The present invention relates to the analysis of circuits generally and more particularly to the distortion analysis of analog and RF (Radio Frequency) circuits by calculating intermodulation products and intercept points.
Second and third order intermodulation intercept points (IP2 and IP3) are critical design specifications for circuit nonlinearity and distortion. A rapid yet accurate method to compute IP2/IP3 is of great importance in complex RF and analog designs. Conventional computer-aided-design solutions for measuring IP2/IP3 are typically based on multi-tone simulations. For a circuit with a DC (Direct Current) operating point such as a LNA (Low Noise Amplifier), a two-tone simulation is performed at two RF input frequencies ω1 and ω2 (usually closely spaced). When the RF power level is low enough, signals at frequencies ω1−ω2 and 2ω1−ω2 are dominated by second and third order nonlinear effects respectively, and higher order contributions are negligible compared to the leading-order terms. Thus, solutions at ω1−ω2 and 2ω1−ω2 can be used as second and third order intermodulation products (IM2 and IM3) to extrapolate intercept points for IP2 and IP3. For a circuit with a periodic time-varying operating point such as a mixer or a switch capacitor filter, a three-tone simulation at ω1, ω2 and the LO (local oscillator) or clock frequency ωc can be conducted and IM3 can be measured at frequency 2ω1−ω2−ωc [8, 13, 3, 4].
Because of the low RF power setting, very high accuracy is typically required in order to obtain reliable intermodulation results. Particularly in three-tone cases, the numerical dynamic range has to accommodate the large LO signal, the small RF signals, and the nonlinear distortions. Furthermore, a multi-tone simulation is generally inefficient for IP2/IP3 measurements because, in addition to IM2 and IM3 harmonics, this approach also resolves other irrelevant frequencies to all nonlinear orders. This additional overhead can be very expensive in large designs with thousands of transistors.
Essentially, IP2/IP3 calculation is a weakly nonlinear problem. It is substantially concerned with only the leading second or third order effects. The fully converged multi-tone solution that contains every order of nonlinearity is generally unnecessary. A more efficient way is to treat both RF inputs as perturbation to the operating point solution and apply 2nd or 3rd order perturbation theory to calculate IM2 or IM3 at the relevant frequency directly. In this way, the dynamic range is reduced to cover just the RF excitations. The most commonly used perturbative method for distortion analysis is the Volterra series [12, 2, 7, 1, 11, 5, 16, 17]. However, this approach requires second and higher order derivatives of nonlinear devices. In the cases of IP2 and IP3, up to 2nd and 3rd order derivatives are needed respectively. This limits the application of Volterra series in many circuit simulations since most device models don't provide derivatives higher than first order. Also, as the order of Volterra series increases, the complexity of tracking the polynomials grows substantially, and the implementation becomes more and more complicated.
Thus, there is a need for improved calculation of intermodulation intercept points and other characteristics of circuit distortion analysis.
In one embodiment of the present invention, a method of analyzing distortion in a circuit includes: determining an operating point for the circuit, where the circuit has a linear offset and a nonlinear offset at the operating point; determining a first-order solution from the linear offset and an input having a first input frequency and a second input frequency; determining a harmonic component of the nonlinear offset at a difference between the first input frequency and the second input frequency; and determining a second-order solution from the linear offset and the harmonic component of the nonlinear offset at the difference between the first input frequency and the second input frequency. The second-order solution provides an estimate for a second-order intermodulation product for the circuit.
According to one aspect of this embodiment, the method may further include determining an estimate for a second-order intercept point for the circuit from the second-order solution and the first-order solution. Determining the estimate for the second-order intercept point may further include calculating an intersection between a linear representation of the second-order solution and a linear representation of the first-order solution, where the linear representation of the second-order solution has a slope of about 2 dB/dB and the linear representation of the first-order solution has a slope of about 1 dB/dB. (Ideally these slopes are exactly 2 dB/dB and 1 dB/dB respectively.) Determining the linear representation of the first-order solution may further include extracting a component from the first-order-solution corresponding to one of the first frequency and the second frequency.
According to another aspect, the operating point may be a DC (direct current) operating point or a periodic operating point. According to another aspect, determining the harmonic component of the nonlinear offset at the difference between the first input frequency and the second input frequency may includes: calculating a DFT (Discrete Fourier Transform) of the nonlinear offset; and selecting a component of the DFT at the difference between the first input frequency and the second input frequency. According to another aspect the circuit may be an analog or RF circuit.
In another embodiment of the present invention, a method of analyzing distortion in a circuit, includes: determining an operating point for the circuit, where the circuit has a linear offset and a nonlinear offset at the operating point; determining a first-order solution from the linear offset and an input having a first input frequency and a second input frequency; determining a harmonic component of the nonlinear offset at a difference between the first input frequency and the second input frequency; determining a harmonic component of the nonlinear offset at twice the first input frequency; determining a second-order solution from the linear offset and the harmonic component of the nonlinear offset at the difference between the first input frequency and the second input frequency; determining a second-order solution from the linear offset and the harmonic component of the nonlinear offset at twice the first input frequency; determining a harmonic component of the nonlinear offset at a difference between twice the first input frequency and the second input frequency; and determining a third-order solution from the linear offset and the harmonic component of the nonlinear offset at the difference between twice the first input-frequency and the second input frequency. The third-order solution provides an estimate for a third-order intermodulation product for the circuit.
This embodiment may include aspects described above. According to another aspect, the method may further include: determining an estimate for a third-order intercept point for the circuit from the third-order solution and the first-order solution. Determining the estimate for the third-order intercept point may further include calculating an intersection between a linear representation of the third-order solution and a linear representation of the first-order solution, where the linear representation of the third-order solution has a slope of about 3 dB/dB and the linear representation of the first-order solution has a slope of about 1 dB/dB. (Ideally these slopes are exactly 3 dB/dB and 1 dB/dB respectively.) Determining the linear representation of the first-order solution may further include extracting a component from the first-order-solution corresponding to one of the first frequency and the second frequency.
Additional embodiments relate to an apparatus that includes a computer with instructions for carrying out any one of the above-described methods and a computer-readable medium that stores (e.g., tangibly embodies) a computer program for carrying out any one of the above-described methods.
In this way the present invention enables improved calculation of intermodulation intercept points (e.g., IP2, IP3) and other characteristics of circuit distortion analysis (e.g., IM2, IM3).
This description presents embodiments of the present invention directed towards the distortion analysis of circuits. A pertubative approach based on the Born approximation resolves weakly nonlinear circuit models without requiring explicit high-order device derivatives. Convergence properties and the relation to Volterra series are discussed. According to the disclosed methods, IP2 and IP3 can be calculated by 2nd and 3rd order Born approximations under weakly nonlinear conditions. A diagrammatic representation of nonlinear interactions is presented. Using this diagrammatic technique, both Volterra series and Born approximations can be constructed in a systematic way. The method is generalized to calculate other high-order nonlinear effects such as IMn (nth order intermodulation product) and IPn (nth order intermodulation intercept point). In general, the equations are developed in harmonic form and can be implemented in both time and frequency domains for analog and RF circuits.
First, analytical details for the Born approximation in weakly nonlinear circuits are discussed. Next methods for calculating IP2 and IP3 are presented. Next diagrammatic representations are discussed. Next computational results are discussed. In the conclusion additional embodiments are discussed.
Consider nonlinear circuit equation
where B is the operating point source (e.g., LO or clock signal) and s is the RF input source. Typically, the input s represents a single frequency source (e.g., sin(ω1t)) or a sum of frequency sources (e.g., sin(ω1t)+sin(ω2t)). The parameter ε is introduced to keep track of the order of perturbation expansion and is set equal to 1 at the end of the calculations. For simplicity, we use F(v) to denote LHS (left hand side) in equation (1). Assume V0 is the operating point at zero RF input so that V0 satisfies the equation
F(V0)=B. (2)
For a LNA (low noise amplifier), V0 is the DC solution. For a mixer or switch capacitor filter, V0 is the periodic steady-state solution under B, and its fundamental frequency is the LO or clock frequency ωc. Expanding equation (1) around V0, we have
F(V0)+L·v+FNL(V0,v)=B+ε·s (3)
where v is the circuit response to RF signal s. Operator L is the linearization of the LHS in equation (1) and is defined as
For periodic V0(t), L is also periodic and has the same fundamental frequency as V0 at ωc. FNL in equation (3) is defined as
FNL(V0, v)=F(V0+v)−F(V0)−L·v. (5)
That is, FNL is the sum of all nonlinear terms of the circuit. Combining equations (2) and (3), we have the equation for v:
L·v+FNL(V0,v)=ε·s. (6)
In most analog designs, the circuit functions in a nearly linear region. In particular, IP2/IP3 measurements requires very low RF power level so only the leading order terms are involved. Under such a weakly-nonlinear condition, the nonlinear term FNL is small compared to the linear term L·v. We can treat FNL as a perturbation and solve v iteratively:
u(n)=v(1)−L−1·FNL(u(n−1)). (7)
Here, u(n) is the approximation of v at the nth iteration. And v(1) is the small signal solution of order O(ε) obtained from AC (alternating current) or periodic AC analysis:
L·v(1)=ε·s. (8)
Then in equation (7), u(n) is defined for n≧2 where u(1) is defined as v(1). Equation (7) is called the Born approximation or Picard iteration [14, 9, 10]. It is equivalent to successive AC calculations with FNL(u(n
To estimate the error of u(n), subtract equation (6) from equation (7) and linearize around v:
Recall FNL is a nonlinear function of v. Its lowest order is O(v2). Therefore, we have:
∥u(n)−v∥∝ε·∥un−1)−v∥. (10)
Since ∥v(1)−v∥∝O(ε2), we have:
∥u(n)−v∥∝O(εn+1) (11)
and
∥u(n)−u(n−1)∥∝O(εn). (12)
Equations (11) and (12) indicate that u(n) is accurate to the order of O(εn) and the Born approximation converges by O(εn).
In the situation where LO and RF frequencies are incommensurate with each other for a particular harmonic Σiki·ωi+m·ωc (ωi is the frequency of an RF signal), its leading order is O(εΣ
The Born approximation is closely related to Volterra series. The connection between them was pointed out by Leon and Schaefer [9] and by Li and Pileggi [10]. In the Volterra series, the nth term v(n) is the exact Taylor expansion of v in terms of parameter ε and v(n) ∝εn. Because the nth order Born approximation is accurate to O(εn) as shown in equation (11), u(n) is equal to the sum of Volterra series up to v(n) plus higher order terms:
u(n)=v(1)+v(2)+ . . . +v(n)+O(ε(n+1)). (13)
Furthermore, for incommensurate frequencies, when n is even, the difference between the Born approximation and the Volterra series is of order O(ε(n+2)) at even harmonics and of order O(εn+1)) at odd harmonics, and vice versa when n is odd. (That is, when n is odd the error is of order O(εn+2) for odd harmonics and of order O(εn+1) for even harmonics.)
Equation (7) can be simplified in the form of RF harmonics. Expanding v with Fourier coefficients v(ω,m) gives:
where ω=Σiki·ωi is the RF harmonic frequency. Here we consider the DC operating point as a special case with ωc=0. We define RF harmonic vω(t) as
and equation (14) becomes
It should be emphasized that vω is not the Fourier transform of v because it's still a function of time. It's the harmonic component of frequency ω in v. As shown in equation (15), vω carries frequency ω and all the sidebands of ωc. Note that operator L has only ωc harmonics. When frequencies ωi are incommensurate with ωc, RF harmonics are orthogonal to each other in equation (7) and uω can be solved independently
uω(n)=vω(1)−L−1·FNL,ω(u(n−1)). (17)
To calculate harmonics of FNL, we label uω and FNL,ω with index vector {right arrow over (k)}=(k1, k2, . . . ) as u{right arrow over (k)} and FNL,{right arrow over (k)}. For incommensurate ωi and ωc, {right arrow over (k)} is uniquely determined by ω. The following scaling law holds for algebraic functions q(V) and i(V):
Equation (18) demonstrates that if we multiply every u{right arrow over (k)} with a factor ej{right arrow over (k)}·{right arrow over (θ)} and compute FNL, then FNL,{right arrow over (k)} is the Fourier transform of FNL as a function of {right arrow over (θ)}. Using multidimensional DFT (Discrete Fourier Transform), we calculate FNL,{right arrow over (k)} as
where Γ({right arrow over (k)},{right arrow over (θ)}) is the DFT matrix and {right arrow over (θ)} is uniformly distributed in (−π, π) for each θi. Equation (19) has also been used in harmonic balance for frequency domain function evaluation [3]. It is equivalent to calculating derivatives of F(V) numerically. Therefore, although high-order device derivatives are absent from equation (17), accurate nonlinear calculations still require smooth I/V or Q/V characteristics over the range of voltages or currents in which the circuit operates.
Equation (17) can be implemented in both time and frequency domains [15]. In a frequency representation, uω and FNL,ω are expanded with ωc harmonics as in equation (15).
In the 2nd order Born approximation, uω
uω
This computation takes one DC or periodic steady-state calculation at zero RF input and three AC or periodic AC solutions (two for u(1) and one for u(2)). Unlike multi-tone simulations, where the size of the Jacobian matrix is proportional to the number of harmonics used, the size of L in the perturbation is independent of harmonic number, which affects only function evaluation in equation (19).
This process is summarized in
Next a harmonic component of the nonlinear offset can be determined 108 at a difference between the first input frequency and the second input frequency (e.g., FNL at ω1−ω2 in eq. (20)). Next a second-order solution (e.g., u(2) at ω1−ω2 in eq. (20)) can be determined 110 from the linear offset and the harmonic component of the nonlinear offset at the difference between the first input frequency and the second input frequency. As discussed above, this second-order solution provides an estimate for the second-order intermodulation product (IM2) for the circuit.
The method 102 can be extended by determining 112 an estimate for a second-order intercept point (e.g., IP2) for the circuit from the second-order solution and the first-order solution. Typically, this includes calculating an intersection on a log-log scale between a linear representation of the second-order solution and a linear representation of the first-order solution. Ideally, the linear representation of the second-order solution has a slope of 2 dB/dB and the linear representation of the first-order solution has a slope of 1 dB/dB. Typically, only one frequency is used for the characterization of the first-order solution so that a component corresponding to either the first frequency (e.g., ω1) or the second frequency (e.g., ω2) is extracted from the first-order solution. Details for calculating intermodulation intercept points from intermodulation products (e.g, calculating IP2 from IM2 and IP3 from IM3) are well-known in the art of circuit analysis (e.g., [8] at p. 298, [13] at p. 18).
Similarly, for the IP3 calculation we can use the 3rd order Born approximation u2ω
u2ω
Note that the ε3 terms in u2ω
In equation (22), the linear operator Fn is the nth derivative of F with respect to V at V0 and is given by
Without losing accuracy we can write equation (22) as
Equation (24) shows that to solve u2ω
u2ω
and
uω
Other harmonics contribute to higher order terms, and therefore can be ignored. The computation takes one DC or periodic steady-state calculation at zero RF input and five AC or periodic AC solutions (two for u(1), two for u(2), and one for u(3)). Note that equation (26) is identical to equation (20) so that an estimate for IM2 is also available.
This process is summarized in
Next a harmonic component of the nonlinear offset can be determined 208 at a difference between the first input frequency and the second input frequency (e.g., FNL at ω1−ω2 in eq. (26)), and a harmonic component of the nonlinear offset can be determined 208 at twice the first input frequency (e.g., FNL at 2ω1 in eq. (25)). Next a second-order solution (e.g., u(2) at ω1−ω2 in eq. (26)) can be determined 210 from the linear offset and the harmonic component of the nonlinear offset at the difference between the first input frequency and the second input frequency, and a second-order solution (e.g., u(2) at 2ω1 in eq. (25)) can be determined 210 from the linear offset and the harmonic component of the nonlinear offset at twice the first input frequency. Next, a harmonic component of the nonlinear offset (e.g., FNL at 2ω1−ω2 in eq. (24)), can be determined 212 at a difference between twice the first input frequency and the second input frequency. Next a third-order solution (e.g., u(3) at 2ω1−ω2 in eq. (24)) can be determined 214 from the linear offset and the harmonic component of the nonlinear offset at the difference between twice the first input frequency and the second input frequency. As discussed above, this third-order solution provides an estimate for the third-order intermodulation product (IM3) for the circuit.
The method 202 can be extended by determining 216 an estimate for a third-order intercept point (e.g., IP3) for the circuit from the second-order solution and the first-order solution. Typically, this includes calculating an intersection on a log-log scale between a linear representation of the third-order solution and a linear representation of the first-order solution. Ideally, the linear representation of the third-order solution has a slope of 3 dB/dB and the linear representation of the first-order solution has a slope of 1 dB/dB. Details are standard and similar to the above discussion with respect to
As a heuristic, one can compare the Born approximation with the Volterra series, where IM2 is calculated by
vω
and IM3 is calculated by
Equations (20) and (24)-(26) can be considered as approximation of equations (27)-(30) by replacing all the v(n) with u(n) and the polynomials with FNL. The actual polynomial multiplication happens implicitly when evaluating nonlinear function FNL in the Born approximation. The deviation introduced is of order O(ε4) for IM2 and O(ε5) for IM3. Its effects on IP2/IP3 can be estimated by checking the scaling of IM2/IM3 results at different RF power levels. Compared to equations (27)-(30), not only are equations (20) and (24)-(26) free of F2 and F3, but they are also much simpler to implement.
Equations (27)-(30) are leading order terms in RF harmonics ω1−ω2 and 2ω1−ω2. We illustrate them in
In
In general, to count all diagrams for a given RF frequency at nth order, one can start with the diagram for the vn term of the Taylor expansion about the operating point, which is the highest-order polynomial that needs to be considered. All its incoming lines are of first order. With the same outgoing frequency, diagrams of vn−1 terms can be constructed by merging a pair of incoming lines in the vn diagram into a single line. The frequency at the new line is equal to the sum of frequencies at the two merged lines. Similarly, diagrams of other polynomials are obtained by merging more lines. Note that the order of a new line is the sum of orders of lines being merged.
As an example, we draw diagrams of intermodulation ω1−ω2 at 4th order in
In addition, We define the following rules to carry out perturbation calculations directly from the diagrams. For Volterra series we have:
1. To each incoming external line, assign vω(n) where ω is the RF frequency of the line.
2. To each internal line, assign operator L−
3. To each vertex, assign operator −Fn/n! and operate it on the product of incoming lines with a permutation factor to compute the corresponding polynomial.
4. To the outgoing external line, assign L−
These rules are analogous to the Feynman rules [6]. Applying these rules for the Volterra series (or the Volterra approximation) to the diagrams in
Equations (31) and (32) are equivalent to equations (27)-(30). Replacing v(1) with L−1·s in equation (31) and equation (32) yields the 2nd and 3rd order Volterra kernels for ω1−ω2 and 2ω1−ω2 respectively.
Similarly, for the Born approximation we have:
1. To each incoming external line, assign uω
2. To each internal line, assign operator −L−1
3. To each vertex, assign nonlinear function −FNL,ω(·), where ω is the RF frequency of the outgoing line of the vertex. The input variable to the function −FNL,ω(·) is the sum of incoming lines with distinct frequencies. If a vertex has multiple incoming lines at an identical frequency, only the one with highest order is included in the input to −FNL,ω(·) because it already contains all previous orders.
4. To the outgoing external line, assign −L−1 for the final AC or period AC calculation.
Applying these rules for the Born approximation to the diagrams in
Note that in the first and third terms of equation (34) we use one uω
Tests were performed on five circuits including an LNA and a mixer.
Intermodulation products were calculated using the Born approximation in frequency domain (e.g, as in
To verify the scaling behavior of IM2/IM43 at different RF signal levels, we computed the slope of IM2/IM3 power as a function of RF input power using the results shown in
As demonstrated above by embodiments of the present invention, IP2 and IP3 can be calculated by using 2nd and 3rd order Born approximations under weakly nonlinear condition. The approach does not require high-order device derivatives and, in general, can be implemented without modification of device models. The approach is formulated as successive small signal calculations. Since RF signals are treated as perturbation to the operating point, the dynamic range only needs to cover RF excitations. In general, the computation takes one DC or periodic steady-state calculation at zero RF input and three (for IP2) or five (for IP3) AC or periodic AC solutions, regardless of the number of harmonics used. As demonstrated by the calculation shown above, this approach gives results that are consistent with the conventional multi-tone simulation methods for calculating IP2 and IP3. However this approach is typically much more efficient compared to the conventional simulations.
A diagrammatic representation was introduced to analyze nonlinear interactions at a given order. Relevant intermediate harmonics in lower-order approximations are identified using this diagrammatic technique. Perturbations can be constructed directly from diagrams in a systematic way. The approach can be applied to calculating other high-order distortions such as arbitrary intermodulation products (IMn), and these distortions can be used to calculate corresponding intermodulation intercept points (IPn)
Additional embodiments relate to an apparatus that includes a computer with instructions for carrying out any one of the above-described methods. In this context the computer may be a general-purpose computer including, for example, a central processing unit, memory, storage and Input/Output devices. However, the computer may include a specialized microprocessor or other hardware for carrying out some or all aspects of the methods. Additional embodiments also include a computer-readable medium that stores (e.g., tangibly embodies) a computer program for carrying out any one of the above-described methods by means of a computer.
Although only certain exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. For example, aspects of embodiments disclosed above can be combined in other combinations to form additional embodiments. Accordingly, all such modifications are intended to be included within the scope of this invention.
The following references are related to the disclosed subject matter:
Number | Name | Date | Kind |
---|---|---|---|
6529844 | Kapetanic et al. | Mar 2003 | B1 |
20030179041 | Weldon | Sep 2003 | A1 |
20030222652 | Martens | Dec 2003 | A1 |
20040169559 | Weldon | Sep 2004 | A1 |
20040171351 | Nakazawa et al. | Sep 2004 | A1 |
20050021319 | Li et al. | Jan 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070136045 A1 | Jun 2007 | US |