Calculating an estimate of wind resistance experienced by a cyclist

Information

  • Patent Grant
  • 10650699
  • Patent Number
    10,650,699
  • Date Filed
    Wednesday, September 14, 2016
    8 years ago
  • Date Issued
    Tuesday, May 12, 2020
    4 years ago
Abstract
Improved techniques and systems are disclosed for determining the components of resistance experienced by a wearer of a wearable device engaged in an activity such as bicycling or running. By monitoring data using the wearable device, improved estimates can be derived for various factors contributing to the resistance experienced by the user in the course of the activity. Using these improved estimates, data sampling rates may be reduced for some or all of the monitored data.
Description
TECHNICAL FIELD

The present disclosure relates generally to measurements performed using a wearable device.


BACKGROUND

A wearable device can be worn by a person riding a bicycle. A cyclist may wish to receive a measurement or estimate of their power output and/or calories burned while they ride. One way by which power output can be measured is the installation of a power meter onto a bicycle. However, such meters require installation and may be expensive. Another method for estimating power output is to measure the cyclist's heart rate and generate an estimate of power output based on the heart rate. While inexpensive, heart rate measurements and estimation of cyclist power output based on heart rate can require significant power to operate the sensor. Another approach is to estimate power output based on distance traveled and/or speed at which that distance is traveled. However, estimation based on these quantities can be inaccurate. For example, calculating an estimate of power output based on distance traveled and/or speed at which that distance is traveled will not account for dynamically experienced resistance such as that provided by wind, or by changes in elevation during the ride.


When riding a bicycle, three main factors contribute to total energy expenditure: rolling resistance, contributed by friction of the bicycle tires against the ground; grade, contributed by the force of gravity pulling against the mass of the cyclist and bicycle; and wind resistance or drag, contributed by the force of air drag against the cyclist and bicycle moving through the atmosphere. When riding a bicycle at a constant speed, the total of these three main factors represents the major power output of the cyclist.


SUMMARY

The present disclosure relates generally to determining estimates for the resistances experienced by a cyclist and thus the total power output of the cyclist. In particular, estimates of the wind resistance experienced by a cyclist can be obtained through calibration of the effective resistance a cyclist experiences as a function of heading, and thereby separated from the effective resistance due to rolling resistance and grade. Once such estimates are obtained, the user's total power output can be more accurately tracked throughout an activity.


In order to improve estimates of the contribution of each of the three portions of total power output, and thus of total power output, a cyclist may wear a wearable device. The wearable device can include a heart rate sensor to provide a series of measurements of cyclist heart rate. The wearable device can also include motion sensors to collect data about the wearable device's position and orientation in space and to track changes to the wearable device's position and orientation over time. Accelerometers in the device may track acceleration, including high frequency variation in acceleration, and use this to detect surface type. Because a cyclist can wear the wearable device, the orientation of the device can provide information about the cyclist's body position. For example, when cycling, the cyclist's arms may be in a variety of positions, depending on the cyclist's style of riding and the type of handlebars on the bicycle. If the cyclist wears the wearable device on the cyclist's wrist, the wearable device may be able to infer the cyclist's hand position, and based on this hand position may be able to infer the cyclist's riding position and thereby provide an estimate of drag contributed by the cyclist's body (e.g., less drag when riding in a tuck or more drag when riding sitting upright.)


Combining these measurements of heart rate, position and orientation, velocity, altitude, and riding position, the cyclist's total power output and the contribution of each component of that power output may be estimated.


By estimating the relative contribution of each component to total power output, a less expensive and more power-efficient technique for providing accurate estimates of cyclist power output can be created.


Embodiments of the present disclosure include a wearable device and techniques for estimating total power output and/or the contribution of wind resistance to the total power output of a cyclist wearing the wearable device. The wearable device may be worn on a wrist, such as a watch, and it may include one or more microprocessors, a display, and a variety of sensors, such as a heart rate sensor and one or more motion sensors.


In some embodiments, the motion sensors may include, for example, an accelerometer, a gyroscope, a barometer or altimeter, a magnetometer or compass, etc. The wearable device may also include a motion coprocessor, which may be optimized for low-power, continuous motion sensing and processing.


In some embodiments, the wearable device may be capable of communicating with a companion device. The wearable device may communicate with a companion device wirelessly, e.g., via a Bluetooth connection or similar wireless communication method. The companion device may be a second mobile device, such as a phone, which may include additional sensors. The additional sensors in the companion device may include a Global Positioning System (GPS) sensor, accelerometer, gyroscope, barometer or altimeter, motion coprocessor, etc. The companion device may, for example, communicate location information based on data from the GPS sensor to the wearable device.


In some embodiments, the (first) wearable device may be capable of communicating with other wearable devices. The first wearable device may communicate with other devices wirelessly, e.g., via a Bluetooth connection or similar wireless communication method. In some embodiments, some of the other wearable devices may include different hardware or firmware and may communicate using a common inter-device protocol and implement a given application programming interface (API). The first wearable device may, for example, communicate motion data or other information to the other wearable devices. The first wearable device may also be configured to receive information in kind from the other wearable devices.


Other features and advantages will become apparent from the following detailed description and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be illustrative only.



FIG. 1 shows a wearable device in accordance with an embodiment of the present disclosure.



FIG. 2 depicts a block diagram of a wearable device in accordance with an embodiment of the present disclosure.



FIG. 3 shows a companion device in accordance with an embodiment of the present disclosure.



FIG. 4 shows a schematic representation of a user with a wearable device riding a bicycle in accordance with an embodiment of the present disclosure.



FIG. 5 shows the various relevant forces acting on a cyclist during a ride and the relevant velocities of the cyclist.



FIG. 6 shows a method for determining an estimate of wind resistance in accordance with an embodiment of the present disclosure.



FIG. 7 illustrates the variation of effective resistance or total cyclist power output with heading in the presence of wind.



FIG. 8A illustrates the hand position termed “tops” and associated riding position.



FIG. 8B illustrates the hand position termed “hoods” and associated riding position.



FIG. 8C illustrates the hand position termed “drops” and associated riding position.



FIG. 9 shows a method for using an accelerometer to improve estimation of Crr according to some embodiments of the present disclosure.



FIG. 10 shows a method for calculating power output in accordance with an embodiment of the present disclosure.





DESCRIPTION

The present disclosure describes a wearable device that may be configured to estimate total cyclist power output and/or the contribution of wind resistance to total cyclist power output while the wearer is riding a bicycle.


As described in the Background, three main factors contribute to total energy expenditure made by a cyclist moving at a constant speed: rolling resistance, grade, and wind resistance or drag. The total of these three main factors represents the total power output of the cyclist.


Grade resistance is a function which varies linearly with vertical ground speed, with a constant scalar that may be determined based purely on the mass of the combined cyclist and bicycle system.


Rolling resistance is also a function which varies linearly with ground speed. While calculating rolling resistance requires estimating the rolling resistance coefficient, it is a single unknown that does not vary significantly based on time or speed. The rolling resistance coefficient is a function of the tires and road conditions and is consistent for a given bicycle on a given terrain type.


However, wind resistance varies not only linearly with ground speed but also with the square of the relative velocity between the cyclist and the air around the cyclist, as well as depending on the exposed surface area and drag coefficient of the cyclist, which varies based on factors such as cyclist body size, equipment, and the cyclist riding position. Because wind resistance includes a significant number of unknowns, calculating wind resistance is difficult. In addition, wind resistance depends on the square of the relative velocity between the cyclist and the air around the cyclist, and the air around the cyclist may move in different directions and at different speeds depending on the speed and direction of the wind in the cyclist's current location. Even if local weather data including wind velocity is available (e.g., by downloading from a remote weather service), that velocity may be inaccurate for the cyclist's current position, particularly in locations like cities where streets form channels for winds and wind direction and speed may not correlate to the downloaded data.


Using a wearable device, the estimate of power output and the individual contributions of each of the three components of total power output can be improved by incorporating sensor information from the wearable device. Using this sensor information, an estimate of the contribution of each of these three components to the total power output of the cyclist can be provided, and in particular an estimate of wind resistance.



FIG. 1 shows an example of a wearable device 100 in accordance with an embodiment of the present disclosure. In some embodiments, the wearable device 100 may be any suitable wearable device, such as a watch configured to be worn around an individual's wrist. As described in more detail below, the wearable device 100 may be calibrated according to physical attributes of the individual and physical activity by the individual user who is wearing the wearable device 100, including, for example, activity participation statistics.



FIG. 2 depicts a block diagram of example components that may be found within the wearable device 100 in accordance with an embodiment of the present disclosure. These components may include a heart rate sensing module 210, a motion sensing module 220, a display module 230, and an interface module 240.


The heart rate sensing module 210 may include or may be in communication with a heart rate sensor as previously described. The wearable device 100 can measure an individual's current heart rate from the heart rate sensor. The heart rate sensor may also be configured to determine a confidence level indicating a relative likelihood of an accuracy of a given heart rate measurement. In other embodiments, a traditional heart rate monitor may be used and may communicate with the wearable device 100 through a near field communication method (e.g., Bluetooth).


The wearable device 100 may also include the motion sensing module 220. The motion sensing module 220 may include one or more motion sensors, such as an accelerometer or a gyroscope. In some embodiments, the accelerometer may be a three-axis, microelectromechanical system (MEMS) accelerometer, and the gyroscope may be a three-axis MEMS gyroscope. A microprocessor (not shown) or motion coprocessor (not shown) of the wearable device 100 may receive motion information from the motion sensors of the motion sensing module 220 to track acceleration, rotation, position, or orientation information of the wearable device 100 in six degrees of freedom through three-dimensional space.


In some embodiments, the motion sensing module 220 may include other types of sensors in addition to accelerometers and gyroscopes. For example, the motion sensing module 220 may include an altimeter or barometer, or other types of location sensors, such as a GPS sensor.


The wearable device 100 may also include the display module 230. Display module 230 may be a screen, such as a crystalline (e.g., sapphire) or glass touchscreen, configured to provide output to the user as well as receive input from the user via touch. For example, display 230 may be configured to display a current heart rate or a daily average energy expenditure. Display module 230 may receive input from the user to select, for example, which information should be displayed, or whether the user is beginning a physical activity (e.g., starting a session) or ending a physical activity (e.g., ending a session), such as a running session or a cycling session. In some embodiments, the wearable device 100 may present output to the user in other ways, such as by producing sound with a speaker (not shown), and the wearable device 100 may receive input from the user in other ways, such as by receiving voice commands via a microphone (not shown).


In some embodiments, the wearable device 100 may communicate with external devices via interface module 240, including a configuration to present output to a user or receive input from a user. Interface module 240 may be a wireless interface. The wireless interface may be a standard Bluetooth (IEEE 802.15) interface, such as Bluetooth v4.0, also known as “Bluetooth low energy.” In other embodiments, the interface may operate according to a cellphone network protocol such as LTE or a Wi-Fi (IEEE 802.11) protocol. In other embodiments, interface module 240 may include wired interfaces, such as a headphone jack or bus connector (e.g., Lightning, Thunderbolt, USB, etc.).


The wearable device 100 may be configured to communicate with a companion device 300 (FIG. 3), such as a smartphone, as described in more detail herein. In some embodiments, the wearable device 100 may be configured to communicate with other external devices, such as a notebook or desktop computer, tablet, headphones, Bluetooth headset, etc.


The modules described above are examples, and embodiments of the wearable device 100 may include other modules not shown. For example, the wearable device 100 may include one or more microprocessors (not shown) for processing heart rate data, motion data, other information in the wearable device 100, or executing instructions for firmware or apps stored in a non-transitory processor-readable medium such as a memory module (not shown). Additionally, some embodiments of the wearable device 100 may include a rechargeable battery (e.g., a lithium-ion battery), a microphone or a microphone array, one or more cameras, one or more speakers, a watchband, a crystalline (e.g., sapphire) or glass-covered scratch-resistant display, water-resistant casing or coating, etc.



FIG. 3 shows an example of a companion device 300 in accordance with an embodiment of the present disclosure. The wearable device 100 may be configured to communicate with the companion device 300 via a wired or wireless communication channel (e.g., Bluetooth, Wi-Fi, etc.). In some embodiments, the companion device 300 may be a smartphone, tablet computer, or similar portable computing device. The companion device 300 may be carried by the user, stored in the user's pocket, strapped to the user's arm with an armband or similar device, placed in a mounting device, or otherwise positioned within communicable range of the wearable device 100.


The companion device 300 may include a variety of sensors, such as location and motion sensors (not shown). When the companion device 300 may be optionally available for communication with the wearable device 100, the wearable device 100 may receive additional data from the companion device 300 to improve or supplement its calibration or calorimetry processes. For example, in some embodiments, the wearable device 100 may not include a GPS sensor as opposed to an alternative embodiment in which the wearable device 100 may include a GPS sensor. In the case where the wearable device 100 may not include a GPS sensor, a GPS sensor of the companion device 300 may collect GPS location information, and the wearable device 100 may receive the GPS location information via interface module 240 (FIG. 2) from the companion device 300.


In another example, the wearable device 100 may not include an altimeter or barometer, as opposed to an alternative embodiment in which the wearable device 100 may include an altimeter or barometer. In the case where the wearable device 100 may not include an altimeter or barometer, an altimeter or barometer of the companion device 300 may collect altitude or relative altitude information, and the wearable device 100 may receive the altitude or relative altitude information via interface module 240 (FIG. 2) from the companion device 300.


In another example, the wearable device 100 may receive motion data from the companion device 300. The wearable device 100 may compare the motion data from the companion device 300 with motion data from the motion sensing module 220 of the wearable device 100.


The wearable device may use motion data to predict a user's activity. Examples of activities may include, but are not limited to, walking, running, cycling, swimming, etc. The wearable device may also be able to predict or otherwise detect when a user is sedentary (e.g., sleeping, sitting, standing still, driving or otherwise controlling a vehicle, etc.). The wearable device may use a variety of motion data, including, in some embodiments, motion data from a companion device.


The wearable device may use a variety of heuristics, algorithms, or other techniques to predict the user's activity. The wearable device may also estimate a confidence level (e.g., percentage likelihood, degree of accuracy, etc.) associated with a particular prediction (e.g., 90% likelihood that the user is running) or predictions (e.g., 60% likelihood that the user is running and 40% likelihood that the user is walking).



FIG. 4 shows a schematic representation of a user with a wearable device riding a bicycle in accordance with an embodiment of the present disclosure. In the example of FIG. 4, a user 410 is wearing a wearable device 420 (e.g., the wearable device 100) on the user's wrist. The user may be holding the handlebars 430 of the bicycle in a variety of different grips, as shown in FIGS. 8A-C. In this illustration, the user is holding the handlebars in the “tops” position. In some embodiments, the wearable device 420 may be worn on other portions of the user's body, such as the arm, finger, leg, or foot, so long as the portion of the user's body experiences motion related to the motion of the vehicle.



FIG. 5 depicts the velocities and forces acting on a user 500 riding a bicycle 510. This includes vectors 520, 530, 540, 550, 560, 570, and 580. Vector 520 represents the velocity of the bicycle with respect to the ground. Vector 530 represents the relative velocity between the cyclist and the air. Vector 540 represents the force exerted by air drag on the cyclist, while vector 550 represents the force exerted by friction on the bicycle. Vector 560 represents the force exerted by gravity on the bicycle and cyclist and vector 570 represents the force exerted by the ground on the bicycle and cyclist. Finally, vector 580 represents the force exerted by the cyclist by pedaling the bicycle. In the example of FIG. 5, the bicycle is on relatively level terrain (relatively little or no pitch), and the direction of gravity acting on the vehicle is shown as “down,” approximately perpendicular to the road or other terrain.


As described above, the total power output of the bike can be described as the sum of three components, the rolling resistance, the grade, and the drag, as shown in Equation 1:

Pbike=frr+fgrade+fdrag  (Eq. 1)


Pbike is represented in FIG. 5 by vector 580, frr is represented by vector 550, fgrade is a function of vector 560, and fdrag is represented by vector 540. All three of frr, fgrade, and fdrag depend on the ground velocity of the bicycle shown by vector 520, but only fdrag exhibits dependence on the relative air velocity shown by vector 530.


frr represents the rolling resistance experienced by the cyclist. This portion of total power depends on the combined mass of the bike and the rider, mc, the force of gravity g, the rolling resistance coefficient Crr, and the ground velocity Vg, as shown in Equation 2:

frr=mc·g·Crr·Vg  (Eq. 2)


fgrade represents the contribution of gravity to the forces experienced by the cyclist. This portion of total power depends on mc, g, Vg, and the grade of the cycling surface S, as shown in Equation 3:

fgrade=mc·g·S·Vg  (Eq. 3)


Finally, fdrag represents the wind resistance experienced by the cyclist. This portion of total power depends on Vg, the exposed surface area A and drag coefficient Cd, the air density ρ, and the relative velocity through air Vrel, as shown in Equation 4:

fdrag·ρ·A·Cd·V2rel·Vg  (Eq. 4)


Some of these parameters may be measured directly or estimated directly from measured data. For example, Pbike may be measured using a power meter or estimated using known techniques for calculating energy expenditure based on heart rate. Vg, S, and ρ may be determined using a GPS sensor or other positional sensor that provides altitude data and/or a barometer. Other parameters may be input by the user. mc is an example of this type of parameter. Finally, some parameters can be estimated. These parameters include Crr, A, Cd, and Vrel.



FIG. 6 illustrates a method for determining an estimate of wind resistance in accordance with an embodiment of the present disclosure. Upon detection in step 600 that a user is engaged in the activity where wind resistance is to be determined (for example, cycling), the method begins. In steps 610, 620, and 630, position, speed, heading, altitude, and heart rate measurements are collected, for example by using GPS measurements and a heart rate sensor. These measurements are collected periodically time-stamped with the time of collection. The sampling period between collections of each of the three data points may be regularly spaced or irregularly spaced and steps 610, 620, and 630 need not be performed at the same time or intervals. For example, as heart rate determination may require a larger amount of energy to perform, heart rate determination may occur less frequently than collection of speed, heading, and altitude.


In step 640, the time-stamped position, speed, and heading information may be split into straight line segments representing travel by the cyclist in an approximately straight line during the time period the segment represents. Each segment represents a distance of known length and heading traveled from one known position to a second known position between two known points in time. In some embodiments, the straight line segments are split by determining whether a cyclist's path has deviated from a straight line subsequent to the second known position in a set of candidate known positions by comparing the subsequent known position to the line defined by the first and second known positions and beginning a new straight line segment if the subsequent known position deviates from the line defined by the first and second known positions by more than a predetermined threshold. In step 650, the position, speed, heading, and altitude measurements are used to determine the grade at that moment in time. For example, change in altitude over time with a known speed, or change in altitude between two positions on a straight line segment can be used to estimate grade. In step 660, based on heart rate or a power meter, total power output can be determined.


In step 670, a wind speed and direction are determined, either based on the outputs of steps 640-660 or by reference to an external source of information such as an online weather service. For example, wind data for the current location may be retrieved from an online weather service using a data network and the current location of the wearable device.


Alternatively, if wind data is unknown or cannot be retrieved, then wind direction and speed may be estimated. In step 670, when estimating wind speed and direction according to embodiments of the present disclosure, total power output is determined at a variety of directional headings of the cyclist. For example, the straight line segments determined in step 640 may be used to determine the cyclist's heading during a particular period of time and total power outputs determined during that period of time are correlated to the cyclist's heading, providing a total power output at the directional heading of the straight line segment. By using multiple straight line segments with multiple directional headings that are different from one another, total power output for each of a variety of headings may be determined.


Once total power output has been determined across a variety of headings, the direction of the wind may be identified by examining the total power output data with respect to heading. Maximum power output is required when the cyclist is heading directly into the wind, while minimum power output occurs when the cyclist is riding with the wind. Because power output contributions from rolling resistance and grade are independent of wind speed, resistive forces contributed by these terms are effectively constant with respect to whether a cyclist is heading into or out of the wind once any systematic variations in grade (for example, cycling up or down a slope) according to heading are taken into account. The heading and speed of the wind can thus be estimated by fitting the total power output data at a variety of headings to a curve and determining the estimated Vrel for that curve.


In step 680, based on the outputs of steps 640-660, and based on the knowledge of wind speed and direction determined in step 670 (whether estimated or directly obtained), estimates of various unknown parameters (for example, Vrel, A, and Cd) and components of total resistance (rolling resistance, grade, and drag) may be calculated and may be used to replace, refine, or otherwise supplement existing methods of measuring total power output such as power meters or heart rate-based determinations.


According to embodiments of the present disclosure, when step 670 determines that no wind is present, Crr, A, and Cd can be estimated based on a set of Pbike measurements at various ground speeds Vg (measurements with speed diversity) by solving sets of equations of the form shown in Equations 1-4. By comparing an adequate number of Pbike measurements at various Vg and incorporating direct measurements of other parameters, the system can solve for estimates of the unknown parameters Crr, A, and Cd.


According to embodiments of the present disclosure, when step 670 determines that a wind of known speed and direction is present (e.g., if accurate wind data is available from a weather service, or via estimation of the wind), Crr, A, and Cd can be estimated without any requirement for speed diversity. A measurement of Pbike combined with direct measurements of other parameters allows the estimation of Crr, A, and Cd.


According to embodiments of the present disclosure, once wind direction is determined (whether by estimation or directly) in step 670, Vrel, A, and Cd can be estimated in step 680 by solving sets of equations of the form shown in Equations 1-4. If the drag coefficients A and Cd have been previously calibrated (e.g., in a no wind or known wind situation), the estimate of wind speed can also be refined to a higher precision. Once wind speed has been estimated via this method, the known wind speed and direction method can be used to determine an estimate of rolling resistance Crr.



FIG. 7 illustrates the ideal model of total power resistance versus heading into or out of a wind out of the northwest, as well as an estimated model generated based on observed data from actual cyclists. The solid line 710 represents the ideal model, while the dotted line 720 represents the estimated model. Dots 730 represent measured power output at various headings. By fitting a curve to the measured power outputs, the estimated model may be generated and used to determine points of predicted minimum and maximum power output. These points of predicted minimum and maximum power output can be used to derive Vrel.



FIGS. 8A-8C illustrate various hand positions riders may take. These positions may be termed “tops”, as shown in FIG. 8A, “hoods”, as shown in FIG. 8B, and “drops”, as shown in FIG. 8C. Each of these positions influences the body positioning of the cyclist, as shown in FIGS. 8A-8C, and thus influences the air drag by changing the exposed surface area A (and potentially by changing the drag coefficient Cd). In some embodiments of the present disclosure, a wearable device worn on the cyclist's wrist or hand may detect the cyclist's hand position. For example, a direction of gravity as experienced by the wearable device, combined with knowledge of the wrist on which the device is worn, may be used to estimate the hand position of the rider. Based on hand position, the body position of the cyclist may be estimated, and this estimate may be used to refine A and Cd and/or to adjust these parameters in real-time as the cyclist's body position changes. By adjusting the air drag parameters with the cyclist's changes in body position, estimates of total power output may be made more accurate.



FIG. 9 illustrates a method for using an accelerometer to improve estimation of Crr according to some embodiments of the present disclosure. In step 900, accelerometer data is collected at a high sampling rate. In step 910, high frequency accelerometer data is separated from low frequency accelerometer data. In step 920, high frequency accelerometer data is used to obtain an estimate of roughness of the riding surface and thereby provide or refine an estimate of Crr. For example, a surface generating relatively little high frequency accelerometer output is likely a smooth surface such as an asphalt road, with a lower Crr, while a surface generating more high frequency accelerometer output may be a rougher surface such as a dirt road, with a higher Crr. If the cyclist is riding on a mountain trail or similar very rough surface, significant high frequency accelerometer output may be present, signaling a very high Crr. In step 930, the estimate of surface Crr is used to refine or replace the existing estimate of Crr.



FIG. 10 illustrates a method for calculating power output in accordance with an embodiment of the present disclosure. In step 1000, the parameters described above with respect to FIG. 6 (e.g., Crr, Vrel, A, and Cd) are obtained, for example by direct measurement or estimation, as described with respect to the steps of FIG. 6. After obtaining these parameters, in step 1010, heart rate measurements to estimate total power output are reduced in frequency, in order to save battery life of the wearable device. In some embodiments, heart rate measurements are reduced in frequency after the parameters have been obtained. In other embodiments, heart rate measurements are discontinued after the parameters have been obtained. In step 1020, an estimate of total power output by the cyclist is obtained by applying the obtained parameters to Equations 1-4 without use of a heart rate measurement. By providing power output estimates without using heart rate measurements or while using them less frequently, the wearable device can accurately estimate cyclist power output without consuming as much battery power.


The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. For example, while the present embodiments are described with respect to a cyclist, a runner would also experience frictional forces, forces due to gravity, and wind resistance, and the embodiments could also be applied to a runner by one of ordinary skill in the art. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of at least one particular implementation in at least one particular environment for at least one particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes.

Claims
  • 1. A method comprising: collecting a plurality of time-stamped measurements of position, speed, heading, and altitude of a wearer engaged in an activity;splitting the plurality of time-stamped measurements of position, speed, and heading into a plurality of straight-line segments representing segments of travel of the wearer during which the wearer maintained a straight-line path of travel;for each of the plurality of straight-line segments, determining a separate one of a plurality of time-stamped grade estimates based on one or more of the plurality of time-stamped position, speed, heading, and altitude measurements;for each of the plurality of straight-line segments, determining a separate one of a plurality of time-stamped total power outputs of the wearer engaged in the activity;determining a wind speed;determining a wind direction; andestimating one or more of power output due to wind resistance, relative air velocity, coefficient of rolling resistance, coefficient of drag, and exposed surface area based on at least one of the plurality of time-stamped total power outputs, the plurality of time-stamped measurements, the determined wind speed, and the determined wind direction.
  • 2. The method of claim 1, further comprising detecting, by a wearable device, that the activity the wearer is engaged in is a known activity.
  • 3. The method of claim 1, wherein the activity is riding a bicycle.
  • 4. The method of claim 1, wherein the time-stamped measurements are collected at irregular intervals.
  • 5. The method of claim 1, wherein the measurements collected at a particular one of the plurality of time-stamped measurements comprise a subset of the position, speed, heading, altitude, and total power output of the wearer engaged in the activity.
  • 6. The method of claim 1, wherein determining a plurality of time-stamped total power outputs comprises: measuring a plurality of time-stamped heart rates of a wearer of the device; and estimating a plurality of time-stamped total power output of the wearer of the wearable device based on the heart rate of the wearer.
  • 7. The method of claim 6, further comprising: increasing an interval between measurements of time-stamped heart rates after estimating one or more of relative air velocity, coefficient of rolling resistance, coefficient of drag, and exposed surface area; andestimating total power output based on the plurality of time-stamped measurements and the estimated one or more of relative air velocity, coefficient of rolling resistance, coefficient of drag, and exposed surface area.
  • 8. The method of claim 1, further comprising: estimating a direction of gravity relative to a wearable device based on motion information from the wearable device;estimating a hand position of the wearer of the wearable device based on the estimated direction of gravity; andchanging the coefficient of drag based on the estimated hand position of the wearer.
  • 9. The method of claim 1, wherein determining a wind direction comprises retrieving a wind direction from a remote server.
  • 10. The method of claim 1, wherein determining a wind direction comprises estimating a direction of the wind based on the plurality of time-stamped total power outputs and the plurality of time-stamped measurements of heading.
  • 11. The method of claim 1, wherein the estimated coefficient of rolling resistance is changed based on a determination of surface roughness made by analyzing a plurality of accelerometer measurements.
  • 12. A wearable device comprising: a positional sensor for obtaining position, speed, heading, and altitude information of a wearer of the wearable device;a power output sensor for obtaining data correlated to the total power output of the wearer of the wearable device; anda processor communicatively coupled to the positional sensor and the power sensor, wherein the processor is configured to: receive a plurality of time-stamped measurements of position, speed, heading, and altitude information from the positional sensor;receive power output data from the power output sensor;split the position, speed, and heading information into a plurality of straight-line segments representing segments of travel of the wearer during which the wearer maintained a straight-line path of travel;for each of the plurality of straight-line segments, determine a separate one of a plurality of time-stamped grade estimates based on one or more of the plurality of time-stamped measurements of position, speed, heading, and altitude;for each of the plurality of straight-line segments, determine a separate one of a plurality of time-stamped power output measurements from the power output data;determine a wind speed;determine a wind direction; andestimate one or more of power output due to wind resistance, relative air velocity, coefficient of rolling resistance, coefficient of drag, and exposed surface area based on at least one of the plurality of time-stamped total power outputs, the plurality of time-stamped measurements, the determined wind speed, and the determined wind direction.
  • 13. The wearable device of claim 12, wherein the processor is further configured to determine that the wearer is riding a bicycle.
  • 14. The wearable device of claim 12, wherein the time-stamped measurements are received at regular intervals.
  • 15. The wearable device of claim 12, wherein the power output sensor is a heart rate sensor.
  • 16. The wearable device of claim 12, wherein the processor is further configured to: estimate a direction of gravity relative to the wearable device based on motion information from a motion sensor communicatively coupled to the processor;estimate a hand position of the wearer of the wearable device based on the estimated direction of gravity; andrefine the estimate of the coefficient of drag based on the estimated hand position of the wearer.
  • 17. The wearable device of claim 12, further comprising a network interface communicatively coupled to the processor, wherein determining a wind speed and determining a wind direction comprise retrieving a wind direction and a wind speed from a remote server via the network interface.
  • 18. The wearable device of claim 12, wherein determining a wind direction comprises estimating a direction of the wind based on the plurality of time-stamped total power outputs and the plurality of time-stamped measurements of heading.
  • 19. The wearable device of claim 18, further comprising one or more accelerometers communicatively coupled to the processor, wherein the processor is further configured to: receive a plurality of acceleration measurements from the one or more accelerometers;derive a plurality of high-frequency acceleration measurements from the plurality of acceleration measurements; andchange the estimated coefficient of rolling resistance based on the derived plurality of high-frequency acceleration measurements.
  • 20. The wearable device of claim 12, wherein the positional sensor is a companion device with a GPS receiver.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/219,246, filed on Sep. 16, 2015, which is incorporated herein by reference.

US Referenced Citations (147)
Number Name Date Kind
4566461 Lubell et al. Jan 1986 A
5158093 Shvartz et al. Oct 1992 A
5663897 Geiser Sep 1997 A
6013008 Fukushima Jan 2000 A
6059724 Campbell et al. May 2000 A
6582380 Kazlausky et al. Jun 2003 B2
6687535 Hautala et al. Feb 2004 B2
6837827 Lee et al. Jan 2005 B1
7254516 Case, Jr. et al. Aug 2007 B2
7311675 Peifer et al. Dec 2007 B2
7377180 Cunningham May 2008 B2
7387029 Cunningham Jun 2008 B2
7467060 Kulach et al. Dec 2008 B2
7534206 Lovitt et al. May 2009 B1
7690556 Kahn et al. Apr 2010 B1
7771320 Riley et al. Aug 2010 B2
7805149 Werner et al. Sep 2010 B2
7841967 Kahn et al. Nov 2010 B1
8290480 Abramson et al. Oct 2012 B2
8483775 Buck et al. Jul 2013 B2
8589174 Nelson et al. Nov 2013 B2
8892391 Tu et al. Nov 2014 B2
8894576 Alwan et al. Nov 2014 B2
8911329 Lin et al. Dec 2014 B2
9413871 Nixon et al. Aug 2016 B2
9526430 Srinivas et al. Dec 2016 B2
9788794 Leboeuf et al. Oct 2017 B2
10188347 Self et al. Jan 2019 B2
10206627 Leboeuf et al. Feb 2019 B2
10219708 Altini Mar 2019 B2
10292606 Wisbey et al. May 2019 B2
20010022828 Pyles Sep 2001 A1
20020019585 Dickinson Feb 2002 A1
20030032460 Cannon et al. Feb 2003 A1
20040064061 Nissila Apr 2004 A1
20050107723 Wehman et al. May 2005 A1
20060064277 Jung Mar 2006 A1
20060136173 Case, Jr. Jun 2006 A1
20060190217 Lee et al. Aug 2006 A1
20060217231 Parks et al. Sep 2006 A1
20070100666 Stivoric et al. May 2007 A1
20070150229 Fujiwara Jun 2007 A1
20070219059 Schwartz et al. Sep 2007 A1
20070275825 O'Brien Nov 2007 A1
20070276271 Chan Nov 2007 A1
20080096726 Riley et al. Apr 2008 A1
20080214360 Stirling et al. Sep 2008 A1
20090009320 O'Connor et al. Jan 2009 A1
20090024332 Karlov et al. Jan 2009 A1
20090043531 Kahn et al. Feb 2009 A1
20090063099 Counts et al. Mar 2009 A1
20100030350 House et al. Feb 2010 A1
20100130890 Matsumura et al. May 2010 A1
20100184564 Molyneux et al. Jul 2010 A1
20100204952 Irlam et al. Aug 2010 A1
20100210953 Sholder et al. Aug 2010 A1
20100210975 Anthony, III et al. Aug 2010 A1
20100217099 LeBoeuf et al. Aug 2010 A1
20100274102 Teixeira Oct 2010 A1
20100298656 McCombie et al. Nov 2010 A1
20110040193 Seppanen et al. Feb 2011 A1
20110054359 Sazonov et al. Mar 2011 A1
20110082008 Cheung et al. Apr 2011 A1
20110131012 Czaja et al. Jun 2011 A1
20110152695 Granqvist et al. Jun 2011 A1
20110195707 Faerber et al. Aug 2011 A1
20110238485 Haumont et al. Sep 2011 A1
20110301436 Teixeira Dec 2011 A1
20120083715 Yuen et al. Apr 2012 A1
20120172677 Logan et al. Jul 2012 A1
20120238832 Jang et al. Sep 2012 A1
20120296455 Ohnemus et al. Nov 2012 A1
20120322621 Bingham et al. Dec 2012 A1
20130023739 Russell Jan 2013 A1
20130041590 Burich Feb 2013 A1
20130053990 Ackland Feb 2013 A1
20130096943 Carey et al. Apr 2013 A1
20130158686 Zhang et al. Jun 2013 A1
20130178335 Lin et al. Jul 2013 A1
20130197377 Kishi et al. Aug 2013 A1
20130218053 Kaiser et al. Aug 2013 A1
20130267794 Fernstrom et al. Oct 2013 A1
20140073486 Ahmed et al. Mar 2014 A1
20140087708 Kalita et al. Mar 2014 A1
20140088444 Saalasti et al. Mar 2014 A1
20140107932 Luna Apr 2014 A1
20140109390 Manning Apr 2014 A1
20140121471 Walker May 2014 A1
20140167973 Letchner et al. Jun 2014 A1
20140172238 Craine Jun 2014 A1
20140197946 Park et al. Jul 2014 A1
20140200906 Bentley et al. Jul 2014 A1
20140207264 Quy Jul 2014 A1
20140213920 Lee Jul 2014 A1
20140221854 Wai Aug 2014 A1
20140228649 Rayner et al. Aug 2014 A1
20140244071 Czaja et al. Aug 2014 A1
20140266789 Matus Sep 2014 A1
20140276127 Ferdosi et al. Sep 2014 A1
20140278139 Hong et al. Sep 2014 A1
20140278229 Hong et al. Sep 2014 A1
20140316305 Venkatraman et al. Oct 2014 A1
20140348367 Vavrus et al. Nov 2014 A1
20150087929 Rapoport et al. Mar 2015 A1
20150088006 Rapoport et al. Mar 2015 A1
20150100141 Hughes Apr 2015 A1
20150119728 Blackadar et al. Apr 2015 A1
20150148632 Benaron May 2015 A1
20150250417 Cheng et al. Sep 2015 A1
20150256689 Erkkila et al. Sep 2015 A1
20150260514 Menelas et al. Sep 2015 A1
20150327804 Lefever et al. Nov 2015 A1
20150328523 Heling Nov 2015 A1
20150338926 Park et al. Nov 2015 A1
20150345985 Fung et al. Dec 2015 A1
20150357948 Goldstein Dec 2015 A1
20150374240 Lee Dec 2015 A1
20160021238 Abramson et al. Jan 2016 A1
20160057372 Iwane et al. Feb 2016 A1
20160058302 Raghuram et al. Mar 2016 A1
20160058329 Srinivas et al. Mar 2016 A1
20160058332 Tan et al. Mar 2016 A1
20160058333 Arnold et al. Mar 2016 A1
20160058356 Raghuram et al. Mar 2016 A1
20160058370 Raghuram et al. Mar 2016 A1
20160058371 Singh et al. Mar 2016 A1
20160058372 Raghuram et al. Mar 2016 A1
20160059079 Watterson Mar 2016 A1
20160166178 Fuss et al. Jun 2016 A1
20160170998 Frank et al. Jun 2016 A1
20160206248 Sartor et al. Jul 2016 A1
20160256058 Pham et al. Sep 2016 A1
20160269572 Erkkila et al. Sep 2016 A1
20160287177 Huppert et al. Oct 2016 A1
20160361020 Leboeuf et al. Dec 2016 A1
20160363449 Metzler et al. Dec 2016 A1
20160374614 Cavallaro et al. Dec 2016 A1
20170007166 Roovers Jan 2017 A1
20170082649 Tu et al. Mar 2017 A1
20170094450 Tu et al. Mar 2017 A1
20170111768 Smith et al. Apr 2017 A1
20170188893 Venkatraman et al. Jul 2017 A1
20170202486 Martikka et al. Jul 2017 A1
20170251972 Jayaraman et al. Sep 2017 A1
20170259116 Mestas Sep 2017 A1
20170273619 Alvarado et al. Sep 2017 A1
20170367658 Leboeuf et al. Dec 2017 A1
Foreign Referenced Citations (14)
Number Date Country
2465824 Jun 2010 GB
259KOL2015 Dec 2015 IN
2010-051333 Mar 2010 JP
2013-039316 Feb 2013 JP
2014-042757 Mar 2014 JP
2016-150018 Aug 2016 JP
2018-000543 Jan 2018 JP
2018-015187 Feb 2018 JP
2010090867 Aug 2010 WO
WO2011105914 Sep 2011 WO
2015126182 Aug 2015 WO
2015200900 Dec 2015 WO
2016044831 Mar 2016 WO
2016073620 May 2016 WO
Non-Patent Literature Citations (63)
Entry
Le, Sensor Based Training Optimization of a Cyclist Group (Year: 2007).
International Search Report from PCT/US2017/049693 dated Dec. 8, 2017.
Written Opinion from PCT/US2017/049693 dated Dec. 8, 2017.
Wang et al., “Time constant of heart rate recovery after low level exercise as a useful measure of cardiovascular fitness,” Conf. Proc. IEEE Eng. Meda Biol. Soc., vol. 1, pp. 1799-1802, (2006).
Vella et al, “Exercise After-Bum: Research Update”, 2005, Web, Retrieved from: http://www.unm.edu/˜lkravitz/Article%20folder/epocarticle.html.
Tanaka et al., “Age-predicted maximal heart rate revisited,” Journal of the American College of Cardiology, vol. 37, Issue 1, pp. 153-156 (Jan. 2001).
Song et al., “Training Activity Recognition Systems Online Using Real-Time Crowdsourcing”, University of Rochester Computer Science, UbiCom 12, Sep. 5-8, 2012 (2 pages).
Sabatini, “Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation”, Sep. 27, 2011, Sensors 2011, 11, pp. 9182-9206.
Rowlands et al. “Assessing Sedentary Behavior with the GENEActiv: Introducing the Sedentary Sphere”, Medicine and science in sports and exercise, 46.6 (2014), pp. 1235-1247.
Rapoport et al., “Metabolic Factors Limiting Performance in Marathon Runners” PLoS Computational Biology, vol. 6, Issue 10, 13 pages (Oct. 2010).
Noakes et al. “Lore of Running,” Fourth Edition, Human Kinetics, “Chapter 2: Oxygen Transport”, “Chapter 3: Energy Systems”, 157 pages (2002).
Myers et al., “Exercise Capacity and Mortality Among Men Referred for Exercise Testing,” The New England Journal of Medicine, vol. 346, No. 11, pp. 793-801 (Mar. 14, 2002).
McArdle et al., “Exercise Physiology: Nutrition, Energy and Human Performance”, Seventh Edition, Lippincott Williams & Wilkins, Chapter 5: Introduction to Energy Transfer, Chapter 6: Energy Transfer in the Body, Chapter 7: Energy Transfer in Exercise, Chapter 8: Measurement of Human Energy Expenditure, Chapter 9: Human Energy Expenditure During Rest and Physicai Activity, Chapter 10: Energy Expenditure During Walking, Jogging, f unning and Swimming, Chapter 11: Individual Differences and Measurement of Energy Capacities, Chapter 21: Training for Anaerobic and Aerobic Power, 2010.
Margaria et al., “Energy cost of running” Journal of Applied Physiology, vol. 18, No. 2, pp. 367-370 (Mar. 1, 1963).
Lucas et al, “Mechanisms of orthostatic intolerance following very prolonged exercise”, 2008, J. Appl. Physiol., 105: pp. 213-225.
Lavie et al., “Impact of cardiorespiratory fitness on the obesity paradox in patients with heart failure” Mayo Clinic Proceedings, vol. 88, No. 3, pp. 251-258 (Mar. 2013).
Kunze et al. “Where am i: Recognizing on-body positions of wearable sensors.” Location-and context-awareness. Springer Berlin Heidelberg, 2005. 264-275.
KINprof, 2011, Predictive VO2max tests, Web Video, Retrieved from: https://www.youtube.com/watch?v=_9e3HcY1sm8.
Keytel et al, “Prediction of energy expenditure from heart rate monitoring during submaximal exercise, 2005”, Journal of Sports Sciences, 23(3):289-97.
Jackson et al., “Prediction of functional aerobic capacity without exercise testing, Medicine and Science in Sports and Exercise”, 22(6), 863-870, 1990.
Isaacs et al., “Modeling energy expenditure and oxygen consumption in human exposure models: accounting for fatigue and EPOC”, 2008, Journal of Exposure Science and Environmental Epidemiology, 18: 289-298.
Human Kinetics, Aerobic Workout Components, 2011, Web, Retrieved from: http://www.humankinetics.com/excerpts/excerpts/aerobicworkoutcomponentsexcerpt.
Hasson et al., “Accuracy of four resting metabolic rate production equations: Effects of sex, body mass index, age, and race/ethnicity”, Journal of Science and Medicine in Sport, 2011, vol. 14, p. 344-351.
Glass et al., “ACSM's Metabolic Calculations Handbook,” Lippincott Williams & Wilkins, 124 pages (2007).
Gao et al., “Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems”, Medical engineering & physics 36.6 (2014): 779-785.
Frankenfield et al., “Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Nonobese and Obese adults: A systematic review. Journal of the American Dietetic Association”, May 2005, vol. 105, No. 5, p. 775-789.
Fox et al., “Physical Activity and the Prevention of Coronary Heart Disease,” Bull. N.Y. Acad. Med., vol. 44, No. 8, pp. 950-967 (Aug. 1968).
Earnest et al., “Cross-sectional association between maximal estimated cardiorespiratory fitness, cardiornetabolic risk factors and metabolic syndrome for men and women in the Aerobics Center Longitudinal Study,” Mayo Clin Proceedings, vol. 88, No. 3, pp. 259-270, 20 paces (Mar. 2013).
Chu, “In-Vehicle Driver Detection Using Mobile Phone Sensors”, Submitted for Graduation with departmental Distinction in Electrical and Computer Engineering, Apr. 20, 2011, pp. 1-21.
Cavanagh et al., “The effect of stride length variation on oxygen uptake during distance running,” Medicine and Science in Sports and Exercise, vol. 14, No. 1, pp. 30-35 (1982).
Burke et al., “High-Tech Cycling,” Second Edition, Human Kinetics, Chapter 4: Optimizing the Crank Cycle and Pedaling Cadence, Chapter 5: Cycling Biomechanics, Chapter 6: Cycling Power, Chapter 1O: Physiology of Professional Road Cycling, Chapter 11: Physiology of Mountain Biking, 131 pages (2003).
Bruce et al., “Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease,” American Heart Journal, vol. 85, Issue 4, pp. 546-562 (Apr. 1973).
Bruce et al., “Exercising testing in adult normal subjects and cardiac patients,” Pediatrics, vol. 32, No. Suppl., pp. 742-756 (Oct. 1963).
Brooks et al., “Exercise Physiology: Human Bioenergetics and Its Applications,” Fourth Edition, McGraw Hili. ISBN 0-07-255642-0, Chapter 2: Bioenergetics, Chapter 10: Metabolic Response to Exercise: Lactate Metabolism During Exercise and Recovery, Excess Postexercise 02 Consumption (EPOC), 02 Deficit, 02 Debt, and the Anaerobic Threshold, Chapter 16: Cardiovascular Dynamics During Exercise, Chapter 2-1: Principles of Endurance Condifoning, Chapter 27: Exercise Testinc and Prescription, 141 pages (2004).
Bo et al, “TEXIVE: Detecting Drivers Using Personal Smart Phones by Leveraging Inertial Sensors”, Department of Computer Science, Illinois Institute of Technology, Chicago IL, Dec. 7, 2014, pp. 1-12.
“Your Fitness FAQ, Why is it important to warm up and cool down in a workout?”, 2012, Web, Retrieved from: http://www.yourfitnessfaq.com/whyisitimportanttowarmupandcooldowninaworkout.html.
Yamaji, et al (Relationship Between Heart Rate and Relative Oxygen Intake in Male Subjects Aged 10 to 27 Years, 1978, J. Human Ergol., 7:29-39) (Year: 1978).
U.S. Appl. No. 15/692,726, 2018-0056123, filed Aug. 31, 2017, Published.
U.S. Appl. No. 15/692,237, 2018-0056129, filed Aug. 31, 2017, Published.
U.S. Appl. No. 15/692,736, 2018-0055375, filed Aug. 31, 2017, Published.
U.S. Appl. No. 15/689,113, 2018-0055439, filed Aug. 29, 2017, Published.
U.S. Appl. No. 15/679,538, 2018-0050235, filed Aug. 17, 2017, Published.
U.S. Appl. No. 15/678,645, 2018-0049694, filed Aug. 16, 2017, Published.
U.S. Appl. No. 15/616,135, 2017-0347885, filed Jun. 7, 2017, Published.
U.S. Appl. No. 15/611,010, Yet to Published, filed Jun. 1, 2017, Pending.
U.S. Appl. No. 15/466,397, 2017-0273619, filed Mar. 22, 2017, Published.
U.S. Appl. No. 15/273,054, 2017-0094450, filed Sep. 22, 2016, Published.
U.S. Appl. No. 15/691,245, 2018-0056128, filed Aug. 30, 2017, Published.
U.S. Appl. No. 15/273,038, 2017-0082649, filed Sep. 22, 2016, Published.
U.S. Appl. No. 15/061,653, 2016-0256058, filed Mar. 4, 2016, Published.
U.S. Appl. No. 14/501,930, 2016-0058329, filed Sep. 30, 2014, Issued.
U.S. Appl. No. 14/502,827, 2016-0058302, filed Sep. 30, 2014, Published.
U.S. Appl. No. 14/501,701, 2016-0058332, filed Sep. 30, 2014, Published.
U.S. Appl. No. 14/502,809, 2016-0058333, filed Sep. 30, 2014, Published.
U.S. Appl. No. 14/502,781, 2016-0058372, filed Sep. 30, 2014, Published.
U.S. Appl. No. 14/502,754, 2016-0058371, filed Sep. 30, 2014, Published.
U.S. Appl. No. 14/501,771, 2016-0058370, filed Sep. 30, 2014, Published.
U.S. Appl. No. 14/493,178, 2015-0087929, filed Sep. 22, 2014, Published.
U.S. Appl. No. 14/145,042, 2015-0088006, filed Dec. 31, 2013, Published.
U.S. Appl. No. 14/501,634, 2016-0058356, filed Sep. 30, 2014, Published.
Novatel, “IMU Error and Their Effects”, Novatel Application Notes, APN-064 Rev A, Feb. 21, 2014, pp. 1-6.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/047290, dated Nov. 8, 2018, 14 pages.
Kyle, Chester R., “Reduction of Wind Resistance and Power Output of Racing Cyclists and Runners Travelling in Groups”, Ergonomics, vol. 22, No. 4, 1979, pp. 387-397.
Related Publications (1)
Number Date Country
20170074897 A1 Mar 2017 US
Provisional Applications (1)
Number Date Country
62219246 Sep 2015 US