The present application claims priority to Swiss Application No. CH 01827/10 filed Nov. 2, 2010, and Swiss Application No. CH 01826/10 filed Nov. 2, 2010, each of which is hereby fully incorporated herein by reference.
The present invention relates to a calendar display device, in particular for a mechanical watch piece comprising a watch movement, comprising a first disk, the disk of days, carrying multiple series of inscriptions symbolizing the seven days of the week, a second disk, the disk of dates, carrying inscriptions symbolizing the date of the month, a third disk, the disk of months, carrying 12 inscriptions symbolizing the months of the year, one of the disk of days and the disk of dates acting as a dial by being fixed, whereas the other acts as a rotary disk by being arranged concentrically and rotatably in relation to said dial, said dial comprising an aperture which makes it possible to see the inscription of the current month on the disk of months which is rotatably mounted and is driven by the watch movement of said watch piece, and a hand placed concentrically and rotatably in relation to said dial so as to simultaneously indicate the date and the day of the week. The present invention also relates to a watch piece comprising such a calendar display device.
Watch pieces comprising such a calendar display belong to the category of watch pieces referred to as “complicated time pieces” and allow the user to view, by a single glance at the dial of the watch piece, information relating to the day, date and month, more specifically with a view of the entire current month. Documents DE 25 267 and U.S. Pat. No. 340,855 are typical examples of this type of device. These devices afford the notable advantage of very conveniently providing the information of which day of the week corresponds to which date for an entire month. However, owing to the fact that the length of each of the months is not generally a multiple of 7, the length of a week, these devices pose the significant drawback that they require the manual intervention of the user at the start of each month in order to readjust the inscriptions on the scale of days with the inscriptions on the scale of dates, otherwise the calendar display would no longer be correct.
Within the field of date display and, in general, of displaying calendar data, mechanisms called “perpetual calendars” by the person skilled in the art are also known. This type of mechanism is normally pre-programmed by using cams representing the length of the months and makes it possible to display the day, the date, the month and possibly the year for long periods, sometimes more than 100 years. In the majority of cases perpetual calendar mechanisms are used to display the aforementioned data by means of a plurality of individual apertures arranged in the dial of a watch piece. This is also the case in the first embodiment of a watch described in document EP 1 351 104. This type of display only shows the calendar data for a single day and therefore does not afford the aforementioned advantage of providing a general view over an entire month. For this reason, the second embodiment of a watch described in document EP 1 351 104 proposes a calendar display device of the type mentioned at the outset by combining it with a perpetual calendar mechanism, thus adding the advantage of a general view of the calendar data over an entire month. Moreover, since it is equipped with a perpetual calendar mechanism, the device described in this document affords the advantage that the inscriptions on the scale of days are automatically readjusted at the end of each month with the inscriptions on the scale of dates.
However, the reader notices by a detailed study of this document that these two advantages are only obtained as a result of two technical features which are rather difficult to implement and, technically, are quite complex in their design. In fact, the operation of the perpetual calendar according to EP 1 351 104 is based on a program wheel carrying a retractable tooth of which the movement is controlled by rather complicated kinematics arranged on this program wheel. Moreover, the kinematic chain of the movement according to EP 1 351 104 requires two drive trains controlling, in a coordinated yet separate manner, starting from a driving wheel, the rotation of the disk of months and that of the disk of dates in relation to the fixed dial indicating the days of the week.
Document EP 1 351 105, from the same proprietor as document EP 1 351 104, describes the same device from another viewpoint and in particular relates to the problem that the calendar display devices of the type mentioned at the outset, in spite of the advantage of providing a general view of calendar data over a given month, do not make it possible until the evening of the last day of the current month to view the calendar of the following month. It is even stated in the introduction of this document that the design of a device of this type based on a mechanical watch movement would be very difficult.
Consequently, document EP 1 351 105 differs from the design of the calendar display devices of the type mentioned at the outset and suggests separating the disk of dates into two different disks each carrying approximately half the inscriptions of the dates from 1 to 31. The document further proposes turning these two disks relative to one another by rather complex kinematics already mentioned above depending on the date to be displayed, in such a way that the user can view the calendar data over a period corresponding to approximately one month, irrespective of whether it is the start or the end of the month. For example, in order to display a date at the start of the month, the first disk of dates carrying the dates from 1 to 15 is aligned with the second disk of dates carrying the dates from 16 to 31 in such a way that the numbers from 1 to 31 are arranged in ascending order, whereas in order to display a date towards the end of the month, the position of the first disk of dates carrying the dates from 1 to 15 is changed in relation to the second disk of dates carrying the dates from 16 to 31 in such a way that the numbers from 1 to 15 follow the numbers from 16 to 31, in either case the whole assembly being adapted to the dial indicating the days of the week.
This brief explanation demonstrates that the solution of documents EP 1 351 104 and EP 1 351 105, on the one hand in order to obtain an automatic adjustment of the scales of days of the week and that of the dates at the start of each month, and on the other hand in order to avoid the drawback of calendar display devices of the type mentioned at the start of this introduction of not allowing an extended view of the calendar data towards the end of the month, is rather complex in its design, is difficult to implement, is expensive to manufacture and partially even removes, owing to the fact of using two separate disks for the date, the main benefit and aesthetic attractiveness of this type of device.
Apart from the devices according to the above-mentioned documents, which however have major drawbacks as explained above, the prior art does not yet appear to include a mechanism which makes it possible, with the aid of relatively simple means, to provide the two aforementioned advantages in a calendar display device of the type mentioned at the outset, that is to say, on the one hand, an automatic indexing of the scales of days and dates at the start of each month and, on the other hand, the possibility of an extended view of the calendar data at any moment, even towards the end of the month. In view of the prior art currently known, there is thus a need to create such a device which makes it possible to provide these advantages using means which are simpler in design, easier to produce and less costly to manufacture.
The object of the present invention is therefore to overcome the drawbacks of the known calendar display devices and to implement the aforementioned advantages, in particular to make it possible to produce a calendar display device allowing an automatic indexing of the scales of days and dates at the start of each month and also allowing an extended view of the calendar data at any moment, including at the end of the month, but without an excessive increase in complexity, bulk and production costs of the device, whilst retaining the main benefit and the aesthetic appearance of the mechanism.
To this end, the present invention proposes a calendar display device of the aforementioned type, in particular for a mechanical watch piece comprising a watch movement which is characterized by the features disclosed in claim 1, or a corresponding watch piece. In particular, a device according to the present invention comprises a correction mechanism cooperating with at least a gear train driving the disk of months starting from the watch movement of said watch piece, said mechanism comprising means for advancing and reversing the disk of months so as to allow modification of the month displayed on the dial in a bidirectional manner.
These means for advancing and reversing the disk of months advantageously comprise a correction star fixed to a correction wheel meshing with said gear train, and a first and second correction lever which are actuatable by push-pieces of the watch piece. Each actuation of these push-pieces thus causes a rotation of the disk of months through 1/12 of a turn either forwards or backwards, making it possible to change the month displayed on the dial in a bidirectional manner.
As a result of these measures a watch piece which allows the user to have a general view of the calendar data over the entire current month is provided, the user being free at any moment to choose the month displayed and to consult the calendar data of another month, in the manner of a diary, by pressing on the corresponding push-pieces to advance or reverse the displayed month. Compared to the mechanisms of the prior art, the device according to the present invention makes it possible to implement these advantages with the aid of simple and neat means and retains the appearance of this type of mechanism.
When said watch piece comprises only one gear train to control the disk of months and the rotary disk by the watch movement of said watch piece, a device according to the present invention further comprises a direct kinematic link between the disk of months and said rotary disk so as to make automatic the indexing between the inscription on this rotary disk and the inscriptions on the dial depending on the month displayed, that is to say so as to allow, at the same time as the aforementioned modification of the month displayed on the dial, automatic indexing between the scales of dates and days for the month newly displayed on the dial.
It is particularly advantageous to arrange the direct kinematic link between the disk of months and the rotary disk in such a way that it has two separate parts which control said automatic indexing, in short, one for the month of February, for leap years and the other for all the other months and years.
It is thus possible to control the rotary disk, whether this is the disk of dates or the disk of days, with a single gear train and directly by the disk of months, and an automatic indexing is thus obtained by means which are relatively simple in design and are easy to implement and even manufacture.
Alternatively, if said watch piece comprises two separate gear trains separately controlling the disk of months and the rotary disk by the watch movement of said watch piece, said correction mechanism is arranged so as to cooperate simultaneously with said gear train driving the disk of months and with a second gear train driving the rotary disk by the watch movement of the watch piece, in such a way that the means for advancing and reversing of said correction mechanism simultaneously control the disk of months and the rotary disk so as to make automatic the indexing between the inscriptions on said rotary disk and the inscriptions on the dial depending on the month displayed.
In a particularly interesting variation of the mechanism it is the second disk, the disk of dates, which forms the fixed dial, said first disk, the disk of days, being arranged as a ring which can turn around said dial. In a variation, the reverse arrangement is also possible. Said third disk, the disk of months, is normally arranged as a ring placed concentrically and rotatably beneath said dial. Consequently, the device may be provided in a number of embodiments and is therefore versatile in terms of technology and aesthetic appearance.
Further features and corresponding advantages will become clear from the claims as well as from the description given hereinafter describing the invention in greater detail.
The accompanying drawings show in schematic and exemplary manner an embodiment of the invention.
a and 2b are perspective views of the device shown in
a and 6b are schematic plan views, illustrating the operation of the second part of said direct kinematic link during a normal year.
a and 7b are schematic plan views, illustrating the operation of the second part of said direct kinematic link during a leap year.
a, 8b and 8c are schematic plan views, illustrating in greater detail the operation of the second part of said direct kinematic link with respect to its cooperation between the pin of the disk of months and the four-tooth star, respectively; the corresponding jumper of said kinematic link, and some parts being illustrated transparently so as to facilitate comprehension.
a, 10b, 10c and 10d are schematic plan views, illustrating in greater detail the different phases of operation of the correction mechanism during an operation of advancing by one month.
a, 11b, 11c and 11d are schematic plan views, illustrating in greater detail the different phases of operation of the correction mechanism during an operation of reversing by one month.
The invention will now be described in detail with reference to the accompanying drawings illustrating by way of example an embodiment of a calendar display device according to the present invention.
As illustrated schematically in
To this end, the device according to the invention comprises the conventional parts of a device of this type, that is to say a first disk 1, the disk of days, which carries multiple series of inscriptions symbolizing the seven days of the week, and a second disk 2, the disk of dates, which carries inscriptions symbolizing the date of the month. One of the disk of days 1 and the disk of dates 2 acts as a dial and is mounted rigidly, whereas the other of the two disks acts as a rotary disk by being arranged concentrically and rotatably in relation to said dial.
Furthermore, a device according to the present invention comprises a third disk 3, the disk of months, which preferably carries 12 inscriptions symbolizing the months of the year, of which the arrangement can obviously likewise be modified, similarly to the comments made above. The disk of months is mounted rotatably beneath this dial and is normally driven at a rate of 1/12 of a turn per month by the watch movement of the watch piece. The dial comprises an aperture 2.1 through which the user can see the inscription on the disk of months 3 corresponding to the month to be displayed. Likewise, and similarly to the comments made above on this topic, the disk of months 3 is preferably arranged like a ring which is placed concentrically and rotatably beneath said dial.
In the embodiment of the device illustrated in the figures, the ring or disk of days 1 carries over its periphery the series of inscriptions symbolizing the seven days of the week five times, thus 35 inscriptions, on 35 equidistant angular sectors. The disk of dates 2, that is to say in this embodiment the dial, also carries its inscriptions symbolizing the date of the month from 1 to 31 over its periphery on 31 equidistant angular sectors of the same angular dimension as the sectors on the first disk 1, as can be seen in particular in
In order to indicate simultaneously the date and the day of the current week, a device according to the present invention also comprises a hand 4 which is placed concentrically and rotatably in relation to said dial. This hand 4 normally advances by one step per day, except for between the last day of a month and the first day of the following month, and indicates the current day and date. Given that the mechanisms for the driving and the correction of the position of this hand 4 belong to prior art, they will not be described here and are also not shown in the figures.
The embodiment of the device shown in
In fact, the disk of months 3 is driven at the desired speed by the watch movement of said watch piece by means of the gear train 6. Since the rest of the moving parts of the watch movement may be completely conventional,
In addition, it should be noted that the gear train 6, respectively the components thereof, described above comprise an embodiment, but they could have any structure which makes it possible to obtain a suitable drive of the disk of months 3, the invention not actually lying in this part of the device. The aforementioned ratios could of course be selected differently, in particular if the disk of months 3 were to have 24 inscriptions instead of 12, for example, and should therefore be driven at a rate of 1/24 of a turn per month.
With reference to
In order to describe in greater detail the structure and operation of this direct kinematic link 7, 8 between the disk of months 3 and said rotary disk 1, 2, it should first be noted with regard to
A first part 7 of said direct kinematic link, illustrated in greater detail by an enlarged perspective view in
As can be seen in
The operation of this first part 7 of said direct kinematic link and its cooperation with the disk of months 3 respectively with the second inner toothing 3.2 thereof will be easily comprehended if it is recalled that said mechanism carries out an automatic indexing in order to adjust the information on the rotary disk 1, 2 in relation to the information on the dial 2, 1, given that the length of the months is not generally a multiple of 7, the length of a week. As a result, it is thus necessary, when the month display is changed, to adjust the rotary disk 1, 2 by turning it in relation to the fixed dial 2, 1 so as to correctly match the days to the dates of the new month to be displayed. As can be seen from
Given that a rotation in the anticlockwise direction requires a shorter path to be performed by the rotary disk 1 and thus presents a more favourable performance in terms of energy consumption than a rotation in the clockwise direction, the first solution of an adjustment by anticlockwise rotation is illustrated in the figures. However, it is possible for the person skilled in the art, in view of the technical teaching of the present description, to also implement the second solution of an adjustment by clockwise rotation. In order to implement the first solution of an anticlockwise rotation of the rotary disk 1, 2 during the readjustment, the 12 equidistant angular sectors of said second inner toothing 3.2 of the disk of months 3 are arranged in such a way as to effect, by means of the moving parts described above of the first part 7 of the direct kinematic link, a rotation of 3, 2, 1 or 0 steps of the rotary disk 1, 2 at the end of a month having 31, 30, 29 or 28 days respectively, one step corresponding to an angular distance of one of said equidistant angular sectors of the first disk 1. Given that only the month of February in a leap year has 29 days and that no adjustment is necessary for the months of February in a normal year having 28 days, the 12 equidistant angular sectors of said second inner toothing 3.2 of the disk of months 3 each have, except for the sector corresponding to the month of February, a succession of notches 3.2.1 and teeth 3.2.2 which are able to allow the rotary disk 1, 2 to advance, following the driving of the disk of months 3 by the gear train 6 and by means of the first part 7 of the direct kinematic link described above, through a corresponding number of steps. A sector of said second inner toothing 3.2 of the disk of months 3 corresponding to a month having 31 days thus comprises three notches 3.2.1 and two teeth 3.2.2, a sector of said second inner toothing 3.2 of the disk of months 3 corresponding to a month having 30 days comprises two notches 3.2.1 and 1 tooth 3.2.2, and the sector of said second inner toothing 3.2 of the disk of months 3 corresponding to the month of February has no notches or teeth. It remains to be noted that, depending on the arrangement of the first part 7 of the direct kinematic link over the inner periphery of the disk of months 3, the 12 equidistant angular sectors of said second inner toothing 3.2 of the disk of months 3 are not necessarily aligned with the corresponding inscriptions on the upper surface of the disk of months 3, as is also the case in
In order to ensure a desired driving of the rotary disk 1, 2 corresponding to the arrangement described above of the second toothing 3.2 of the disk of months 3, the first connecting pinion 7.1 and the second connecting pinion 7.4 of the first part 7 of the direct kinematic link may, for example, have 6 and 9 teeth respectively, whereas said first intermediate connecting wheel 7.2 and said second intermediate connecting wheel 7.3 have a toothing of 20 and 10 teeth respectively, the inner toothing 1.1 of the rotary disk having 105 teeth, corresponding to 3 teeth on each of its 35 equidistant angular sectors illustrated in
The explanations above demonstrate that a rotation of the disk of months 3 caused by the watch movement of the watch piece at the end of each month will automatically cause, except for the month of February, a rotation of the rotary disk 1, 2, in the example illustrated the disk of days 1, in relation to the dial 2, 1 in such a way that the inscriptions on the rotary disk 1, 2 are again adjusted correctly in relation to the inscriptions on the dial 2, 1.
With regard to said first part 7 of the direct kinematic link, it remains to be noted that it also comprises decoupling means 7.5, preferably a catch release mechanism. For example, these decoupling means 7.5 are placed between the first connecting pinion 7.1 and the first intermediate connecting wheel 7.2, as can be seen in
With reference to
The operation of said second part 8 of the direct kinematic link is easily understood with the aid of
The pin 3.3 fixed on the disk of months 3 advances each month, when the disk of months 3 is driven by the gear train 6, through an angular distance corresponding to one of the 12 equidistant angular sectors on the disk of months 3. During a normal year and as illustrated schematically in
After having rotated through three quarters of a turn during the first three normal years of operation, the parts are in a position as shown in
The inscriptions on the rotary disk 1, 2 and the inscriptions on the dial 2, 1 are thus also indexed automatically for the month of February in a leap year. It is thus to be noted here that the device described above, respectively a watch piece equipped with a device according to the present invention, makes it possible to provide the user with a completely automatic indexing between the inscriptions on said rotary disk 1, 2 and the inscriptions on the dial 2, 1 depending on the month displayed. Owing to the two parts 7, 8 of the direct kinematic link, this is the case for normal years and for leap years, the device thus effectively forming a perpetual calendar mechanism. Moreover, these advantages are achieved with the aid of mechanical means which are relatively simple in design and easy to produce, in particular using merely a single gear train between the movement of the watch piece and the disk of months 3, the rotary disk 1, 2 then being controlled simply by the disk of months.
It remains to be noted with regard to the second part 8 of the direct kinematic link that at least one of said intermediate wheels 8.2, 8.3 comprises a toothing 8.2.1 able to cooperate with a jumper 8.5. Said jumper holds the four-tooth star 8.1 in its rest position, which is important during the operation described above in order to avoid an involuntary rotation of the rotary disk 1, 2. Moreover, said at least one of said intermediate wheels 8.2, 8.3 is arranged so that the jumper 8.5 repositions said intermediate wheel 8.2, 8.3 with which it cooperates, after actuation of the star 8.1 by said pin 3.3 fixed on the disk of months 3, in such a position that the teeth 8.1.1, 8.1.2 of the four-tooth star 8.1 oriented towards the disk of months 3 are always located in the path of said pin 3.3, irrespectively of the direction of rotation of the disk of months.
This is achieved owing to the fact that the teeth of said at least one intermediate wheel 8.2, 8.3 and the point of said jumper 8.5 are arranged in such a way that, after actuation of the four-tooth star 8.1 by the pin 3.3, that is to say after a rotation through a quarter of a turn of the star 8.1, the jumper 8.5 does not jump the point of the last tooth of the corresponding intermediate wheel, but repositions said intermediate wheel respectively the four-tooth star 8.1 backwards over a small angular distance. The jumper 8.5 thus resets the four-tooth star 8.1 in a rest position in which the pin 3.3 will actuate, in any case, one of the teeth of the star 8.1, irrespectively of whether the pin 3.3 respectively the disk of months 3 turns in a clockwise or anticlockwise direction. The different phases of this cooperation between the toothing 8.2.1 of the corresponding intermediate wheel 8.2, 8.3 and the jumper 8.5 are illustrated schematically in
In fact, a calendar display device according to the present invention may also comprise a correction mechanism 9, 10, of which the structure and operation will be described hereinafter with reference to
In an embodiment, this correction mechanism 9, 10 cooperates with said gear train 6 driving the disk of months 3 starting from the watch movement of said watch piece. In particular, said mechanism 9, 10 comprises means for advancing and reversing the disk of months 3 so as to change, in a bidirectional manner, the month displayed on the dial 2, 1. As shown schematically in
The sequence of
Similarly, the sequence of
It remains to be added that the different parts such as the levers 10.1, 10.2 and controls 10.3, 10.4 are of course biased, for example, with the aid of corresponding springs, towards their rest positions, these biasing means not being illustrated in the figures for the sake of simplicity. Likewise, it should be noted that the main control 10.4 is, of course, also raised, by means not illustrated, of the cam of months 6.4 during normal operation of the device, that is to say when the disk of months 3 is advanced through one step by the movement of the watch piece instead of being corrected manually by the user with the aid of correction levers.
Lastly, it should be noted within the context of the correction mechanism 9, 10 that the solution described above relates to the case in which the watch piece comprises merely a single gear train 6 for controlling the disk of months 3 and the rotary disk 1, 2 by the watch movement of said watch piece, that is to say if the device comprises a direct kinematic link 7, 8 between the disk of months 3 and said rotary disk 1, 2. Without it being necessary to describe this variation in detail, it will be clear to the person skilled in the art equipped with the technical teaching of the present invention that said gear train 6, in order to control the disk of months 3 and the rotary disk 1, 2 by the watch movement of said watch piece, could also be arranged in such a way as to first drive the rotary disk, said direct kinematic link 7, 8 then driving the disk of months 3 by said rotary disk. This thus represents the reverse arrangement of the embodiment discussed in detail above. In this case, the gear train 6 and the correction mechanism 9, 10 described above must be adapted according to the explanations given above, which is within the scope of the person skilled in that art equipped with the present technical teaching. In particular, the correction mechanism 9, 10 could, for example, in this case only act indirectly, by means of the kinematic link 7, 8, on the disk of months 3, instead of driving it directly with the aid of the gear train 6, as in the case described in detail above.
Likewise, it is in principle also conceivable to replace such a single gear train 6 of the disk of months 3 and of the rotary disk 1, 2 in combination with the direct kinematic link 7, 8 with two separate gear trains separately controlling the disk of months 3 and the rotary disk 1, 2 starting from the watch movement of said watch piece. In this case, the correction mechanism 9, 10 described above must be adapted similarly to the explanations given and will be arranged so as to cooperate simultaneously with said gear train 6 driving the disk of months 3 and with a second gear train driving the rotary disk 1, 2 by the watch movement of the watch piece. In this way, the means for advancing and reversing said mechanism 9, 10 simultaneously control the disk of months 3 and the rotary disk 1, 2 by means of the gear train 6 driving the disk of months 3 and the second gear train driving the rotary disk 1, 2 so as to make automatic the indexing between the inscriptions on said rotary disk 1, 2 and the inscriptions on the dial 2, 1 depending on the month displayed, similarly to the preferred solution described in detail above. For example, the second gear train driving the rotary disk 1, 2 can be arranged as is known in the art, whilst the cooperation between said second gear train and the means for advancing and reversing said mechanism 9, 10 can similarly be supplemented by means corresponding to the ones used for the gear train 6 driving the disk of months 3. Without it being necessary to describe such a variation of the correction mechanism in detail, the person skilled in the art equipped with the present technical teaching will therefore know how to adapt the mechanism described in detail above within the scope of the preferred solution to the case of an alternative solution requiring a separate connection of said correction levers 10.1, 10.2 to two separate gear trains described above. For this reason, the alternative solution of using two separate gear trains clearly remains a feasible option.
It remains to be noted that, of course, other equivalent embodiments, not illustrated in the figures, of a calendar display device according to the present invention can be envisaged. For example, it is possible to vary the position or arrangement of the rotary disk 1, 2, without the overall operation or the result in terms of display differing substantially in relation to what has been disclosed above. All these embodiments are in fact within the scope of the person skilled in the art equipped with the technical teaching according to the present description, without it being possible to describe them all here in detail.
In order to explicitly cite some examples in this instance, it would also be possible to arrange the fixed dial, which still indicates the dates, as a ring, whereas the rotary disk indicating the days would be arranged as an actual disk which turns in this case inside said ring. This arrangement represents the reverse, in a certain way, of the arrangement according to the embodiment described in detail above. A further variation modifying the arrangement illustrated in
A further modification which also applies to the four arrangements mentioned above consists in placing the third disk 3, the disk of months, beneath the dial in a manner which is not concentric. In fact, although it is possible to place the disk of months 3 concentrically in relation to the disks of days 1 and dates 2, this is not necessary. Likewise, it is not necessary for the disk of months 3 to be arranged as a ring—it may also be formed by a solid disk. Also, in both cases, the gear train 6 could cooperate with the disk of months 3 with the aid of an outer toothing or a disk axis instead of an inner toothing.
In addition, it remains to be noted that the present invention also relates to a watch piece which comprises a calendar display device according to the present invention and as described above, said device being driven by the basic movement of the watch piece. In particular, said first 10.1 and second 10.2 correction levers of the device are normally actuatable by means of corresponding first and second push-pieces arranged on the case of the watch piece.
In view of the description above, it is clear that a calendar display device comprising the above-mentioned features according to the present invention affords the significant advantage of offering, in addition to an overall view of the calendar data for an entire month, the option of manually changing the month displayed, in the manner of a diary, thus affording the user the opportunity to consult at any moment the calendar data of the month which he wishes. Moreover, such a device normally also enables an automatic indexing between the information regarding the days of the week and the dates when the month display is changed. This automatic indexing applies to normal years and also to leap years, making the device perpetual. Also, this automatic indexing may be carried out by a number of means, in particular by a direct kinematic link between the disk of months and the rotary disk, and thus in a particularly neat manner in terms of technology. In addition, the device is highly versatile owing to the fact that it can be provided in a number of variations depending on technical or aesthetic requirements. These advantages are obtained without an excessive increase in complexity, bulk or production costs of the device. Lastly, the device according to the present invention is ideally adapted to be visually displayed on the dial of the watch piece, thus contributing significantly to the appearance of such a watch piece.
A detailed listing of all claims that are, or were, in the present application, irrespective of whether the claim(s) remain(s) under examination in the application is presented below. The claims are presented in ascending order and each includes one status identifier. Those claims not cancelled or withdrawn but amended by the current amendment utilize the following notations for amendment: 1. deleted matter is shown by strikethrough for six or more characters and double brackets for five or fewer characters; and 2. added matter is shown by underlining.
Number | Date | Country | Kind |
---|---|---|---|
CH 1826/10 | Nov 2010 | CH | national |
CH 01827/10 | Nov 2010 | CH | national |