | Ison et al. | Nov 1997 | A |
5695729 | Chow et al. | Dec 1997 | A |
5697981 | Ison et al. | Dec 1997 | A |
5702449 | McKay | Dec 1997 | A |
5766669 | Pugh et al. | Jun 1998 | A |
5782971 | Constantz et al. | Jul 1998 | A |
5814681 | Hino et al. | Sep 1998 | A |
5820632 | Constantz et al. | Oct 1998 | A |
5846312 | Ison et al. | Dec 1998 | A |
5891448 | Chow et al. | Apr 1999 | A |
5899939 | Boyce et al. | May 1999 | A |
5954867 | Chow et al. | Sep 1999 | A |
5958430 | Campbell et al. | Sep 1999 | A |
5964932 | Ison et al. | Oct 1999 | A |
5976234 | Chow et al. | Nov 1999 | A |
5993535 | Sawamura et al. | Nov 1999 | A |
5997624 | Chow et al. | Dec 1999 | A |
6005162 | Constantz | Dec 1999 | A |
6013591 | Ying et al. | Jan 2000 | A |
6013853 | Athanasiou et al. | Jan 2000 | A |
6027742 | Lee et al. | Feb 2000 | A |
6077989 | Kandel et al. | Jun 2000 | A |
6083229 | Constantz et al. | Jul 2000 | A |
6117456 | Lee et al. | Sep 2000 | A |
6118043 | Nies et al. | Sep 2000 | A |
6123731 | Boyce et al. | Sep 2000 | A |
6132463 | Lee et al. | Oct 2000 | A |
6162258 | Scarborough et al. | Dec 2000 | A |
6277149 | Boyle et al. | Aug 2001 | B1 |
6294041 | Boyce et al. | Sep 2001 | B1 |
6294187 | Boyce et al. | Sep 2001 | B1 |
6323146 | Pugh et al. | Nov 2001 | B1 |
6325987 | Sapieszko et al. | Dec 2001 | B1 |
6325992 | Chow et al. | Dec 2001 | B1 |
6332779 | Boyce et al. | Dec 2001 | B1 |
6340648 | Imura et al. | Jan 2002 | B1 |
6379453 | Lin et al. | Apr 2002 | B1 |
6440444 | Boyce et al. | Aug 2002 | B1 |
6458162 | Koblish et al. | Oct 2002 | B1 |
6478825 | Winterbottom et al. | Nov 2002 | B1 |
6495156 | Wenz et al. | Dec 2002 | B1 |
6530955 | Boyle et al. | Mar 2003 | B1 |
6533821 | Lally | Mar 2003 | B1 |
6547866 | Edwards et al. | Apr 2003 | B1 |
6569489 | Li | May 2003 | B1 |
6585992 | Pugh et al. | Jul 2003 | B1 |
6616742 | Lin et al. | Sep 2003 | B1 |
6648960 | Lin et al. | Nov 2003 | B1 |
6670293 | Edwards et al. | Dec 2003 | B1 |
6696073 | Boyce et al. | Feb 2004 | B1 |
6719989 | Matsushima et al. | Apr 2004 | B1 |
6730129 | Hall | May 2004 | B1 |
6752831 | Sybert et al. | Jun 2004 | B1 |
6793725 | Chow et al. | Sep 2004 | B1 |
6808561 | Genge et al. | Oct 2004 | B1 |
6808585 | Boyce et al. | Oct 2004 | B1 |
6840995 | Lin et al. | Jan 2005 | B1 |
6929692 | Tas | Aug 2005 | B1 |
6953594 | Lee et al. | Oct 2005 | B1 |
6955716 | Xu et al. | Oct 2005 | B1 |
6960249 | Lin et al. | Nov 2005 | B1 |
6994726 | Lin et al. | Feb 2006 | B1 |
20020169066 | Cassidy et al. | Nov 2002 | A1 |
20030021824 | Lacout et al. | Jan 2003 | A1 |
20030074081 | Ayers et al. | Apr 2003 | A1 |
20030120351 | Tofighi | Jun 2003 | A1 |
20030216777 | Tien et al. | Nov 2003 | A1 |
20050029701 | Lin et al. | Feb 2005 | A1 |
20050184417 | Lin et al. | Aug 2005 | A1 |
20050184418 | Lin et al. | Aug 2005 | A1 |
20050186353 | Lin et al. | Aug 2005 | A1 |
20050186354 | Lin et al. | Aug 2005 | A1 |
20050186449 | Lin et al. | Aug 2005 | A1 |
20050263919 | Lin et al. | Dec 2005 | A1 |
20050263920 | Lin et al. | Dec 2005 | A1 |
20050263921 | Lin et al. | Dec 2005 | A1 |
20050263922 | Lin et al. | Dec 2005 | A1 |
20050263927 | Lin et al. | Dec 2005 | A1 |
20050263928 | Lin et al. | Dec 2005 | A1 |
20050263929 | Lin et al. | Dec 2005 | A1 |
20050263930 | Lin et al. | Dec 2005 | A1 |
20050263931 | Lin et al. | Dec 2005 | A1 |
20050267587 | Lin et al. | Dec 2005 | A1 |
20050267588 | Lin et al. | Dec 2005 | A1 |
20050267589 | Lin et al. | Dec 2005 | A1 |
20050267593 | Lin et al. | Dec 2005 | A1 |
20050267604 | Lin et al. | Dec 2005 | A1 |
20050268819 | Lin et al. | Dec 2005 | A1 |
20050268820 | Lin et al. | Dec 2005 | A1 |
20050268821 | Lin et al. | Dec 2005 | A1 |
20050271740 | Lin et al. | Dec 2005 | A1 |
20050271741 | Lin et al. | Dec 2005 | A1 |
20050271742 | Lin et al. | Dec 2005 | A1 |
20050274282 | Lin et al. | Dec 2005 | A1 |
20050274286 | Lin et al. | Dec 2005 | A1 |
20050274287 | Lin et al. | Dec 2005 | A1 |
20050274289 | Lin et al. | Dec 2005 | A1 |
20050279256 | Lin et al. | Dec 2005 | A1 |
20060011099 | Lin et al. | Jan 2006 | A1 |
20060011100 | Lin et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
0267624 | May 1988 | EP |
06-228011 | Aug 1994 | JP |
WO 03055418 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050274287 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10773701 | Feb 2004 | US |
Child | 11133166 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10607023 | Jun 2003 | US |
Child | 10773701 | US | |
Parent | 10414582 | Apr 2003 | US |
Child | 10607023 | US | |
Parent | 09615384 | Jul 2000 | US |
Child | 10414582 | US |