Certain building materials can be prepared from cementitious mixtures based on portland cement and can contain additives to enhance the properties of the materials. Fly ash is used in cementitious mixtures to provide enhanced durability and reduced permeability of the cementitious products. In addition to imparting improved performance properties, the use of fly ash is desirable because it is a recyclable product and would otherwise be a waste material. Furthermore, fly ash is less expensive than portland cement. Thus, there is a desire to provide high strength building products that are based on fly ash.
Inorganic polymer compositions and methods for their preparation are described. In some embodiments, the inorganic polymers include the reaction product of reactive powder, an activator, and optionally a retardant. In these embodiments, the reactive powder includes fly ash, calcium sulfoaluminate cement, and less than 10% by weight portland cement and the composition is substantially free from alkanolamines. The inorganic polymers can further comprise water. In some examples, the ratio of water to reactive powder is from 0.09:1 to less than 0.2:1.
In some embodiments, the inorganic polymers include the reaction product of reactive powder, an activator, optionally a retardant, and water. In these embodiments, the reactive powder includes fly ash and calcium sulfoaluminate cement. The ratio of water to reactive powder is from 0.06:1 to less than 0.2:1. In some examples, the water to reactive powder ratio of the inorganic compositions described herein can be from 0.06:1 to less than 0.17:1 (e.g., from 0.06:1 to less than 0.15:1 or from 0.06:1 to less than 0.14:1).
The fly ash can be present in an amount of greater than 85% by weight of the reactive powder (e.g., greater than 90% by weight or greater than 95% by weight). In some examples, the fly ash includes a calcium oxide content of from 18% to 35% by weight (e.g., from 23% to 30% by weight). The fly ash present in the reactive powder can include Class C fly ash. In some examples, greater than 75%, greater than 85%, or greater than 95% of the fly ash comprises Class C fly ash. The reactive powder can further include portland cement. For example, the reactive powder can include 5% by weight or less, 3% by weight or less, or 1% by weight or less of portland cement. In some examples, the reactive powder is substantially free from portland cement. The reactive powder further includes calcium sulfoaluminate cement. The calcium sulfoaluminate cement can be present, for example, in an amount of from 1% to 5% of the reactive powder. Optionally, the reactive powder can further include calcium aluminate cement.
In some embodiments, the activator used to prepare the inorganic polymers can include citric acid and/or sodium hydroxide. In some examples, the activator is present in an amount of from 1.5% to 8.5% based on the weight of the reactive powder. Optionally, a retardant (e.g., borax, boric acid, gypsum, phosphates, gluconates, or a mixture of these) is included in the composition. The retardant can be present, for example, in an amount of from 0.4% to 7.5% based on the weight of the reactive powder. In some examples, the composition is substantially free from retardants.
The inorganic polymer compositions can further include aggregate, such as lightweight aggregate. The compositions can further include water, a water reducer, a plasticizer (e.g., clay or a polymer), a pigment, or a blowing agent.
Also described are building materials including the compositions described herein. The building materials can be, for example, roofing tiles, ceramic tiles, synthetic stone, thin bricks, bricks, pavers, panels, or underlay.
Further described is a method of producing an inorganic polymer composition, which includes mixing reactants comprising a reactive powder, an activator, and optionally a retardant in the presence of water and allowing the reactants to react to form the inorganic polymer composition. In this method, the reactive powder comprises fly ash, calcium sulfoaluminate cement, and less than 10% by weight portland cement and the composition is substantially free from alkanolamines. In some examples, the reactants are mixed for a period of 15 seconds or less. The mixing can be performed, for example, at ambient temperature.
In some examples, the activator includes citric acid and sodium hydroxide. Optionally, the citric acid and sodium hydroxide are combined prior to mixing with the reactants. The weight ratio of the citric acid to sodium hydroxide can be from 0.4:1 to 2.0:1 (e.g., from 1.0:1 to 1.6:1). In some examples, the activator is provided as an aqueous solution in a concentration of from 10% to 50% based on the weight of the solution.
The details of one or more embodiments are set forth in the description below and in the drawing. Other features, objects, and advantages will be apparent from the description, the drawing, and from the claims.
Inorganic polymer compositions and methods for their preparation are described herein. The compositions include the reaction product of a reactive powder, an activator, and optionally a retardant. The reactive powder includes fly ash, calcium sulfoaluminate cement, and less than 10% by weight portland cement.
The reactive powder is a reactant used to form the inorganic polymer compositions described herein. The reactive powder for use in the reactions includes fly ash. Fly ash is produced from the combustion of pulverized coal in electrical power generating plants. Fly ash produced by coal-fueled power plants is suitable for use in reactive powder described herein. The fly ash can include Class C fly ash, Class F fly ash, or a mixture thereof. As such, the calcium content of the fly ash can vary. In exemplary compositions, the fly ash included in the reactive powder can have a calcium content, expressed as the oxide form (i.e., calcium oxide), of from 18% to 35% by weight. In some examples, the calcium oxide content of the fly ash is from 23% to 30% by weight.
In some examples, the majority of the fly ash present is Class C fly ash (i.e., greater than 50% of the fly ash present is Class C fly ash). In some examples, greater than 75%, greater than 85%, or greater than 95% of the fly ash present is Class C fly ash. For example, greater than 75%, greater than 76%, greater than 77%, greater than 78%, greater than 79%, greater than 80%, greater than 81%, greater than 82%, greater than 83%, greater than 84%, greater than 85%, greater than 86%, greater than 87%, greater than 88%, greater than 89%, greater than 90%, greater than 91%, greater than 92%, greater than 93%, greater than 94%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, or greater than 99% of the fly ash present is Class C fly ash. In some embodiments, only Class C fly ash is used. In some embodiments, blends of Class C fly ash and Class F fly ash can be used, particularly if the overall CaO content is as discussed above.
The fly ash used in the reactive powder can be a fine fly ash. The use of a fine fly ash provides a higher surface area. As used herein, fine fly ash refers to fly ash having an average particle size of 25 microns or less. The average particle size for the fly ash can be from 5 microns to 25 microns, or from 10 microns to 20 microns.
Optionally, the fly ash is the principal component of the reactive powder. In some examples, the fly ash is present in an amount of greater than 85% by weight of the reactive powder, greater than 90% by weight of the reactive powder, or greater than 95% by weight of the reactive powder. For example, the fly ash can be present in an amount of greater than 85% by weight, greater than 86% by weight, greater than 87% by weight, greater than 88% by weight, greater than 89% by weight, greater than 90% by weight, greater than 91% by weight, greater than 92% by weight, greater than 93% by weight, greater than 94% by weight, greater than 95% by weight, greater than 96% by weight, greater than 97% by weight, greater than 98% by weight, or greater than 99% by weight based on the weight of the reactive powder.
As described above, the reactive powder for use as a reactant to form the inorganic polymer compositions further includes calcium sulfoaluminate cement. Calcium sulfoaluminate cement includes cements containing a mixture of components, including, for example, anhydrous calcium sulfoaluminate, dicalcium silicate, and/or gypsum. Calcium sulfoaluminate cement reacts with water to form ettringite and thus contributes to the high early compressive strength of the inorganic polymers. A suitable calcium sulfoaluminate cement includes, for example, DENKA CSA (Denki Kagaku Kogyo Kabushiki Kaisha; Tokyo, Japan). In some examples, the calcium sulfoaluminate cement is present in an amount of from 0.1% to 10% based on the weight of the reactive powder. For example, the calcium sulfoaluminate cement can be present in an amount of from 0.5% to 8% by weight or from 1% to 5% by weight of the reactive powder. In some examples, the amount of calcium sulfoaluminate cement is 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% based on the weight of the reactive powder. In some examples, one or more retardants, as described below, are included in the reaction mixture containing the calcium sulfoaluminate cement.
The reactive powder for use as a reactant to form the inorganic polymer compositions can further include cementitious components, including portland cement, calcium aluminate cement, and/or slag. Optionally, portland cement can be included as a component of the reactive powder. Suitable types of portland cement include, for example, Type I ordinary portland cement (OPC), Type II OPC, Type III OPC, Type IV OPC, Type V OPC, low alkali versions of these portland cements, and mixtures of these portland cements. In these examples, less than 10% by weight of portland cement is included in the reactive powder. In some examples, the reactive powder includes 5% by weight or less, 3% by weight or less, or 1% by weight or less of portland cement. For example, the reactive powder can include portland cement in an amount of 10% or less by weight, 9% or less by weight, 8% or less by weight, 7% or less by weight, 6% or less by weight, 5% or less by weight, 4% or less by weight, 3% or less by weight, 2% or less by weight, 1% or less by weight, or 0.5% or less by weight. In some examples, the reactive powder is substantially free from portland cement. For example, the reactive powder can include less than 0.1% by weight, less than 0.01% by weight, or less than 0.001% by weight of portland cement based on the weight of the reactive powder. In some embodiments, the reactive powder includes no portland cement.
Optionally, calcium aluminate cement (i.e., high aluminate cement) can be included in the reactive powder. In some examples, the calcium aluminate cement is present in an amount of 5% or less by weight of the reactive powder. For example, the reactive powder can include calcium aluminate cement in an amount of 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, 0.9% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0.5% or less, 0.4% or less, 0.3% or less, 0.2% or less, or 0.1% or less by weight. In some examples, the reactive powder can include calcium aluminate cement in an amount of from 0.5% to 5%, from 1% to 4.5%, or from 2% to 4% by weight. The calcium aluminate cement can be used, in some examples, in compositions that include less than 3% hydrated or semihydrated forms of calcium sulfate (e.g., gypsum). In some examples, the reactive powder is substantially free from calcium aluminate cement or includes no calcium aluminate cement.
The reactive powder can also include a ground slag such as blast furnace slag in an amount of 10% or less by weight. For example, the reactive powder can include slag in an amount of 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less by weight.
The reactive powder can also include calcium sources such as limestone (e.g., ground limestone), quicklime, slaked lime, or hydrated lime in an amount of 10% or less by weight of the reactive powder. For example, limestone can be present in an amount of 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less by weight of the reactive powder.
The reactive powder can also include a tricalcium aluminate additive. As would be understood by those skilled in the art, tricalcium aluminate is present in a small amount in portland cement. The tricalcium aluminate would be present as an additive, wherein the tricalcium aluminate is not a portland cement constituent. The tricalcium aluminate additive can be present in an amount of from 0.1% to 10% by weight, or 1% to 5% of the reactive powder.
Anhydrous calcium sulfate can be optionally included as an additional reactant used to form the inorganic polymer compositions described herein. The anhydrous calcium sulfate can be present as a reactant in an amount of 0.1% by weight or greater based on the weight of the reactive powder and has been found to increase the compressive strength of the inorganic polymer products. In some examples, the anhydrous calcium sulfate can be present in an amount of from 1% to 10%, 2% to 8%, 2.5% to 7%, or 3% to 6% by weight of the reactive powder. For example, the amount of anhydrous calcium sulfate can be 0.5% or greater, 1% or greater, 1.5% or greater, 2% or greater, 2.5% or greater, 3% or greater, 3.5% or greater, 4% or greater, 4.5% or greater, or 5% or greater based on the weight of the reactive powder.
An activator is a further reactant used to form the inorganic polymer compositions described herein. The activator allows for rapid setting of the inorganic polymer compositions and also imparts compressive strength to the compositions. The activator can include one or more of acidic, basic, and/or salt components. For example, the activator can include citrates, hydroxides, metasilicates, carbonates, aluminates, sulfates, and/or tartrates. The activator can also include other multifunctional acids that are capable of complexing or chelating calcium ions (e.g., EDTA). Specific examples of suitable citrates for use as activators include citric acid and its salts, including, for example, sodium citrate and potassium citrate. Specific examples of suitable tartrates include tartaric acid and its salts (e.g., sodium tartrate and potassium tartrate). In some examples, the activator can include alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide. Further examples of suitable activators include metasilicates (e.g., sodium metasilicate and potassium metasilicate); carbonates (e.g., sodium carbonate and potassium carbonate); aluminates (e.g., sodium aluminate and potassium aluminate); and sulfates (e.g., sodium sulfate and potassium sulfate). In some examples, the activator includes citric acid, tartaric acid, or mixtures thereof. In some examples, the activator includes sodium hydroxide. In some examples, the activator includes a mixture of citric acid and sodium hydroxide. In examples including a mixture of citric acid and sodium hydroxide, the weight ratio of citric acid present in the mixture to sodium hydroxide present in the mixture is from 0.4:1 to 2.0:1, 0.6:1 to 1.9:1, 0.8:1 to 1.8:1, 0.9:1 to 1.7:1, or 1.0:1 to 1.6:1. The activator components can be pre-mixed prior to being added to the other reactive components in the inorganic polymer or added separately to the other reactive components. For example, citric acid and sodium hydroxide could be combined to produce sodium citrate and the mixture can include possibly one or more of citric acid and sodium hydroxide in stoichiometric excess. In some embodiments, the activator includes a stoichiometric excess of sodium hydroxide. The total amount of activators can include less than 95% by weight of citrate salts. For example, the total amount of activator can include from 25-85%, 30-75% or 35-65% citrate salts by weight. The mixture in solution and the mixture when combined with reactive powder can have a pH of from 12 to 13.5 or about 13.
The activator can be present as a reactant in an amount of from 1.5% to 8.5% dry weight based on the weight of the reactive powder. For example, the activator can be present in an amount of from 2% to 8%, from 3% to 7%, or from 4% to 6%. In some examples, the activator can be present in an amount of 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8% or 8.5% dry weight based on the weight of the reactive powder. For example, when sodium hydroxide and citric acid are used as the activators, the amount of sodium hydroxide used in the activator solution can be from 0.3 to 15.6, 0.5 to 10, or 0.75 to 7.5 or 1 to 5 dry parts by weight based on the weight of reactive powder and the amount of citric acid used in the activator solution can be from 0.25 to 8.5, 0.5 to 0.7, 0.75 to 0.6, or 1 to 4.5 dry parts by weight based on the weight of reactive powder. The resulting activator solution can include sodium citrate and optionally one or more of citric acid or sodium hydroxide.
The activator can be provided, for example, as a solution. In some examples, the activator can be provided in water as an aqueous solution in a concentration of from 10% to 50% or from 20% to 40% based on the weight of the solution. For example, the concentration of the activator in the aqueous solution can be from 25% to 35% or from 28% to 32% based on the weight of the solution. Examples of suitable concentrations for the activator in the aqueous solution include 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% based on the weight of the solution.
The reactants used to form the inorganic polymer compositions can further include a retardant. Retardants are optionally included to prevent the composition from stiffening too rapidly, which can result in a reduction of strength in the structure. Examples of suitable retardants for inclusion as reactants include borax, boric acid, gypsum, phosphates, gluconates, or a mixture of these. The retardant can be provided in solution with the activator (e.g., borax or boric acid) and/or can be provided as an additive with the reactive powder (e.g., gypsum). In some examples, the retardant is present in an amount of from 0.4% to 7.5% based on the weight of the reactive powder. For example, the retardant can be present in an amount of from 0.5% to 5%, 0.6% to 3%, 0.7 to 2.5%, or 0.75% to 2.0% based on the weight of the reactive powder. In some embodiments, when gypsum is used as a retardant, it is used in an amount of 3% by weight or less based on the weight of the reactive powder. In some embodiments, borax is used as the retardant. When citric acid and sodium hydroxide are used as the activators, the weight ratio of borax to sodium hydroxide can be 0.3:1 to 1.2:1 (e.g., 0.8:1 to 1.0:1). In some examples, lower ratios of 0.3:1 to 0.8:1 can be the result of including an additional retardant such as gypsum. In some examples, the composition is substantially free from retardants or includes no retardants.
The reactants described herein can optionally include less than 3.5% by weight of additional sulfates. As would be understood by those skilled in the art, sulfates are present in the fly ash. Thus, “additional sulfates” refers to sulfates other than those provided by the fly ash. In some examples, the composition can include less than 3.5% by weight of sulfates based on the amount of reactive powder other than those provided by the fly ash. For example, the composition can include less than 3.5% by weight, less than 3% by weight, less than 2.5% by weight, less than 2% by weight, less than 1.5% by weight, less than 1% by weight, or less than 0.5% by weight of sulfates based on the amount of reactive powder other than those provided by the fly ash. In some examples, the composition is substantially free from additional sulfates. For example, the composition can include less than 0.1% by weight, less than 0.01% by weight, or less than 0.001% by weight of additional sulfates based on the amount of reactive powder. In some embodiments, the composition includes no additional sulfates.
When present, the additional sulfates can be provided in the form of gypsum (i.e., calcium sulfate dihydrate). As described above, gypsum can be present in the composition as a retardant. In some examples, the composition includes gypsum in an amount of less than 3.5% by weight based on the amount of reactive powder. For example, the composition can include gypsum in an amount of less than 3.5% by weight, less than 3% by weight, less than 2.5% by weight, less than 2% by weight, less than 1.5% by weight, less than 1% by weight, or less than 0.5% by weight.
The reactants are provided in the reactive mixture in the presence of water. The water can be provided in the reactive mixture by providing the activator and optionally the retardant in solution and/or by adding water directly to the reactive mixture. The solution to binder or solution to reactive powder weight ratio (i.e., the ratio of the solution including activator and optionally the retardant to reactive powder) can be from 0.06:1 to 0.5:1, depending on the product being made and the process being used for producing the product. The water to reactive powder (or water to binder) ratio can be from 0.06:1 to less than 0.2:1, depending on the product being made and the process being used for producing the product. In some embodiments, the water to binder ratio can be from 0.06:1 to less than 0.17:1, from 0.07:1 to less than 0.15:1, or from 0.08:1 to less than 0.14:1 (e.g., less than 0.10:1). In some embodiments, the water to binder ratio can be from 0.15:1 to less than 0.2:1, particularly when aggregate is used that absorbs a significant amount of water or solution (e.g., 20-30%). The water to binder ratio can be, for example, 0.06:1, 0.07:1, 0.08:1, 0.09:1, 0.10:1, 0.11:1, 0.12:1, 0.13:1, 0.14:1, 0.15:1, 0.16:1, 0.17:1, 0.18:1, or 0.19:1. In other examples, the water to binder ratio can be less than 0.20:1, less than 0.19:1, less than 0.18:1, less than 0.17:1, less than 0.16:1, less than 0.15:1, less than 0.14:1, less than 0.13:1, less than 0.12:1, less than 0.11:1, or less than 0.10:1.
The inorganic polymer can have a calcia to silica molar ratio of from 0.6:1 to 1.1:1. For example, the calcia to silica molar ratio can be 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1.0:1 or 1.1:1.
In some examples, the composition is substantially free from alkanolamines. As used herein, alkanolamines refer to mono-, di-, and tri-alcohol amines (e.g., monoethanolamine, diethanolamine, and triethanolamine). In some examples, the composition includes no alkanolamines.
One or more aggregates or fillers can be further used in the inorganic polymer compositions described herein. In some examples, the aggregate includes lightweight aggregate. Examples of suitable lightweight aggregate includes bottom ash, expanded clay, expanded shale, expanded perlite, vermiculite, volcanic tuff, pumice, hollow ceramic spheres, hollow plastic spheres, expanded plastic beads (e.g., polystyrene beads), ground tire rubber, and mixtures of these. Further examples of suitable aggregates and fillers include other types of ash such as those produced by firing fuels including industrial gases, petroleum coke, petroleum products, municipal solid waste, paper sludge, wood, sawdust, refuse derived fuels, switchgrass, or other biomass material; ground/recycled glass (e.g., window or bottle glass); milled glass; glass spheres; glass flakes; activated carbon; calcium carbonate; aluminum trihydrate (ATH); silica; sand; alluvial sand; natural river sand; ground sand; crushed granite; crushed limestone; silica fume; slate dust; crusher fines; red mud; amorphous carbon (e.g., carbon black); clays (e.g., kaolin); mica; talc; wollastonite; alumina; feldspar; bentonite; quartz; garnet; saponite; beidellite; granite; calcium oxide; calcium hydroxide; antimony trioxide; barium sulfate; magnesium oxide; titanium dioxide; zinc carbonate; zinc oxide; nepheline syenite; perlite; diatomite; pyrophillite; flue gas desulfurization (FGD) material; soda ash; trona; soy meal; pulverized foam; and mixtures thereof.
In some embodiments, inorganic fibers or organic fibers can be included in the inorganic polymer compositions, e.g., to provide increased strength, stiffness or toughness. In some examples, fire resistant or retardant glass fibers can be included to impart fire resistance or retarding properties to the inorganic polymer compositions. Fibers suitable for use with the inorganic polymer compositions described herein can be provided in the form of individual fibers, fabrics, rovings, or tows. Exemplary fibers include glass, polyvinyl alcohol (PVA), carbon, basalt, wollastonite, and natural (e.g., bamboo or coconut) fibers. The fibers can be included in an amount of 0.1% to 6% based on the weight of reactive powder. For example, the fibers can be included in an amount of 0.5% to 5%, 0.75% to 4%, or 1% to 3% based on the weight of reactive powder.
The inclusion of aggregate or filler in the inorganic polymer compositions described herein can modify and/or improve the chemical and mechanical properties of the compositions. For example, the optimization of various properties of the compositions allows their use in building materials and other structural applications. High aggregate and filler loading levels can be used in combination with the compositions without a substantial reduction of (and potentially an improvement in) the intrinsic structural and physical properties of the inorganic polymer compositions. Further, the use of lightweight aggregate provides lightweight building products without compromising the mechanical properties of the inorganic polymer compositions.
The aggregate or filler can be added to the composition at a weight ratio of 0.5:1 to 4.0:1 based on the weight of reactive powder (i.e., aggregate to binder weight ratio). In some embodiments, the aggregate to binder weight ratio can be from 0.5:1 to 2.5:1 or from 1:1 to 2:1 depending on the product to be produced. In some embodiments, the aggregate to binder weight ratio can be from 1.5:1 to 4:1 or from 2:1 to 3.5:1. For example, the aggregate to binder weight ratio can be 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1.0:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2.0:1, 2.1:1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1, 3.0:1, 3.1:1, 3.2:1, 3.3:1, 3.4:1, 3.5:1, 3.6:1, 3.7:1, 3.8:1, 3.9:1, or 4.0:1.
Additional components useful with the compositions described herein include water reducers, plasticizers, pigments, foaming or blowing agents, anti-efflorescence agents, photocatalysts, ultraviolet light stabilizers, fire retardants, antimicrobials, and antioxidants.
Water reducers can be included in the compositions described herein to reduce the amount of water in the composition while maintaining the workability, fluidity, and/or plasticity of the composition. In some examples, the water reducer is a high-range water reducer, such as, for example, a superplasticizer admixture. Examples of suitable water reducers include lignin, naphthalene, melamine, polycarboxylates, lignosulfates and formaldehyde condensates (e.g., sodium naphthalene sulfonate formaldehyde condensate). Water reducers can be provided in an amount of from greater than 0 to 1% by weight based on the weight of reactive powder.
Plasticizers can also be included in the compositions described herein. Plasticizers enhance the extrudability of the inorganic polymer compositions. Examples of suitable plasticizers for use with the compositions described herein include clays (e.g., bentonite, expanded clay, and kaolin clay) and polymers (e.g., JEFFSPERSE X3202, JEFFSPERSE X3202RF, and JEFFSPERSE X3204, each commercially available from Huntsman Polyurethanes; Geismar, La.).
Pigments or dyes can optionally be added to the compositions described herein. An example of a pigment is iron oxide, which can be added in amounts ranging from 1 wt % to 7 wt % or 2 wt % to 6 wt %, based on the weight of reactive powder.
Air-entraining and/or blowing agents can be added to the compositions described herein to produce a foamed composition. Air-entraining agents can be used to help the system maintain air or other gases, e.g., from the mixing process. Examples of suitable air-entraining agents include sodium alkyl ether sulfate, ammonium alkyl ether sulfate, sodium alpha olefin sulfonate, sodium deceth sulfate, ammonium deceth sulfate, sodium laureth sulfate, and sodium dodecylbenzene sulfonate. Blowing agents can be included in the compositions to produce a gas and generate a foamed composition. Examples of suitable blowing agents include aluminum powder, sodium perborate, and H2O2. The air entraining agents and/or blowing agents can be provided in an amount of 0.1% or less based on the weight of the reactive powder.
Anti-efflorescence agents can be included in the compositions to limit the transport of water through the structure and thus limit the unbound salts that are brought to the surface of the structure thereby limiting the aesthetic properties of the structure. Suitable anti-efflorescence agents include siloxanes, silanes, stearates, amines, fatty acids (e.g., oleic acid and linoleic acid), organic sealants (e.g., polyurethanes or acrylics), and inorganic sealants (e.g., polysilicates). Anti-efflorescence agents can be included in the compositions in an amount of from 0.01 wt % to about 1 wt % based on the weight of the reactive powder.
Photocatalysts such as anatase (titanium dioxide) can be used that produce superoxidants that can oxidize NOx and VOC's to reduce pollution. The photocatalysts can make the system super hydrophobic and self-cleaning (e.g., in the presence of smog). These materials can also act as antimicrobials and have impact on algae, mold, and/or mildew growth.
Ultraviolet light stabilizers, such as UV absorbers, can be added to the compositions described herein. Examples of UV light stabilizers include hindered amine type stabilizers and opaque pigments like carbon black powder. Fire retardants can be included to increase the flame or fire resistance of the compositions. Antimicrobials such as copper complexes can be used to limit the growth of mildew and other organisms on the surface of the compositions. Antioxidants, such as phenolic antioxidants, can also be added. Antioxidants can provide increased UV protection, as well as thermal oxidation protection.
A method of producing an inorganic polymer composition is also described herein. The method includes mixing reactants comprising a reactive powder, an activator, and optionally a retardant in the presence of water. As described above, the reactive powder comprises fly ash, calcium sulfoaluminate cement, and less than 10% by weight portland cement. The composition can be substantially free from alkanolamines. The components can be mixed from 2 seconds to 5 minutes. In some examples, the reactants are mixed for a period of 15 seconds or less (e.g., 2 to 10 or 4 to 10 seconds). The mixing times, even in the order of 15 seconds or less, result in a homogenous mixture. The mixing can be performed at an elevated temperature (e.g., up to 160° F.) or at ambient temperature. In some embodiments, the mixing occurs at ambient temperature. The reactants are allowed to react to form the inorganic polymer composition.
The compositions can be produced using a batch, semi-batch, or continuous process. At least a portion of the mixing step, reacting step, or both, can be conducted in a mixing apparatus such as a high speed mixer or an extruder. The method can further include the step of extruding the resulting composition through a die or nozzle. In examples where the activator includes more than one component, the components can be pre-mixed prior to reacting with the reactive powder and optionally the retardant, as noted above. In some embodiments, a mixing step of the method used to prepare the compositions described herein includes: (1) combining the activators in either solid form or aqueous solution (e.g., combining an aqueous solution of citric acid with an aqueous solution of sodium hydroxide) and adding any additional water to provide a desired concentration for the activator solution; and (2) mixing the activator solution with the reactive powder and aggregate. After mixing the components for less than 15 seconds, the composition can be placed in a shaping mold and allowed to cure. For example, the composition can be allowed to cure in individual molds or it can be allowed to cure in a continuous forming system such as a belt molding system. In some embodiments, the reactive mixture is wet cast to produce the product. The composition can have a set time in the mold, for example, of from 1 to 300 minutes and can be less than 5 minutes (e.g., 2-5 minutes).
An ultrasonic or vibrating device can be used for enhanced mixing and/or wetting of the various components of the compositions described herein. Such enhanced mixing and/or wetting can allow a high concentration of reactive powder to be mixed with the other reactants. The ultrasonic or vibrating device produces an ultrasound of a certain frequency that can be varied during the mixing and/or extrusion process. Alternatively, a mechanical vibrating device can be used. The ultrasonic or vibrating device useful in the preparation of compositions described herein can be attached to or adjacent to an extruder and/or mixer. For example, the ultrasonic or vibrating device can be attached to a die or nozzle or to the exit port of an extruder or mixer. An ultrasonic or vibrating device may provide de-aeration of undesired gas bubbles and better mixing for the other components, such as blowing agents, plasticizers, and pigments.
The inorganic polymer compositions described herein can be formed into shaped articles and used in various applications including building materials. Examples of such building materials include roofing tiles (e.g., shake and slate tile), ceramic tiles, synthetic stone, architectural stone, thin bricks, bricks, pavers, panels, underlay (e.g., bathroom underlay), banisters, lintels, pipe, posts, signs, guard rails, retaining walls, park benches, tables, railroad ties and other shaped articles.
The examples below are intended to further illustrate certain aspects of the methods and compositions described herein, and are not intended to limit the scope of the claims. Parts and percentages are provided on a weight basis herein, unless indicated otherwise.
Examples of inorganic polymer compositions as described herein were prepared by combining a reactive powder, an activator, and aggregate. The compositions for Comparative Example 1 and Example 1 are provided in Table 1 below.
In Comparative Example 1 (Table 1), the reactive powder included Class C fly ash. In Example 1 (Table 1), the reactive powder included Class C fly ash and DENKA calcium sulfoaluminate cement. The activator included citric acid and sodium hydroxide, which were combined prior to mixing with the other components. The retarder was borax and sand was used as the aggregate. The components were mixed for 10 seconds at ambient temperature, fed into molds, and allowed to cure. The compressive strengths of the inorganic polymers were measured, using a 2 inch by 2 inch cube, at time points of 4 hours and 1 day. The results are shown in
The compositions, materials, and methods of the appended claims are not limited in scope by the specific compositions, materials, and methods described herein, which are intended as illustrations of a few aspects of the claims and any compositions, materials, and methods that are functionally equivalent are intended to fall within the scope of the claims. Various modifications of the compositions, materials, and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims. Further, while only certain representative materials and method steps disclosed herein are specifically described, other combinations of the materials and method steps also are intended to fall within the scope of the appended claims, even if not specifically recited. Thus, a combination of steps, elements, components, or constituents may be explicitly mentioned herein; however, other combinations of steps, elements, components, and constituents are included, even though not explicitly stated. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. Although the terms “comprising” and “including” have been used herein to describe various embodiments, the terms “consisting essentially of” and “consisting of” can be used in place of “comprising” and “including” to provide for more specific embodiments and are also disclosed.
Number | Name | Date | Kind |
---|---|---|---|
1942770 | Peffer et al. | Jan 1934 | A |
3056724 | Marston | Oct 1962 | A |
3353954 | Williams | Nov 1967 | A |
3497367 | Gaskin et al. | Feb 1970 | A |
3854968 | Minnick et al. | Dec 1974 | A |
4088804 | Cornwell et al. | May 1978 | A |
4088808 | Cornwell et al. | May 1978 | A |
4131474 | Uchikawa et al. | Dec 1978 | A |
4177232 | Day | Dec 1979 | A |
4190454 | Yamagisi et al. | Feb 1980 | A |
4256500 | Turpin, Jr. | Mar 1981 | A |
4256504 | Dunstan, Jr. | Mar 1981 | A |
4278468 | Selbe et al. | Jul 1981 | A |
4313763 | Turpin, Jr. | Feb 1982 | A |
4350533 | Galer et al. | Sep 1982 | A |
4357166 | Babcock | Nov 1982 | A |
4440800 | Morton et al. | Apr 1984 | A |
4488909 | Galer et al. | Dec 1984 | A |
4494990 | Harris | Jan 1985 | A |
4640715 | Heitzmann et al. | Feb 1987 | A |
4642137 | Heitzmann et al. | Feb 1987 | A |
4741782 | Styron | May 1988 | A |
4842649 | Heitzmann et al. | Jun 1989 | A |
4892586 | Watanabe et al. | Jan 1990 | A |
4933013 | Sakai et al. | Jun 1990 | A |
4997484 | Gravitt et al. | Mar 1991 | A |
5106422 | Bennett et al. | Apr 1992 | A |
5108679 | Rirsch et al. | Apr 1992 | A |
5177444 | Cutmore | Jan 1993 | A |
5188064 | House | Feb 1993 | A |
5192366 | Nishioka et al. | Mar 1993 | A |
5207830 | Cowan et al. | May 1993 | A |
5309690 | Symons | May 1994 | A |
5337824 | Cowan | Aug 1994 | A |
5366547 | Brabston et al. | Nov 1994 | A |
5368997 | Kawamoto | Nov 1994 | A |
5369369 | Cutmore | Nov 1994 | A |
5372640 | Schwarz et al. | Dec 1994 | A |
5374308 | Kirkpatrick et al. | Dec 1994 | A |
5383521 | Onan et al. | Jan 1995 | A |
5387283 | Kirkpatrick et al. | Feb 1995 | A |
5435843 | Roy et al. | Jul 1995 | A |
5439518 | Francis et al. | Aug 1995 | A |
5453310 | Andersen et al. | Sep 1995 | A |
5484480 | Styron | Jan 1996 | A |
5489334 | Kirkpatrick et al. | Feb 1996 | A |
5490889 | Kirkpatrick et al. | Feb 1996 | A |
5522986 | Shi et al. | Jun 1996 | A |
5536310 | Brook et al. | Jul 1996 | A |
5545297 | Andersen et al. | Aug 1996 | A |
5556458 | Brook et al. | Sep 1996 | A |
5568895 | Webb et al. | Oct 1996 | A |
5601643 | Silverstrim et al. | Feb 1997 | A |
5624489 | Fu et al. | Apr 1997 | A |
5624491 | Liskowitz et al. | Apr 1997 | A |
5634972 | Pacanovsky et al. | Jun 1997 | A |
5681384 | Liskowitz et al. | Oct 1997 | A |
5693137 | Styron | Dec 1997 | A |
5704972 | Ivkovich | Jan 1998 | A |
5714002 | Styron | Feb 1998 | A |
5714003 | Styron | Feb 1998 | A |
5718757 | Guillou et al. | Feb 1998 | A |
5718857 | Howlett | Feb 1998 | A |
5728209 | Bury et al. | Mar 1998 | A |
5770416 | Lihme et al. | Jun 1998 | A |
5772752 | Liskowitz et al. | Jun 1998 | A |
5820668 | Comrie | Oct 1998 | A |
5853475 | Liskowitz et al. | Dec 1998 | A |
5965117 | Howard, Jr. et al. | Oct 1999 | A |
5976240 | Vezza | Nov 1999 | A |
5997632 | Styron | Dec 1999 | A |
6007618 | Norris et al. | Dec 1999 | A |
6008275 | Moreau et al. | Dec 1999 | A |
6143069 | Brothers et al. | Nov 2000 | A |
6153673 | Lemos et al. | Nov 2000 | A |
6241815 | Bonen | Jun 2001 | B1 |
6251178 | Styron | Jun 2001 | B1 |
6264740 | McNulty, Jr. | Jul 2001 | B1 |
6287550 | Trinh et al. | Sep 2001 | B1 |
6346146 | Duselis et al. | Feb 2002 | B1 |
6443258 | Putt et al. | Sep 2002 | B1 |
6482258 | Styron | Nov 2002 | B2 |
6486095 | Fujita et al. | Nov 2002 | B1 |
6502636 | Chatterji et al. | Jan 2003 | B2 |
6554894 | Styron et al. | Apr 2003 | B2 |
6555199 | Jenkines | Apr 2003 | B1 |
6572698 | Ko | Jun 2003 | B1 |
6620487 | Tonyan et al. | Sep 2003 | B1 |
6629413 | Wendt et al. | Oct 2003 | B1 |
6641658 | Dubey | Nov 2003 | B1 |
6676744 | Merkley et al. | Jan 2004 | B2 |
6676745 | Merkley et al. | Jan 2004 | B2 |
6703350 | Fujita et al. | Mar 2004 | B2 |
6706774 | Munzenberger et al. | Mar 2004 | B2 |
6740155 | Boggs et al. | May 2004 | B1 |
6773500 | Creamer et al. | Aug 2004 | B1 |
6783799 | Goodson | Aug 2004 | B1 |
6786966 | Johnson et al. | Sep 2004 | B1 |
6797674 | Kato et al. | Sep 2004 | B2 |
6797676 | Von Krosigk | Sep 2004 | B2 |
6802898 | Liskowitz et al. | Oct 2004 | B1 |
6803033 | McGee et al. | Oct 2004 | B2 |
6805740 | Canac et al. | Oct 2004 | B2 |
6817251 | Sowerby et al. | Nov 2004 | B1 |
6827776 | Boggs et al. | Dec 2004 | B1 |
6831118 | Munzenberger | Dec 2004 | B2 |
6858074 | Anderson et al. | Feb 2005 | B2 |
6869474 | Perez-Pena et al. | Mar 2005 | B2 |
6904971 | Brothers et al. | Jun 2005 | B2 |
6923857 | Constantinou et al. | Aug 2005 | B2 |
7101430 | Pike et al. | Sep 2006 | B1 |
7219733 | Luke et al. | May 2007 | B2 |
7255739 | Brothers et al. | Aug 2007 | B2 |
7273099 | East, Jr. et al. | Sep 2007 | B2 |
7281581 | Nguyen et al. | Oct 2007 | B2 |
7288148 | Hicks et al. | Oct 2007 | B2 |
7294193 | Comrie | Nov 2007 | B2 |
7296625 | East, Jr. | Nov 2007 | B2 |
7318473 | East, Jr. et al. | Jan 2008 | B2 |
7325608 | van Batenburg et al. | Feb 2008 | B2 |
7334635 | Nguyen | Feb 2008 | B2 |
7344592 | Setliff et al. | Mar 2008 | B2 |
7347896 | Harrison | Mar 2008 | B2 |
7393886 | Bandoh et al. | Jul 2008 | B2 |
7442248 | Timmons | Oct 2008 | B2 |
7455798 | Datta et al. | Nov 2008 | B2 |
7459421 | Bullis et al. | Dec 2008 | B2 |
7462236 | Chun et al. | Dec 2008 | B2 |
7497904 | Dulzer et al. | Mar 2009 | B2 |
7572485 | Sandor | Aug 2009 | B2 |
7651564 | Francis | Jan 2010 | B2 |
7670427 | Perez-Pena et al. | Mar 2010 | B2 |
7691198 | Van Deventer et al. | Apr 2010 | B2 |
7708825 | Sun et al. | May 2010 | B2 |
7727327 | Glessner et al. | Jun 2010 | B2 |
7727330 | Ordonez et al. | Jun 2010 | B2 |
7732032 | Dubey | Jun 2010 | B2 |
7771686 | Sagoe-crentsil et al. | Aug 2010 | B2 |
7794537 | Barlet-Gouedard et al. | Sep 2010 | B2 |
7799128 | Guynn et al. | Sep 2010 | B2 |
7837787 | De La Roij | Nov 2010 | B2 |
7846250 | Barlet-Gouedard et al. | Dec 2010 | B2 |
7854803 | Kirkpatrick et al. | Dec 2010 | B1 |
7863224 | Keys et al. | Jan 2011 | B2 |
7878026 | Datta et al. | Feb 2011 | B2 |
7883576 | Comrie | Feb 2011 | B2 |
7892351 | Kirkpatrick et al. | Feb 2011 | B1 |
7897648 | Halimaton | Mar 2011 | B2 |
8002889 | Drochon et al. | Aug 2011 | B2 |
8007584 | Garuti, Jr. et al. | Aug 2011 | B2 |
8016937 | Schumacher et al. | Sep 2011 | B2 |
8016960 | Wittbold et al. | Sep 2011 | B2 |
8030377 | Dubey et al. | Oct 2011 | B2 |
8038789 | Boxley | Oct 2011 | B2 |
8038790 | Dubey et al. | Oct 2011 | B1 |
8053498 | Wieland et al. | Nov 2011 | B2 |
8057594 | Doyoyo et al. | Nov 2011 | B2 |
8057915 | Song et al. | Nov 2011 | B2 |
8061257 | Tonyan et al. | Nov 2011 | B2 |
8070878 | Dubey | Dec 2011 | B2 |
8079198 | Tonyan et al. | Dec 2011 | B2 |
8088218 | Blackburn et al. | Jan 2012 | B2 |
8092593 | McCombs | Jan 2012 | B2 |
8093315 | Bell et al. | Jan 2012 | B2 |
8122679 | Tonyan et al. | Feb 2012 | B2 |
8127849 | Gupta | Mar 2012 | B2 |
8129461 | Xenopoulos et al. | Mar 2012 | B2 |
8133352 | Merkley et al. | Mar 2012 | B2 |
8167994 | Birch | May 2012 | B2 |
8172940 | Boxley et al. | May 2012 | B2 |
8186106 | Schumacher et al. | May 2012 | B2 |
20020017224 | Horton | Feb 2002 | A1 |
20030041785 | Harrison | Mar 2003 | A1 |
20030056696 | Fenske et al. | Mar 2003 | A1 |
20030127025 | Orange et al. | Jul 2003 | A1 |
20040149174 | Farrington et al. | Aug 2004 | A1 |
20050005869 | Fritter et al. | Jan 2005 | A1 |
20050005870 | Fritter et al. | Jan 2005 | A1 |
20050075497 | Utz et al. | Apr 2005 | A1 |
20050118130 | Utz et al. | Jun 2005 | A1 |
20050129643 | Lepilleur et al. | Jun 2005 | A1 |
20050175577 | Jenkins et al. | Aug 2005 | A1 |
20050197422 | Mayadunne et al. | Sep 2005 | A1 |
20060008402 | Robles | Jan 2006 | A1 |
20060096166 | Brooks et al. | May 2006 | A1 |
20060144005 | Tonyan et al. | Jul 2006 | A1 |
20060201394 | Kulakofsky et al. | Sep 2006 | A1 |
20060201395 | Barger et al. | Sep 2006 | A1 |
20060243169 | Mak et al. | Nov 2006 | A1 |
20060292358 | Robertson et al. | Dec 2006 | A1 |
20070039515 | Bandoh et al. | Feb 2007 | A1 |
20070053821 | Gillman et al. | Mar 2007 | A1 |
20070125272 | Johnson | Jun 2007 | A1 |
20070221100 | Kumar et al. | Sep 2007 | A1 |
20070294974 | Tonyan et al. | Dec 2007 | A1 |
20080022940 | Kirsch et al. | Jan 2008 | A1 |
20080029039 | Jenkins | Feb 2008 | A1 |
20080132632 | Schiraldi et al. | Jun 2008 | A1 |
20080184939 | Fritter et al. | Aug 2008 | A1 |
20080196629 | Yamakawa et al. | Aug 2008 | A1 |
20080236450 | Bonafous et al. | Oct 2008 | A1 |
20080251027 | Kirsch et al. | Oct 2008 | A1 |
20080271641 | Ko et al. | Nov 2008 | A1 |
20080289542 | Ko et al. | Nov 2008 | A1 |
20080308045 | Fritter et al. | Dec 2008 | A1 |
20080310247 | Basaraba | Dec 2008 | A1 |
20090007852 | Fritter et al. | Jan 2009 | A1 |
20090036573 | Mita et al. | Feb 2009 | A1 |
20090130452 | Surace et al. | May 2009 | A1 |
20090184058 | Douglas | Jul 2009 | A1 |
20090217844 | Ordonez et al. | Sep 2009 | A1 |
20090217882 | Jenkins | Sep 2009 | A1 |
20090255668 | Fleming et al. | Oct 2009 | A1 |
20090255677 | Bryant et al. | Oct 2009 | A1 |
20090306251 | Francis | Dec 2009 | A1 |
20090318571 | Utz et al. | Dec 2009 | A1 |
20100071597 | Perez-Pena | Mar 2010 | A1 |
20100101457 | Surace et al. | Apr 2010 | A1 |
20100126350 | Sharma | May 2010 | A1 |
20100242803 | Glessner, Jr. et al. | Sep 2010 | A1 |
20100247937 | Liu et al. | Sep 2010 | A1 |
20110003904 | Guevara et al. | Jan 2011 | A1 |
20110028607 | Morgan et al. | Feb 2011 | A1 |
20110073311 | Porcherie et al. | Mar 2011 | A1 |
20110088598 | Lisowski et al. | Apr 2011 | A1 |
20110192100 | Tonyan et al. | Aug 2011 | A1 |
20110250440 | Goodson | Oct 2011 | A1 |
20110259245 | Sperisen et al. | Oct 2011 | A1 |
20110269875 | Nicoleau et al. | Nov 2011 | A1 |
20110271876 | Alter et al. | Nov 2011 | A1 |
20110283921 | Schumacher et al. | Nov 2011 | A1 |
20110283922 | Schumacher et al. | Nov 2011 | A1 |
20110284223 | Porcherie et al. | Nov 2011 | A1 |
20110287198 | Song et al. | Nov 2011 | A1 |
20110290153 | Abdullah et al. | Dec 2011 | A1 |
20120024196 | Gong et al. | Feb 2012 | A1 |
20120024198 | Schwartzentruber et al. | Feb 2012 | A1 |
20120037043 | Zubrod | Feb 2012 | A1 |
20120040165 | Dubey | Feb 2012 | A1 |
20120111236 | Constantz et al. | May 2012 | A1 |
20120167804 | Perez-Pena | Jul 2012 | A1 |
20120172469 | Perez-Pena | Jul 2012 | A1 |
20130087076 | Hill et al. | Apr 2013 | A1 |
20130087077 | Hill et al. | Apr 2013 | A1 |
20130087078 | Hill et al. | Apr 2013 | A1 |
20130087079 | Hill et al. | Apr 2013 | A1 |
20130087939 | Hill et al. | Apr 2013 | A1 |
20130133555 | Lloyd et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2398884 | Feb 1984 | AU |
611478 | Jun 1991 | AU |
630892 | Nov 1992 | AU |
738043 | Nov 1997 | AU |
718757 | Apr 2000 | AU |
200040871 | Sep 2000 | AU |
2005202108 | Dec 2005 | AU |
2005248952 | Dec 2005 | AU |
2007200076 | Jan 2007 | AU |
2007200162 | Oct 2007 | AU |
2007347758 | Sep 2008 | AU |
2007347756 | Jan 2009 | AU |
867328 | May 1961 | GB |
2004091230 | Mar 2004 | JP |
20010090026 | Oct 2001 | KR |
20070051111 | May 2007 | KR |
8804285 | Jun 1988 | WO |
2008130107 | Oct 2008 | WO |
2009005205 | Jan 2009 | WO |
2010074811 | Jul 2010 | WO |
2011026723 | Mar 2011 | WO |
2011038459 | Apr 2011 | WO |
2011096925 | Aug 2011 | WO |
2012142547 | Oct 2012 | WO |
2013066561 | Oct 2013 | WO |
2013052732 | Nov 2013 | WO |
Entry |
---|
Davidovits, J., Geopolymer chemistry and applications, Chapter 22: Foamed Geopolymer, p. 471-478. |
“Effect of Mixing Time on Properties of Concrete.” Technology Blog.Oct. 16, 2010 [Retrieved on May 31, 2013]. Retrieved from http://web.archive.org/web/20101016235150/http://civil-engg-world.blogspot.com/2008/12/effect-of-mixing-time-on-properties-of.html. |
“Dry Cast vs. Wet Cast.” Edward's Cast Stone Company. Feb. 12, 2010 [Retrieved on May 31, 2013]. Retrieved from http://web.archive.org/web/20100212132704/http://www.edwardscaststone.com/products—drywet.cfm. |
E. Revertegat, C. Richet, & P. Gégout, “Effect of pH on the Durability of Cement Pastes,” Cement &Concrete Res., vol. 22: pp. 259-272 (1992). |
Non-Final Office Action mailed Nov. 2, 2012, in U.S. Appl. No. 13/268,011. |
Advisory Action mailed Jul. 26, 2013, in U.S. Appl. No. 13/267,967. |
Final Office Action mailed Apr. 5, 2013, in U.S. Appl. No. 13/267,967. |
Non-Final Office Action mailed Nov. 2, 2013, in U.S. Appl. No. 13/267,967. |
Non-Final Office Action mailed Oct. 30, 2012, in U.S. Appl. No. 13/307,504. |
Non-Final Office Action mailed May 30, 2013, in U.S. Appl. No. 13/268,211. |
Final Office Action mailed May 9, 2013, in U.S. Appl. No. 13/267,969. |
Non-Final Office Action mailed Nov. 6, 2012, in U.S. Appl. No. 13/267,969. |
Non-Final Office Action mailed Dec. 6, 2013, in U.S. Appl. No. 13/646,060. |
Non-Final Office Action mailed Feb. 12, 2014, in U.S. Appl. No. 13/269,283. |
International Search Report and Written Opinion, mailed Feb. 15, 2013, in International Patent Application No. PCT/US2012/058847. |
International Search Report and Written Opinion, mailed Feb. 26, 2013, in International Patent Application No. PCT/US2012/058852. |
Number | Date | Country | |
---|---|---|---|
20130133554 A1 | May 2013 | US |