Embodiments generally relate to falls risk assessment, cognitive decline assessment, and gait analysis. More particularly, embodiments relate to calculation of a walking person's minimum ground clearance (MGC) and general risk of falling based on data collected by inertial sensors.
Falls in the elderly may represent a substantial healthcare problem worldwide. Indeed, a significant percentage of people over seventy years of age experience a significant fall, and the frequency of falls increases with age and the level of frailty.
Increased frailty and declining balance may be reflected in how a person walks. The task of walking is a complex motor control challenge, where the human neuromuscular system is required to interact with the environment while maintaining balance during forward momentum. A person must maintain a safe foot trajectory with respect to the ground. Foot trajectory during the swing phase of a person's gait can be sensitive to small angular changes at six other joints within both stance and swing limbs. The sensitivity suggests that foot trajectory involves precise end-point control task. Disturbance of this end-point control may lead to falls or other unprovoked collisions with the ground.
One falls-related parameter measured during walking trials is minimum ground clearance (MGC), which has also been called minimum toe clearance (MTC). The parameter generally reflects how much the walking trial participant lifts his or her foot from the ground during a walk. The MGC may be measured in a specialized gait clinic that uses marker-based optical motion capture systems. The specialized optical motion capture equipment may be operated by specialized personnel to analyze the MGC of the participant.
One aspect of this invention relates to calculating a minimum ground clearance (MGC) of a person by using data acquired from inertial sensors mounted on the person. Inertial sensors may include accelerometers and gyroscopes, and may be mounted on the person's shanks, feet, or any other part on the person's lower limbs. The inertial sensors may be used as an alternative measurement method to an optical motion capture system, which may be non-portable, expensive, inconvenient to use, and require specialized personnel to operate.
The unit axes of the attached inertial sensors may be oriented so that they align with certain axes or planes defined by the person's body. For example, the sensor's gyroscope Y-axis may be oriented to capture movement in the person's anatomical sagittal plane. The sensor's gyroscope X-axis may be oriented to capture movement about a plane perpendicular to the long line of the shank. The sensor's gyroscope Z-axis may be oriented to measure movement in the plane in which the long line of the shank lies.
Calculation of MGC from the inertial sensor data may be based on predetermined regression models. The predetermined regression models may have been generated from a previous walking trial in which inertial sensor data and reference MGC values were both captured from a walking trial participant. The reference MGC values may have been captured by an optical motion capture system, and constitute values that the regression models need to approximate from the inertial sensor data. After the regression models are generated, a person's MGC may be calculated without using an optical motion capture system. Instead, the regression models may output MGC calculations based on just inertial sensor data input. This calculation thus increases the convenience, portability, and affordability of estimating a person's MGC (or a parameter derived from the MGC).
Among the MGC parameters that may be estimated is the mean MGC and the coefficient of variation (CV) of the MGC. A CV MGC may be used to represent variability of MGC. For example, an estimate of the CV of MGC may be calculated to assess a risk of falling in an elderly person. Elderly men have been found to exhibit greater MGC variability than young men, which suggests that CV MGC may be an important parameter in evaluating increased risk of tripping in the elderly.
Inertial sensor data for generating a regression model may include angular velocity measurements, acceleration measurements, and/or other parameters derived from those measurements, such as the mean absolute-valued vertical angular velocity. The regression model may be generated based on sensor data from a particular person, and may further be generated based on sensor data from a particular body segment, such as a left shank or a left foot.
The inertial sensor data may further be used to directly distinguish between a person with a high risk of falling versus a person with a low risk of falling. For example, mean angular velocity at mid-swing points of a walk, mean absolute-valued angular velocity, and minimum angular velocity may have a different statistical distribution for fallers versus non-fallers. The three angular velocity parameters collected from a person may thus be used to assess whether that person is more likely to be a faller or a non-faller. Other inertial sensor parameters for distinguishing fallers from non-fallers may be identified by correlating the parameters with clinical measures of falls risk. For example, the person generating inertial sensor data may also perform a TUG or BBS test. Inertial sensor parameters that correlate well that person's TUG time or BBS score may be used as a parameter for assessing falls risk. An accurate automated assessment of a risk of falling would allow for timely intervention and therapy to reduce that risk.
The various advantages of the embodiments of the present invention will become apparent to one skilled in the art by reading the following specification and appended claims, and by referencing the following drawings, in which:
One aspect of this invention is directed toward relating measurements collected from inertial sensors during a walking trial (or any other gait analysis context) and parameters derived from those measurements to a person's minimum ground clearance (MGC). MGC, also called minimum toe clearance (MTC), may be defined as the minimum distance between the foot and the ground during a swing-phase of a gait cycle. At that instant, the foot may be at or near its maximum velocity, the center of mass of the body is outside its base of support, and a small positional error could result in collision with the ground. Thus, low MGC may be a trip hazard and an indication of a risk of falling, such as in the elderly population. Because measuring MGC with an optical motion capture system may require expensive, specialized equipment and personnel, the MGC and MGC parameters, or their estimates, may instead be calculated from parameters measured by or derived from one or more inertial sensors mounted on a person's body, such as his or her feet or legs. The calculation may be based on a regression model that estimates the MGC as a function of the inertial sensor parameters. The regression model may be generated by fitting values of parameters measured by or derived from the inertial sensors to reference MGC values measured by an optical motion capture system. The calculated MGC may be used as part of a falls risk assessment. For example, a statistical model may incorporate the MGC as a parameter to predict an individual's risk of falling.
In some implementations, generation of the regression model and calculation of the MGC may be performed by one or more processors executing one or more instructions stored on a computer-readable medium. The generation of a regression model and calculation of the MGC may also be performed by firmware, logic circuits, and/or any other computing circuit. The computing circuit may also calculate other parameters related to a falls risk assessment. The walking trial in which the inertial sensor data are generated may be part of a gait analysis in which a person's motion is measured while the person is walking a distance (e.g. 15 m or 30 m) in a straight path. The data collected by the inertial sensors may be used to also calculate a gait parameter, such as gait velocity.
In order to ensure that the angular velocity signal derived from the gyroscope has the correct polarity, the “skewness” of the signal (e.g., a measure of the asymmetry of the signal) may be calculated for each walk. If the skewness is less than zero, the gyroscope signal can be inverted to ensure the correct polarity of the signal. The raw gyroscope and accelerometer data may be calibrated to derive the angular velocity and acceleration vectors with respect to sensor unit coordinate axes. A standard calibration procedure may be used to calibrate the gyroscopes before they are used in the walking trial.
The collection of inertial sensor data and MGC data may be synchronized by using a dedicated trigger output. The trigger output may come from, for example, a force plate 18 placed beneath the individual's feet. The trigger may be connected to the analog-to-digital input of a dedicated synchronization sensor. The synchronization sensor may be made up of, for example, a SHIMMER™ and an Analog Expansion breakout board and may transmit wirelessly to a PC via Bluetooth®, 802.11, or other wireless protocol. The inertial sensor parameters, such as acceleration or angular velocity, may be collected from each axis of the inertial sensors. In one example, the inertial sensor data may be sampled at 102.4 Hz. The data may be transmitted wirelessly from the sensors to a desktop, laptop, server, mobile device, or any other computing device.
At operation 120 and 125, the raw data from the accelerometer and gyroscope, respectively, may be calibrated to derive vertical angular velocity vectors with respect to the sensor unit coordinate axis or some other orientation. In one example, angular velocity may be measured about an axis perpendicular to the sagittal plane of the individual performing the walking trial. In the example, the orientation of the angular velocity may be based on the sagittal plane of the individual 10. The acceleration may be measured in a direction parallel to gravity. At operations 130 and 135, the data may be filtered before or after transmission to remove noise. For example, a zero-phase 5th order Butterworth filter with may be used to low pass filter the sensor data. The corner frequency (e.g., 50.2 Hz) may be calculated as
where fs is the sampling rate. A bandpass filter may also be used to filter out low-frequency components of the data. The mean, maximum, minimum, range, coefficient of variation, and other statistical parameters may be derived from inertial sensor measurements, such as from angular velocity or acceleration measurements.
Some of the measured or derived inertial sensor parameters (e.g., mean of the absolute values of vertical angular velocity) may be compared to reference MGC measurements, such as from an optical motion capture system that directly measures a person's MGC during a walk. The reference MGC measurements may be used either to generate a regression model that estimates the MGC values from the inertial sensor parameters, or to validate the accuracy of an earlier generated regression model. The reference MGC values may be measured from, for example, an optical motion capture system, such as by CODA (Cartesian Optoelectronic Dynamic Anthropometer) cameras 16a and 16b of a CODA motion capture system. For example, two CODA cx1 units may be used, one placed on either side of the individual 10. Two CODA infrared LED markers may be placed on the left and right foot. In one example, each marker may be placed on the lateral aspect of the fifth metatarsal head of each foot, on the exterior of the individual's shoes. The markers may be placed on other locations on the foot or on other body parts that can be related to MGC. Capture of the optical data may be triggered based on detected movement, or may be initiated at predetermined intervals. For example, the optical data may be sampled at 200 Hz. The minimum vertical displacement of the optical markers may be measured and outputted as the MGC. The measurements may further be adjusted for shoe height to more accurately measure MGC. The measurements may be used as reference or benchmark MGC values that a regression model attempts to approximate with inertial sensor parameters.
A relationship may be derived between data from the inertial sensors and data from the optical capture system so that subsequent measurements collected by the inertial sensors (e.g., angular velocity and acceleration data) may be used to estimate parameters (e.g., MGC) that would otherwise have required the optical motion capture system to measure. The inertial sensor parameters used in generating a model relating the MGC parameter and inertial sensor parameters may differ depend on the MGC parameter (e.g. MGC, mean MGC, CV MGC) being modeled. At operations 140 and 145, feature extraction may be performed to narrow the parameters that need to be used in a regression model. The feature extraction may use techniques such as principal components analysis to determine which parameters measured by or derived from the inertial sensors should be used to model the desired MGC parameter. For example, a regression model for calculating mean MGC may use mean of the absolute values (“mean absolute valued”) vertical angular velocity and mean absolute valued acceleration as the input parameters. For example, a regression model for calculating CV MGC may also use mean absolute valued vertical angular velocity, mean absolute valued acceleration, as well as maximum vertical angular velocity, minimum vertical angular velocity, the range of vertical angular velocity, the vertical angular velocity at a mid-swing point, maximum vertical acceleration, minimum vertical acceleration, the range of acceleration, and vertical acceleration at the mid-swing point. The regression model may use inertial sensor data collected from only certain walking trial participants (e.g., based on height or weight), and may further use inertial sensor data collected from certain body segments (e.g., only from foot-mounted inertial sensors). For example, the regression models for both MGC and CV MGC may be generated using the participant number (e.g., 1-9) and leg (left or right) as categorical factors using dummy variables.
At operation 150, a regression model may be used to relate MGC parameters to inertial sensor parameters.
In some implementations, a Pearson's Correlation Coefficient may be calculated between the reference MGC or mean MGC values and inertial sensor parameters to find an inertial sensor parameter with a linear relationship to the reference MGC values. Data obtained from a left leg and a right leg may be analyzed separately, to avoid any assumption of gait symmetry (e.g., Pearson's Correlation Coefficient may be higher for data collected from a left foot than from a right foot). In one example, reference optical measurements of mean MGC or coefficient of variation of the MGC (CV MGC) may have a maximum Pearson's Correlation Coefficient (e.g., r=0.77) with the mean vertical angular velocity measured by the inertial sensors. In the example, the mean vertical angular velocity may then be used to generate a linear model that estimates the mean MGC or CV MGC from the mean foot vertical angular velocity.
In one embodiment, regression lines derived from a group of individuals with similar age, weight, shank length, height, gait speed, and/or other physical characteristics may be averaged. The average regression line may be used to calculate future MGC values for one of those individuals, or for another individual having characteristics similar to that of the group.
Other regression models, such as quadratic, interaction, and stepwise interaction regression models may be generated. Table 1 shows example R2 values of example regression models based on data collected by a foot-mounted inertial sensor and example regression models based on data collected by a shank-mounted inertial sensor.
The inertial sensor data from the walking trial may also be directly correlated with a risk of falling. For example, shank angular velocity measurements in the sagittal plane (SagAngVel) and parameters derived from those measurements for fallers and non-fallers may be compared. Gait velocity may also be measured from the faller and non-faller participants and may also be compared. A walking trial participant from whom inertial sensor data is collected may be asked for his or her falls history.
Inertial sensor parameters that may be compared include, for example, the SagAngVel measurements as well as mean absolute value, maximum, minimum, mean value at mid-swing points, and coefficient of variation of the SagAngVel measurements.
The Mann-Whitney version of the Wilcoxon rank sum may be used to test for significant differences between fallers and non-fallers with respect to their gait velocities and derived SagAngVel parameters, especially for SagAngVel parameters that have shown association with the mean and CV MGC.
Further, the SagAngVel parameters may be compared against two other parameters that measure falls risk: BBS score and TUG time. The BBS and TUG tests may be conducted contemporaneously with the walking trial in which the inertial sensor data was collected. For example, during the walking trial in which inertial sensor data is collected, the participant may also be asked to conduct a TUG test by standing up from a seat, walking 3 to 5 m, turning around, walking back to the seat, and sitting down. The time taken to complete the TUG test (i.e., the TUG time) may be recorded. A Pearson's correlation coefficient may be calculated between a SagAngVel parameter and a TUG time or BBS score to examine the strength of the relationship between them. The Pearson's correlation coefficient may also be calculated between a gait velocity and the TUG time or BBS score to examine the strength of their relationship.
For example, mean SagAngVel at mid-swing points, mean absolute valued SagAngVel, and min SagAngVel may be used to assess the falls risk of the person from whom the angular velocity data was collected. Those three parameters may have statistical characteristics that are different for fallers versus non-fallers, and/or may have a good correlation with measured BBS scores or TUG times. Table I below shows example angular velocity parameters, how they compare between fallers and non-fallers, and their correlation with the BBS score and TUG time.
A Pearson Correlation Coefficient may be calculated between the inertial sensor parameters and gait velocity. Example Pearson Correlation coefficients (r) of the example angular velocity parameters with gait velocity are shown in Table III:
Comparing the inertial sensor parameters between fallers versus non-fallers and correlating them with other falls risk parameters, such as standard clinical measures like BBS score or TUG time, may identify inertial sensor parameters that distinguish fallers and non-fallers. The inertial sensor parameters may be used as a measure of falls risk, and may be more preferable than the standard clinical measures because the inertial sensor parameters may capture information about a faller that is not captured in other standard measures. For example, a combination of mean absolute valued shank angular velocity, minimum shank angular velocity, and mean shank angular velocity at mid-swing points may be used as a measure of falls risk.
By comparing the inertial sensor parameters between fallers and non-fallers, differences in swing mechanics that may lead to a higher risk of falling may be isolated. The example data above, for instance, may indicate that fallers may have a decreased overall mean absolute-valued angular velocity of the shank segment, along with a decreased mean angular velocity at mid-swing and decreased overall minimum angular velocity. Decreased shank angular velocity may indicate a limitation in lower limb mobility, and may be associated with aging.
The operations described above may be implemented in executable software as a set of logic instructions stored in a machine- or computer-readable medium of a memory such as random access memory (RAM), read only memory (ROM), programmable ROM (PROM), firmware, flash memory, etc., in fixed-functionality hardware using circuit technology such as application specific integrated circuit (ASIC), complementary metal oxide semiconductor (CMOS) or transistor-transistor logic (TTL) technology, or any combination thereof. For example, computer program code to carry out operations may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages.
Turning now to
The illustrated IOH 52, sometimes referred to as a Southbridge of a chipset, functions as a host device and communicates with the network controller 54, which could provide off-platform communication functionality for a wide variety of purposes such as cellular telephone (e.g., W-CDMA (UMTS), CDMA2000 (IS-856/IS-2000), etc.), WiFi (e.g., IEEE 802.11, 1999 Edition, LAN/MAN Wireless LANS), Low-Rate Wireless PAN (e.g., IEEE 802.15.4-2006, LR-WPAN), Bluetooth (e.g., IEEE 802.15.1-2005, Wireless Personal Area Networks), WiMax (e.g., IEEE 802.16-2004, LAN/MAN Broadband Wireless LANS), Global Positioning System (GPS), spread spectrum (e.g., 900 MHz), and other radio frequency (RF) telephony purposes. In the illustrated example, the network controller 54 obtains angular velocity data 62 wirelessly (e.g., from a data aggregator over a Bluetooth connection), and provides the angular velocity data 62 to the processor 48 for further analysis. The illustrated processor 48 calculates MGC 64 and other parameters and may generate a falls risk assessment.
The other controllers 56 could communicate with the IOH 52 to provide support for user interface devices such as a display, keypad, mouse, etc. in order to allow a user to interact with and perceive information from the system 46.
Embodiments of the present invention are applicable for use with all types of semiconductor integrated circuit (“IC”) chips. Examples of these IC chips include but are not limited to processors, controllers, chipset components, programmable logic arrays (PLA), memory chips, network chips, and the like. In addition, in some of the drawings, signal conductor lines are represented with lines. Some may be thicker, to indicate more constituent signal paths, have a number label, to indicate a number of constituent signal paths, and/or have arrows at one or more ends, to indicate primary information flow direction. This, however, should not be construed in a limiting manner. Rather, such added detail may be used in connection with one or more exemplary embodiments to facilitate easier understanding of a circuit. Any represented signal lines, whether or not having additional information, may actually comprise one or more signals that may travel in multiple directions and may be implemented with any suitable type of signal scheme, e.g., digital or analog lines implemented with differential pairs, optical fiber lines, and/or single-ended lines.
Example sizes/models/values/ranges may have been given, although embodiments of the present invention are not limited to the same. As manufacturing techniques (e.g., photolithography) mature over time, it is expected that devices of smaller size could be manufactured. In addition, well known power/ground connections to IC chips and other components may or may not be shown within the figures, for simplicity of illustration and discussion, and so as not to obscure certain aspects of the embodiments of the invention. Further, arrangements may be shown in block diagram form in order to avoid obscuring embodiments of the invention, and also in view of the fact that specifics with respect to implementation of such block diagram arrangements are highly dependent upon the platform within which the embodiment is to be implemented, i.e., such specifics should be well within purview of one skilled in the art. Where specific details (e.g., circuits) are set forth in order to describe example embodiments of the invention, it should be apparent to one skilled in the art that embodiments of the invention can be practiced without, or with variation of, these specific details. The description is thus to be regarded as illustrative instead of limiting.
Those skilled in the art will appreciate from the foregoing description that the broad techniques of the embodiments of the present invention can be implemented in a variety of forms. Therefore, while the embodiments of this invention have been described in connection with particular examples thereof, the true scope of the embodiments of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and following claims.
Number | Name | Date | Kind |
---|---|---|---|
3791375 | Pfeiffer | Feb 1974 | A |
4738269 | Nashner | Apr 1988 | A |
5052406 | Nashner | Oct 1991 | A |
5209240 | Jain | May 1993 | A |
RE34663 | Seale | Jul 1994 | E |
5388591 | De Luca et al. | Feb 1995 | A |
5919149 | Allum | Jul 1999 | A |
6059576 | Brann | May 2000 | A |
6063046 | Allum | May 2000 | A |
6820025 | Bachmann et al. | Nov 2004 | B2 |
6852086 | Atlas et al. | Feb 2005 | B2 |
7141026 | Arminian et al. | Nov 2006 | B2 |
7361150 | Berthonnaud | Apr 2008 | B2 |
7526071 | Drapeau | Apr 2009 | B2 |
7998092 | Avni et al. | Aug 2011 | B2 |
8011229 | Lieberman et al. | Sep 2011 | B2 |
8092355 | Mortimer | Jan 2012 | B2 |
8109590 | Shibata | Feb 2012 | B2 |
8152744 | Mukumoto | Apr 2012 | B2 |
8261611 | Kim et al. | Sep 2012 | B2 |
8280681 | Vock et al. | Oct 2012 | B2 |
8308665 | Harry et al. | Nov 2012 | B2 |
8405510 | Shieh | Mar 2013 | B2 |
8529448 | McNair | Sep 2013 | B2 |
8823526 | Kaiser et al. | Sep 2014 | B2 |
8852128 | Bhattacharya | Oct 2014 | B2 |
8961439 | Yang et al. | Feb 2015 | B2 |
8990041 | Grabiner et al. | Mar 2015 | B2 |
20010053883 | Yoshimura et al. | Dec 2001 | A1 |
20020077567 | McLeod | Jun 2002 | A1 |
20040143452 | Pattillo et al. | Jul 2004 | A1 |
20050010139 | Aminian et al. | Jan 2005 | A1 |
20050182341 | Katayama et al. | Aug 2005 | A1 |
20060166737 | Bentley | Jul 2006 | A1 |
20060282017 | Avni et al. | Dec 2006 | A1 |
20070057786 | McClure et al. | Mar 2007 | A1 |
20070118043 | Oliver et al. | May 2007 | A1 |
20080146968 | Hanawaka et al. | Jun 2008 | A1 |
20080167580 | Avni et al. | Jul 2008 | A1 |
20080243265 | Lanier et al. | Oct 2008 | A1 |
20080281550 | Hogle et al. | Nov 2008 | A1 |
20080306410 | Kalpaxis et al. | Dec 2008 | A1 |
20090076419 | Namineni et al. | Mar 2009 | A1 |
20090076765 | Kulach et al. | Mar 2009 | A1 |
20090185772 | Xia et al. | Jul 2009 | A1 |
20090196206 | Weaver et al. | Aug 2009 | A1 |
20090216156 | Lengsfeld et al. | Aug 2009 | A1 |
20090240170 | Rowley | Sep 2009 | A1 |
20090247909 | Mukumoto | Oct 2009 | A1 |
20090247910 | Klapper | Oct 2009 | A1 |
20090260426 | Lieberman et al. | Oct 2009 | A1 |
20090318779 | Tran | Dec 2009 | A1 |
20100152622 | Teulings | Jun 2010 | A1 |
20110022349 | Stirling | Jan 2011 | A1 |
20110092860 | Salarian et al. | Apr 2011 | A1 |
20110118620 | Scheib | May 2011 | A1 |
20110119267 | Forman et al. | May 2011 | A1 |
20110162433 | Peng et al. | Jul 2011 | A1 |
20110184225 | Whitall et al. | Jul 2011 | A1 |
20110190593 | McNair | Aug 2011 | A1 |
20110190667 | Alwan | Aug 2011 | A1 |
20110213278 | Horak | Sep 2011 | A1 |
20110264010 | Williams | Oct 2011 | A1 |
20110275956 | Son et al. | Nov 2011 | A1 |
20110288811 | Greene | Nov 2011 | A1 |
20120021873 | Brunner | Jan 2012 | A1 |
20120059282 | Agichtein et al. | Mar 2012 | A1 |
20120065915 | Hara et al. | Mar 2012 | A1 |
20120072168 | Yin et al. | Mar 2012 | A1 |
20120092169 | Kaiser et al. | Apr 2012 | A1 |
20120101411 | Hausdorff et al. | Apr 2012 | A1 |
20120119904 | Coleman Boone et al. | May 2012 | A1 |
20120198949 | Xia et al. | Aug 2012 | A1 |
20120232430 | Boissy | Sep 2012 | A1 |
20120253234 | Yang et al. | Oct 2012 | A1 |
20120289791 | Jain et al. | Nov 2012 | A1 |
20120316843 | Beno et al. | Dec 2012 | A1 |
20130060512 | Greene | Mar 2013 | A1 |
20130123665 | Mariani et al. | May 2013 | A1 |
20130123666 | Giuffrida et al. | May 2013 | A1 |
20130123669 | Kinoshita et al. | May 2013 | A1 |
20130218053 | Kaiser et al. | Aug 2013 | A1 |
20130303860 | Bender | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2011002788 | Jan 2011 | WO |
2011016782 | Feb 2011 | WO |
2012094486 | Jul 2012 | WO |
Entry |
---|
McGrath et al., Estimation of minimum ground clearance using body-worn inertial sensors, Journal of Biomechanics, Apr. 7, 2011. |
Greene et al., An adaptive gyroscope-based algorithm for temporal gait analysis, Med Biol Eng Comput, Sep. 2, 2010. |
Greene et al., Quantitative Falls Risk Assessment Using the Timed Up and Go Test, IEEE, Dec. 2010. |
O'Donovan et al., Shimmer A new tool for temporal Gait analysis, IEEE, Sep. 3, 2009. |
Lai, A hybrid Support Vector Machine and autoregressive model for detecting gait disorders in the elderly, IEEE, 2007. |
Macon State College, Quadratic Regression, 2007. |
Greene, Barry R. et al., Assessment of Cognitive Decline Through Quantitative Analysis of the Timed Up and Go Test, IEEE Transactions on Biomedical Engineering, vol. 59, No. 4, Apr. 2012, pp. 988-995. |
Greene, Barry R, et al., Body-worn sensor based surrogates of minimum ground clearance in elderly fellers and controls, 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts USA, Aug. 30-Sep. 3, 2011. |
Greene, Barry R. et al., Adaptive estimation of temporal gait parameters using body-worn gyroscopes, 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, Aug. 31-Sep. 4, 2010. |
Greene, Barry R. et al., Falls risk assessment through quantitative analysis of TUG, Mar. 21, 2010. |
Doheny, Emer P., et al., A single gyroscope method for spatial gait analysis, 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, Aug. 31-Sep. 4, 2010. |
Brach, Jennifer S., et al., “Gait Variability and the Risk of Incident Mobility Disability in Community Dwelling Older Adults,” 2007, Journal of Gerontology: Medical Sciences, vol. 62A, No. 9, pp. 983-988. |
Deshpande et al., “Gait speed under varied challenges and cognitive decline in older persons: a prospective study,” Jul. 25, 2009, Oxford University Press on behalf of the British Geriatrics Society, pp. 509-514. |
Doheny, Emer P., et al., “An Instrumented sit-to-stand test used to examine differences between older fallers and non-fallers,” Aug. 30-Sep. 3, 2011; IEEE EMBS; 33rd Annual Conference, pp. 3063-3066. |
Extended European Search Report issued Dec. 12, 2014 in European Application 13177482.0. |
Ferraris et al., “Procedure for Effortless In-Field Calibration of Three-Axis Rate Gyros and Acelerometers,” Sensors and Materials, vol. 7, No. 5, 1995, pp. 311-330. |
Foroughi, H. et al., “Robust Fall Detection Using Human Shape and Multi-class Support Vector Machine”, Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 413-420, ISBN: 978-0-7695-3476-3, XP 031409478, Dec. 16, 2008. |
Fried et al., “Frailty in Older Adults: Evidence for a Phenotype,” Journal of Gernatology: Medical Sciences, 2001, vol. 56A, No. 3, pp. M146-M156. |
Friedman, Jerome H., “Regularized Discriminant Analysis,” Jul. 1988, Journal of the American Statistical Association, pp. 1-32. |
Giansanti, “Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography”, Medical Engineering & Physics, vol. 30, 2008, pp. 367-372. |
Giansanti, “Investigation of fall-risk using a wearable device with accelerometers and rate gyroscopes”, Physiol. Meas, vol. 27, Sep. 11, 2006, pp. 1081-1090. |
Gkalelis et al., “Human Movement Recognition Using Fuzzy Clustering and Discrmininant Analysis,” Aug. 2008, EUSIPCO. |
Greene et al., Classifier Models and Architectures for EEG-Based Neonatal Seizure Detection, Physiol. Meas., 2008, pp. 1157-1178, 29, IOP Publishing, UK. |
Greene et al., “Evaluation of Falls Risk in Community-Dwelling Older Adults Using Body-Worn Sensors,” Regenerative and Technological Section/Original Paper, Gerontology 2012, vol. 59, pp. 472-480, along with supplementary table. |
Greene et al., “Quantatative falls risk estimation through multi-sensor assessment of standing balance,” Physiological Measurement, Physiol. Meas. 33 (2012), pp. 2049-2063. |
Higashi, Yuji et al., “Quantitative Evaluation of Movement Using the Timed-Up-and-Go Test”, IEEE Engineering in Medicine and Biology Magazine, Jul./Aug. 2008, pp. 38-46. |
International Search Report and Written Opinion mailed Oct. 12, 2011, for PCT/US2011/036955. |
Latt, Mark D., et al., “Clinincal and Physiological Assessments for Elucidating Falls Risk in Parkinson's Disease,” No. 9, 2009, Movement Disorder Society, vol. 24, pp. 1280-1289. |
Makary, M. A., et al., “Frailty as a Predictor of Surgical Outcomes in Older Patients,” pp. 901-908, 2010. |
Najafi et al., “Measurement of Stand-Sit and Sit-Stand Transitions Using a Miniature Gyroscope and Its Application in Fall Risk Evaluation in the Elderly,” Aug. 2002, IEEE Transactions on Biomedical Engineering, vol. 49, No. 8. |
Narayanan et al., “Longitudinal Falls Risk Estimation using Triaxial Accelerometry”, IEEE Trans., vol. X, No. Y, Jul. 2009, pp. 1-8. |
Pavel, Misha, “Continuous Assessment of Gait Velocity in Parkinson's Disease from Unobtrusive Measurements”, 2007, 4 pages. |
Pavel, Misha, “Unobtrusive Assessment of Mobility”, 2006, 5 pages. |
Sabatini, A. et al., “Assessment of Walking Features From Foot Inertial Sensing,” IEEE Transactions on Biomedical Engineering [online], Mar. 2005 [retrieved on May 17, 2015]. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpls/abs—all.jsp?arnumber=1396389>. |
Salarian et al., “iTUG, a Sensitive and Reliable Measure of Mobility”, IEEE Transactions on Neural Systems and Rehabilitation Engineering 2010, pp. 1-8. |
Vellas et al., “One-Leg Balance is an Important Predictor of Injurious Falls in Older Persons,” 1997, American Geriatrics Society, pp. 735-738. |
Walsh et al., “Development and Validation of a Clinic Based Balance Assessment Technology,” 33rd Annual International Conference of the IEEE EMBS, Aug. 30-Sep. 3, 2011, pp. 1327-1330. |
Weiss et al., “Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson's disease?”, Medical Engineering & Physics vol. 32, 2010, pp. 119-125. |
Zampieri et al., The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson's disease, Journal Neurology Neurosurgery and Psychiatry, Feb. 1, 2010, pp. 171-176, vol. 81, No. 2. |
Number | Date | Country | |
---|---|---|---|
20130060512 A1 | Mar 2013 | US |