The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for the purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings.
Embodiments described herein may involve, inter alia, a control device (e.g., a smartphone or tablet computer) displaying a user interface to facilitate the calibration of a playback device within a given environment. Some calibration procedures contemplated herein involve recording devices (e.g., control devices) of a media playback system detecting sound waves (e.g., one or more calibration sounds) emitted by one or more playback devices of the media playback system. A processing device, such as a device that is communicatively coupled to the media playback system, may analyze the detected sound waves to determine one or more calibrations for the one or more playback devices of the media playback system. Such calibrations may configure the one or more playback devices to a given listening area (i.e., the environment in which the playback device(s) were positioned while emitting the sound waves). The control device may display a prompt, or a series of prompts, that direct the user to assist in one or both phases of the calibration sequence.
In some embodiments contemplated herein, the processing device may determine two or more calibrations for the one or more playback devices. Such calibrations may configure the one or more playback devices in different ways. In operation, one of the two or more calibrations may be applied to playback by the one or more playback devices, perhaps for different use cases. Example uses cases might include music playback or surround sound (i.e., home theater), among others.
Within examples, the calibration sequence may include a spatial and/or spectral calibration component. For instance, the processing device may determine a first calibration that configures the one or more playback devices to a given listening area spatially (and perhaps also spectrally). Such a calibration may configure the one or more playback devices to one or more particular locations within the environment (e.g., one or more preferred listening positions, such as a favorite seating location), perhaps by adjusting time-delay and/or loudness for those particular locations. This first calibration may be applied during other use cases, such as home theater. The processing device may also determine a second calibration that configures the one or more playback devices to a given listening area spectrally. Such a calibration may generally help offset acoustic characteristics of the environment and be applied during certain use cases, such as music playback. U.S. application Ser. No. 15/005,853 entitled, “Calibration with Particular Locations,” which is hereby incorporated by reference, provides examples of these calibration techniques.
A control device may display one or more prompts to initiate a calibration sequence for the spatial calibration component and/or the spectral calibration component. The one or more prompts might include a selectable control that, when selected, starts the calibration sequence. Additionally, the one or more prompts might include a selectable control that, when selected, defers the calibration sequence to a later time.
In some cases, quality of calibration can be further improved by preparing the environment for calibration. To prepare the control device for calibration, the control device may, for example, provide a prompt to perform a step or steps to improve the acoustics of the microphone that will be detecting the calibration sounds emitted by a playback device. For instance, the control device may prompt to rotate the control device such that its microphone is oriented upwards, as such an orientation may improve the microphone sensitivity or other acoustic characteristics. As another example, the control device may prompt to remove any removable cases or covers that have been installed on the control devices. Cases or covers may negatively influence the microphones ability to sense sounds, as they may physically block or attenuate sound before the sound reaches the microphone. Within examples, the control device may prompt to perform other steps as well.
To further prepare the control device for calibration, in some cases, the control device may display one or more prompts to instruct a user to locate and move to the particular location within the given environment for the spatial calibration component of the calibration sequence. Additionally or alternatively, the control device may provide a prompt to perform one or more steps to reduce or eliminate environmental effects on the calibration. For instance, the control device may prompt to reduce ambient noise within an environment. Since the calibration involves the control device detecting calibration sounds emitted by the playback device, ambient noise may negatively influence the calibration procedure by affecting a microphone's ability to detect the calibration sounds.
As noted above, the control device may display one or more prompts that include a selectable control that, when selected, initiates the calibration sequence. As part of the spatial calibration component of the calibration sequence, some examples may include the control device instructing a playback device to begin emitting one or more calibration sounds or tones, which the control device may detect via one or more microphones. Within examples, a playback device with multiple speakers or transducers may emit different calibration sounds or tones (e.g., sounds at different frequency ranges or phases) via each speaker or transducer. For instance, a tweeter may output relatively high-frequency calibration audio while a subwoofer emits relatively low frequency calibration audio. In some cases, each speaker or transducer may emit the calibration sounds simultaneously. In other cases, the speakers or transducers may emit the calibration sounds at different times, perhaps in respective intervals.
In further examples, the control device may display a plurality of circular graphical elements that pulse in synchrony with the one or more of calibration tones played by the playback device during the spatial calibration component. In some instances, the plurality of circular graphical elements may move along an axis and/or shift positions. Such movement may be indicative of a location of the playback device relative to the particular location within the given environment.
Some calibration procedures within the spectral calibration component may be improved by the control device detecting the calibration sounds at multiple physical locations within the environment. Acoustics of an environment may vary from location to location within the environment. Detecting the calibration sounds at multiple physical locations within the environment may provide a better understanding of the environment as a whole. To facilitate detecting the calibration sounds at multiple physical locations, the control device may provide a prompt to perform a movement during the calibration procedure. The movement may involve the user carrying the control device around the room while the one or more playback devices under calibration emits calibration sounds. In this manner, the control device may detect the calibration sounds at multiple physical locations within the environment.
As indicated above, example techniques may involve using a control device to facilitate the calibration of a playback device for a particular location within a given environment. In one aspect, a method is provided. The method may involve displaying (i) a prompt to initiate a calibration sequence that includes a spectral calibration component and a spatial calibration component, and (ii) a sequence of one or more prompts to prepare the particular location within the given environment for the spatial calibration component. The spectral calibration component may involve calibration of a playback device for a given environment in which the playback device is located, and the spatial calibration component may involve calibration of the playback device for a particular location within the given environment. The method may also involve displaying a selectable control, that, when selected, initiates spatial calibration of the playback device within the particular location of the given environment. The method may also involve causing the spatial calibration component to be initiated.
In another aspect, a device is provided. The device includes a network interface, at least one processor, a data storage, and program logic stored in the data storage and executable by the at least one processor to perform operations. The operations may include displaying (i) a prompt to initiate a calibration sequence that includes a spectral calibration component and a spatial calibration component, and (ii) a sequence of one or more prompts to prepare the particular location within the given environment for the spatial calibration component. The operations may also include displaying a selectable control, that, when selected, initiates spatial calibration of the playback device within the particular location of the given environment. The operations may also involve causing the spatial calibration component to be initiated.
In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform operations. The operations may include displaying (i) a prompt to initiate a calibration sequence that includes a spectral calibration component and a spatial calibration component, and (ii) a sequence of one or more prompts to prepare the particular location within the given environment for the spatial calibration component. The operations may also include displaying a selectable control, that, when selected, initiates spatial calibration of the playback device within the particular location of the given environment. The operations may also involve causing the spatial calibration component to be initiated.
It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments. While some examples described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this description is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
Further discussions relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in
a. Example Playback Devices
In one example, the processor 202 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 206. The memory 206 may be a tangible computer-readable medium configured to store instructions executable by the processor 202. For instance, the memory 206 may be data storage that can be loaded with one or more of the software components 204 executable by the processor 202 to achieve certain functions. In one example, the functions may involve the playback device 200 retrieving audio data from an audio source or another playback device. In another example, the functions may involve the playback device 200 sending audio data to another device or playback device on a network. In yet another example, the functions may involve pairing of the playback device 200 with one or more playback devices to create a multi-channel audio environment.
Certain functions may involve the playback device 200 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener will preferably not be able to perceive time-delay differences between playback of the audio content by the playback device 200 and the one or more other playback devices. U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference, provides in more detail some examples for audio playback synchronization among playback devices.
The memory 206 may further be configured to store data associated with the playback device 200, such as one or more zones and/or zone groups the playback device 200 is a part of, audio sources accessible by the playback device 200, or a playback queue that the playback device 200 (or some other playback device) may be associated with. The data may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device 200. The memory 206 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.
The audio processing components 208 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In one embodiment, one or more of the audio processing components 208 may be a subcomponent of the processor 202. In one example, audio content may be processed and/or intentionally altered by the audio processing components 208 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback by the playback device 200, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.
Audio content to be processed and/or played back by the playback device 200 may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 214.
The network interface 214 may be configured to facilitate a data flow between the playback device 200 and one or more other devices on a data network. As such, the playback device 200 may be configured to receive audio content over the data network from one or more other playback devices in communication with the playback device 200, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 200 may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 214 may be configured to parse the digital packet data such that the data destined for the playback device 200 is properly received and processed by the playback device 200.
As shown, the network interface 214 may include wireless interface(s) 216 and wired interface(s) 218. The wireless interface(s) 216 may provide network interface functions for the playback device 200 to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device 200 is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 218 may provide network interface functions for the playback device 200 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 214 shown in
In one example, the playback device 200 and one other playback device may be paired to play two separate audio components of audio content. For instance, playback device 200 may be configured to play a left channel audio component, while the other playback device may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. The paired playback devices (also referred to as “bonded playback devices”) may further play audio content in synchrony with other playback devices.
In another example, the playback device 200 may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may be configured to process and reproduce sound differently than an unconsolidated playback device or playback devices that are paired, because a consolidated playback device may have additional speaker drivers through which audio content may be rendered. For instance, if the playback device 200 is a playback device designed to render low frequency range audio content (i.e. a subwoofer), the playback device 200 may be consolidated with a playback device designed to render full frequency range audio content. In such a case, the full frequency range playback device, when consolidated with the low frequency playback device 200, may be configured to render only the mid and high frequency components of audio content, while the low frequency range playback device 200 renders the low frequency component of the audio content. The consolidated playback device may further be paired with a single playback device or yet another consolidated playback device.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in
b. Example Playback Zone Configurations
Referring back to the media playback system 100 of
As shown in
In one example, one or more playback zones in the environment of
As suggested above, the zone configurations of the media playback system 100 may be dynamically modified, and in some embodiments, the media playback system 100 supports numerous configurations. For instance, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102 from the balcony zone to the office zone, the office zone may now include both the playback device 118 and the playback device 102. The playback device 102 may be paired or grouped with the office zone and/or renamed if so desired via a control device such as the control devices 126 and 128. On the other hand, if the one or more playback devices are moved to a particular area in the home environment that is not already a playback zone, a new playback zone may be created for the particular area.
Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For instance, the dining room zone and the kitchen zone 114 may be combined into a zone group for a dinner party such that playback devices 112 and 114 may render audio content in synchrony. On the other hand, the living room zone may be split into a television zone including playback device 104, and a listening zone including playback devices 106, 108, and 110, if the user wishes to listen to music in the living room space while another user wishes to watch television.
c. Example Control Devices
The processor 302 may be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 304 may be configured to store instructions executable by the processor 302 to perform those functions. The memory 304 may also be configured to store the media playback system controller application software and other data associated with the media playback system 100 and the user.
In one example, the network interface 306 may be based on an industry standard (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The network interface 306 may provide a means for the control device 300 to communicate with other devices in the media playback system 100. In one example, data and information (e.g., such as a state variable) may be communicated between control device 300 and other devices via the network interface 306. For instance, playback zone and zone group configurations in the media playback system 100 may be received by the control device 300 from a playback device or another network device, or transmitted by the control device 300 to another playback device or network device via the network interface 306. In some cases, the other network device may be another control device.
Playback device control commands such as volume control and audio playback control may also be communicated from the control device 300 to a playback device via the network interface 306. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the control device 300. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others. Accordingly, the control device 300 may sometimes be referred to as a controller, whether the control device 300 is a dedicated controller or a network device on which media playback system controller application software is installed.
The user interface 308 of the control device 300 may be configured to facilitate user access and control of the media playback system 100, by providing a controller interface such as the controller interface 400 shown in
The playback control region 410 may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 410 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.
The playback zone region 420 may include representations of playback zones within the media playback system 100. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 420 may be dynamically updated as playback zone or zone group configurations are modified.
The playback status region 430 may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 420 and/or the playback status region 430. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 400.
The playback queue region 440 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
Referring back to the user interface 400 of
The audio content sources region 450 may include graphical representations of selectable audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. Discussions pertaining to audio content sources may be found in the following section.
d. Example Audio Content Sources
As indicated previously, one or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g., according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of
In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of
As noted above, techniques described herein may facilitate the calibration of one or more playback devices within a particular location of a given environment.
Implementation 500 shown in
In addition, for the implementations disclosed herein, the flowcharts show functionality and operation of one possible implementation of present embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as computer-readable media that stores data for short periods of time like register memory, processor cache, and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the implementations disclosed herein, each block may represent circuitry that is wired to perform the specific logical functions in the process.
By way of example, the following technique makes reference to a calibration procedure in which a single playback device is calibrated within a particular location of a given environment. However, in some cases, multiple playback devices may be calibrated within the particular location (or within another location) during a calibration procedure. For instance, an example media playback system may include two or more playback devices that are associated with one another, such as by way of a zone, bonded pair, zone group, or other arrangement. Such arrangements of multiple speakers may function together in operation, and may likewise be calibrated together. The calibration procedure and prompts shown by a playback device to facilitate that calibration procedure may adapt to the specific configuration of the playback devices to be calibrated. For example, an example calibration procedure of two or more playback devices may involve multiple playback devices emitting respective calibration sounds, which may be detected by one or more control devices.
Further, some calibration procedures may involve calibration of multiple channels, as some playback devices may have multiple channels. For example, some example playback devices may include multiple speakers, each arranged as a separate channel. As another example, a sound bar-type playback device may include multiple channels (e.g., left, right, and center channels).
a. Display Prompt(s) to Initiate Calibration Sequence
At block 502, implementation 500 involves displaying one or more prompts to initiate a calibration sequence. As noted above, one of the two or more calibrations may be applied to one or more playback devices, perhaps for different use cases. Example uses cases might include music playback or surround sound (e.g, home theater), among others.
Within examples, the calibration may include a spectral and/or spatial calibration component. For instance, the processing device may determine a first calibration that configures one or more playback devices to a given listening area or environment spatially (and perhaps also spectrally). Such a calibration may configure (i.e. “tune” or “optimize”) the one or more playback devices to one or more particular locations within the environment (e.g., one or more preferred listening positions, such as favorite seating location), perhaps by adjusting time-delay and/or loudness for those particular locations. This first calibration may be applied during other use cases, such as home theater. The processing device may also determine a second calibration that configures the one or more playback devices to a given listening area spectrally. Such a calibration may generally help offset acoustic characteristics of the environment and be applied during certain use cases, such as music playback.
In some embodiments, a control device, such as control device 126 of media playback system 100, may display an interface (e.g., control interface 400 of
A control device may calibrate a playback device in various circumstances. In some cases, a control device may display one or more prompts during a set-up procedure for a media playback system (e.g., a procedure to configure one or more playback devices into a media playback system). In other cases, the control device may display one or more prompts upon detecting input data indicating a request to configure the media playback system (e.g., a request to configure a media playback system with an additional playback device, or a request to calibrate a particular playback device in the media playback system).
In further embodiments, the control device may display one or more prompts when a playback device is moved within an environment in which it is operating. A playback device may include an accelerometer or other sensor that is sensitive to movement. The playback device may use such a sensor to detect when the playback device has been moved. In such circumstances, the playback device may transmit a message indicating that it has been moved, which may indicate to the control device that a new calibration should be suggested.
In some embodiments, a control device may display one or more prompts before initiating the calibration sequence. The one or more prompts may indicate why calibration of the playback device is suggested, what the calibration procedure involves, and what the calibration procedure does. The prompt may further provide a selectable control that, when selected, initiates a calibration sequence. The prompt might also provide an option to defer the calibration procedure.
In some cases, quality of calibration can be further improved by preparing the environment for calibration. To prepare an environment for calibration, a control device may display a prompt to reduce ambient noise in the environment. By way of example,
In some embodiments, when the detected background noise level exceeds a calibration threshold during the calibration sequence, control device 600 may display a control interface that prompts to reduce ambient noise within the environment until the ambient noise level is less than that calibration threshold. In some cases, ambient noise may be constantly monitored throughout the calibration sequence, and the calibration sequence (e.g., the spatial calibration component and the spectral calibration component) may be aborted or interrupted if the background noise level exceeds the calibration threshold. The control device may determine whether the level of ambient noise within the environment is below the threshold level for calibration. The appropriate ambient noise level for calibration may vary by calibration procedure. Sound pressure levels consistent with a quiet room may be appropriate for some example calibration procedures (e.g., sound pressure levels in the range of 30-50 dB). To determine the level of ambient noise within the environment, a control device may include a microphone. By way of the microphone, the control device may detect ambient noise within the environment and determine whether the detected noise is below a threshold level such that the level is suitable for calibration.
In
Control interface 1000 also includes a selectable control 1004, that when selected, displays the next prompt that may initiate a procedure to calibrate the playback device or further prepare for the calibration procedure. Control interface 1000 also includes a selectable control 1006, that when selected, displays the previous prompt (e.g., control interface 700, 800, and/or 900).
b. Display Prompt(s) to Prepare Location for Spatial Calibration
Referring back to
In
Control interface 1100 also includes a selectable control 1104, that when selected, displays the next prompt that may initiate the spatial calibration component or further prepare the particular location for the spatial calibration component. Control interface 1100 also includes a selectable control 1106, that when selected, displays the previous prompt (e.g., control interfaces 700, 800, 900, and/or 1000).
In some cases, a removable case or cover is installed on the control device. Such protection may be installed on control devices such as smartphones and tablets to protect the device from various hazards, such as drops or spills. However, some types of cases affect microphone reception. For instance, a removable case might fully or partially cover the microphone, which may attenuate sound before it reaches the microphone. To prepare an environment for calibration, a control device may display a prompt to remove any removable cases or covers from the control device.
To illustrate, in
Like several of the other example control interfaces, control interface 1200 includes several selectable controls. Selectable control 1204, when selected, advances the calibration procedure (e.g., by causing the control device to display a prompt to prepare another aspect of the media playback system or environment for calibration). Further, selectable control 1206, when selected, steps backward in the calibration procedure.
Some control devices, such as smartphones, have microphones that are mounted towards the bottom of the device, which may position the microphone nearer to the user's mouth during a phone call. However, when the control device is held in a hand during the calibration procedure, such a mounting position might be less than ideal for detecting the calibration sounds. For instance, in such a position, the hand might fully or partially obstruct the microphone, which may affect the microphone detecting calibration sounds emitted by the playback device. In some cases, rotating the control device such that its microphone is oriented upwards may improve the microphone's ability to detect the calibration sounds, which may improve the calibration quality.
In an attempt to position a control device in such an orientation, a control device may display a prompt to rotate the phone. In some cases, such as when a microphone of a control device is mounted near the bottom of the device, the control device may display a prompt to rotate the phone by, for example, 180 degrees about a horizontal axis such that the microphone is oriented upwards after the rotation. After such a rotation, the control device may be upside down relative to its intended orientation within a hand (e.g., with the microphone towards the top of the device, and perhaps with a speaker towards the bottom of the device).
By way of example, in
In some cases, a device manufacturer may choose to mount a microphone in other positions on the phone. In such cases, rotating the phone might not orient the microphone in an improved orientation for detecting the calibration sounds. Further, such positions may be unpredictable. To avoid such issues, in some embodiments, the control device may identify the mounting position of a suitable microphone within the control device and display a prompt to rotate the phone based on that mounting position. For instance, the control device may query a server that maintains data (e.g., a database) correlating particular control device models to known mounting positions of the microphone. Such a query may return an indication of the particular mounting position of a microphone on the control device, which the control device may use to display a prompt for a particular rotation that is based on the mounting position.
Because the control device may be rotated in a hand after the control device displays a prompt to rotate the control device, the display of the control device may be upside down from the perspective of the user. Such an orientation may interfere with the user interacting with control interfaces or other elements shown on the display. To offset the rotation, the control device may display a control interface that is rotated relative to the previously displayed control interface(s). Such a control interface may offset the rotation of the device so as to orient the control interface in an appropriate orientation to view and interact with the control interface.
To illustrate, in
Control interface 1400 also includes a selectable control 1406, that when selected, displays the next prompt that may initiate the spatial calibration component or further prepare the particular location for the spatial calibration component. Control interface 1400 also includes a selectable control 1404, that when selected, displays the previous prompt (e.g., control interfaces 700-1200 and/or 1300).
Some operating systems may restrict programs from accessing to certain hardware, such as the microphone. Accordingly, in some cases, preparing the particular location for spatial calibration may involve removing such restrictions to grant access to the microphone such that it can be used to detect calibration sounds. The technique for granting access to the microphone may vary by operating system. Some control devices have operating systems that prompt for permission to grant access to the microphone when the microphone is accessed. Other control devices have a settings menu by which access to the access to the microphone can be granted. To facilitate access to the microphone, the control device may display instructions to grant access to the microphone of the control device. Such instructions may vary by device (e.g., by the operating system of the device). Alternative techniques to obtain access to the microphone are contemplated as well.
In
As shown in
c. Initiate Spatial Calibration of Playback Device
Referring back to
To cause the spatial calibration component to be initiated, control device 600 may send an instruction that causes the playback device to emit one or more pre-determined calibration sounds. The control device may transmit such a command by way of a network interface. Upon receiving such a command, the playback device may output a series of calibration tones. The playback device may listen for such calibration sounds. Recordings of the calibration sounds emitted by the playback device may be analyzed to determine calibration settings for the environment. The calibration sound may be periodic such that the repetitions of the calibration sound continue for a calibration interval. During the calibration interval, repetitions of the calibration sound may be detected at the particular location within the given environment.
In some embodiments, different calibration procedures (e.g., spatial calibration component, spectral calibration component) may use different calibration sounds. Additionally or alternatively, different playback devices may emit different calibration sounds. In some cases, a playback device with multiple speakers or transducers may emit different calibration sounds via each speaker or transducer. In some instances, each speaker or transducer may emit the calibration sounds simultaneously. In other instances, the speakers or transducers may emit the calibration sounds at different times.
Some calibrations and/or playback devices may use a combination of different calibration sounds. Within examples, the calibration sound may be an impulse (like a clap or a spark) or a sine sweep, among other examples. The calibration sound may be either audible (i.e. within 20-20,000 Hz) or inaudible (e.g., greater than 20,000 Hz). In some cases, the playback device may emit audible music and an inaudible calibration sound, which may improve user experience as the user can listen to the music during the calibration procedure. In some embodiments, a playback device with multiple speakers or transducers may emit the audible music via one of the speakers and the inaudible calibration sound via another speaker. The playback device may emit the calibration sounds simultaneously or at different times or intervals.
While some example implementations described herein utilize a microphone of a control device in example calibration procedures, other example calibration procedures contemplated herein may involve a microphone that is not incorporated into the control device. Such a standalone microphone might be connected into the control device or the playback device, so as to facilitate recording of the emitted calibration sounds.
As noted above, the spatial calibration component may be initiated upon detecting selection of a first selectable control. Before detecting selection of the first selectable control, a control device, such as control device 600, may display one or more prompts indicating the position of the control device during the calibration sequence, and what the spatial calibration sequence involves, among other possibilities.
As shown, control interface 1600 includes a graphical region 1602 which includes graphical elements providing an indication to maintain control device 600 at a particular position (e.g., eye level) after selection of first selectable control 1606. Graphical region 1602 also includes graphical elements indicating that the spatial calibration component involves the playback device playing a series of calibration tones for a given duration of time upon selection of the first selectable control 1606. Upon selecting first selectable control 1606 in control interface 1600, control device 600 may initiate spatial calibration. Control interface 1600 also includes a selectable control 1604, that when selected, displays the previous prompt (e.g., control interfaces 700-1400 and/or 1500).
Upon detecting selection of the first selectable control 1606, the spatial calibration component may be initiated. While detecting the calibration tone from a playback device, the control device may display a control interface indicating that the control device and the playback device are performing the calibration. To illustrate,
Additionally,
Within examples, upon selection of first selectable control 1606 in
To illustrate the movement of the plurality of circular graphical elements 1706,
To further illustrate the movement of the plurality of circular graphical elements 1706,
In some instances, as the calibration tone emitted from the playback device continues to travel, the plurality of circular elements 1706 may continue to move closer to each other and eventually switch positions. To illustrate,
To further illustrate the movement of the plurality of circular graphical elements 1706,
To further illustrate the movement of the plurality of circular graphical elements 1706,
Once the spatial calibration component of the calibration sequence is complete, control device 600 may display a control interface to notify the user. In some examples, the plurality of circular elements 1706 may stop moving and/or switching positions.
d. Spectral Calibration of Playback Device
After completing the spatial calibration component of the calibration sequence, control device 600 may display one or more prompts to prepare the given environment for spectral calibration of the playback device. As noted above, some calibration procedures involve the control device using a microphone to listen for calibration tones emitted by the playback device that is being calibrated. Preparing the control device for spectral calibration may further involve setting up the conditions, so that the microphone of the control device can detect the calibration sounds emitted by the playback devices.
In some examples, after the spatial calibration component of the calibration sequence is complete, control device 600 may display one or more prompts to adjust an orientation of the control device 600 similar to the prompt in
In
In some embodiments, the control device might require that at least a portion of the video or animation be played back before the calibration procedure is advanced. Such a requirement may promote knowledge of how to move the control device during calibration so as to obtain samples from multiple locations within the environment. For example, referring to
In some cases, the control device might not require that the portion of the video or animation be played back, as the video or animation has been previously played back (such that a familiarity with movement of the control device during calibration has already been established). For instance, control device 600 may determine whether the video in graphical region 1902 has been previously played back. If the video has not been previously played back, control device 600 may display a selectable control (not shown) after a threshold portion of the video has been played back. If the video has been previously played back, control device 600 may display a selectable control (not shown) before the threshold portion of the video has been played back.
Among examples, different entities may play back the video, which may affect familiarity with the calibration procedure. For example, while in a first iteration of the calibration procedure, a first user may have viewed the video depicting movement of the control device during calibration, a second user who has not viewed the video may be involved in a second iteration of the calibration procedure and not be familiar with how to move the control device. In an attempt to avoid such familiarity, determining whether the video in graphical region 1902 has been previously played back may be tied to certain entities. For instance, in some cases, control device 600 may determine whether the video in graphical region 1902 has been previously played back by control device 600 (as opposed to some other control device, since some example media playback systems may include multiple control devices (e.g., media playback system 100). Alternatively, a given user account may be logged in or active on control device 600 during the calibration procedure, and control device 600 may determine whether the video in graphical region 1902 has been previously played back by that user account (as opposed to another user account). In further cases, control device 600 may determine whether the video has been previously played back by a control device of the media playback system that includes control device 600 and the playback device under calibration. Other examples are possible as well.
While the playback device emits a calibration tone, the control device 600 may display a control interface. Such a control interface may include an indication that the control device is listening for the presence of the calibration sound. Such an indication may be displayed while the control device attempts to detect or latch onto the emitted calibration tone. In some examples, a graphical region, such as selectable control 2008, may animate, such as by displaying a swirling pattern, while the control device 600 attempts to detect the emitted calibration tone. Such an animation may indicate that the control device is in the process of detecting the emitted calibration tone. After the control device detects the presence of the calibration sound, the control device may continue to record the calibration sound using a microphone.
While detecting the calibration sound, the control device may display a control interface indicating that the control device and the playback device are performing the calibration. To illustrate, in
As the calibration sound continues to be emitted by the playback device and detected by the control device, the control device may update the progress indicator to indicate progress through the calibration. For example, in
While the recordings of the calibration sounds are analyzed to determine the calibration settings for the playback device, the control device may display an indication of the calibration procedure's status. By way of example, in
Additionally or alternatively, as shown in
After the calibration procedure finishes, the control device may display an indication of that status. To illustrate, in
In some examples, after the calibration procedure completes, the control device display a prompt to rotate the phone by 180 degrees about a horizontal axis such that the microphone is oriented downwards after the rotation. After such a rotation, the control device may be right-side up relative to its intended orientation within a hand (e.g., with the speaker towards the top of the device, and with the microphone towards the bottom of the device). Subsequent control interfaces may be displayed right-side up, rather than inverted, to account for this change in orientation.
In some embodiments, a control device may determine a degree of adjustment made by the calibration and display an indication of this degree on a control interface. For instance, in some cases, the control device may determine whether the determined calibration profile adjusts an equalization of the playback device by more or less than a threshold degree. Within examples, the threshold may be representative of an audible difference. Adjustments that exceed the threshold may be discernible by the average listener, while adjustments that are less than the threshold might not be as easily discernible.
In some examples, the control device may display graphical elements indicating the degree of adjustment. For instance, based on determining that the determined calibration profile adjusts the equalization of the playback device by more than the threshold degree, the control device may display one or more graphical elements indicating that the calibration of the playback device significantly adjusted equalization of the playback device. In contrast, when the determined calibration profile adjusts the equalization of the playback device by less than the threshold degree, the control device may display one or more graphical elements indicating that the calibration of the playback device subtlety adjusted equalization of the playback device. For instance, in an example implementation, a control device may display text stating: “Subtle changes were made to your device, as your playback device was well-placed.” Other examples are possible as well.
As noted above, implementation 500 may include one or more operations, functions, or actions as illustrated by one or more of blocks shown in
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture. The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non provisional patent application Ser. No. 17/582,317, filed on Jan. 24, 2022, entitled “Calibration Interface,” and issued as U.S. Pat. No. 11,531,514 on Dec. 20, 2022, which is incorporated herein by reference in its entirety. U.S. non provisional patent application Ser. No. 17/582,317 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 17/103,556, filed on Nov. 24, 2020, entitled “Calibration Interface,” and issued as U.S. Pat. No. 11,237,792 on Feb. 1, 2022, which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 17/103,556 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 16/530,324, filed on Aug. 2, 2019, entitled “Calibration Interface,” and issued as U.S. Pat. No. 10,853,022 on Dec. 1, 2020, which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 16/530,324 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/217,399, filed on Jul. 22, 2016, entitled “Calibration Interface,” and issued as U.S. Pat. No. 10,372,406 on Aug. 6, 2019, which is incorporated herein by reference in its entirety. The present application incorporates herein by reference the entire contents of (i) U.S. application Ser. No. 14/696,014, filed Apr. 24, 2015, titled “Speaker Calibration”; (ii) U.S. application Ser. No. 14/826,856, filed Aug. 14, 2015, titled “Playback Device Calibration User Interfaces”; (iii) U.S. application Ser. No. 14/826,873, filed Aug. 14, 2015, titled “Speaker Calibration User Interface”; (iv) U.S. application Ser. No. 14/805,140, filed Jul. 21, 2015, titled “Hybrid Test Tone for Space-Averaged Room Audio Calibration Using A Moving Microphone”; and (v) U.S. application Ser. No. 15/005,853, filed Jan. 25, 2016, titled “Calibration with Particular Locations.”
Number | Name | Date | Kind |
---|---|---|---|
4306113 | Morton | Dec 1981 | A |
4342104 | Jack | Jul 1982 | A |
4504704 | Ohyaba et al. | Mar 1985 | A |
4592088 | Shimada | May 1986 | A |
4628530 | Op De Beek et al. | Dec 1986 | A |
4631749 | Rapaich | Dec 1986 | A |
4694484 | Atkinson et al. | Sep 1987 | A |
4773094 | Dolby | Sep 1988 | A |
4995778 | Bruessel | Feb 1991 | A |
5218710 | Yamaki et al. | Jun 1993 | A |
5255326 | Stevenson | Oct 1993 | A |
5323257 | Abe et al. | Jun 1994 | A |
5386478 | Plunkett | Jan 1995 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5553147 | Pineau | Sep 1996 | A |
5581621 | Koyama et al. | Dec 1996 | A |
5754774 | Bittinger et al. | May 1998 | A |
5757927 | Gerzon et al. | May 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5910991 | Farrar | Jun 1999 | A |
5923902 | Inagaki | Jul 1999 | A |
5939656 | Suda | Aug 1999 | A |
6018376 | Nakatani | Jan 2000 | A |
6032202 | Lea et al. | Feb 2000 | A |
6072879 | Ouchi et al. | Jun 2000 | A |
6111957 | Thomasson | Aug 2000 | A |
6256554 | DiLorenzo | Jul 2001 | B1 |
6363155 | Horbach | Mar 2002 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6469633 | Wachter | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6548967 | Dowling et al. | Apr 2003 | B1 |
6573067 | Dib-Hajj et al. | Jun 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6631179 | Sifuentes | Oct 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6639989 | Zacharov et al. | Oct 2003 | B1 |
6643744 | Cheng | Nov 2003 | B1 |
6704421 | Kitamura | Mar 2004 | B1 |
6721428 | Allred et al. | Apr 2004 | B1 |
6731760 | Pedersen | May 2004 | B2 |
6757517 | Chang | Jun 2004 | B2 |
6760451 | Craven et al. | Jul 2004 | B1 |
6766025 | Levy et al. | Jul 2004 | B1 |
6778869 | Champion | Aug 2004 | B2 |
6798889 | Dicker et al. | Sep 2004 | B1 |
6862440 | Sampath | Mar 2005 | B2 |
6916980 | Ishida et al. | Jul 2005 | B2 |
6931134 | Waller, Jr. et al. | Aug 2005 | B1 |
6985694 | De Bonet et al. | Jan 2006 | B1 |
6990211 | Parker | Jan 2006 | B2 |
7031476 | Chrisop et al. | Apr 2006 | B1 |
7039212 | Poling et al. | May 2006 | B2 |
7058186 | Tanaka | Jun 2006 | B2 |
7072477 | Kincaid | Jul 2006 | B1 |
7092535 | Pedersen et al. | Aug 2006 | B1 |
7092537 | Allred et al. | Aug 2006 | B1 |
7103187 | Neuman | Sep 2006 | B1 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7187947 | White et al. | Mar 2007 | B1 |
7236773 | Thomas | Jun 2007 | B2 |
7289637 | Montag et al. | Oct 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7312785 | Tsuk et al. | Dec 2007 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7477751 | Lyon et al. | Jan 2009 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7483540 | Rabinowitz et al. | Jan 2009 | B2 |
7489784 | Yoshino | Feb 2009 | B2 |
7490044 | Kulkarni | Feb 2009 | B2 |
7492909 | Carter et al. | Feb 2009 | B2 |
7519188 | Berardi et al. | Apr 2009 | B2 |
7529377 | Nackvi et al. | May 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7590772 | Marriott et al. | Sep 2009 | B2 |
7630500 | Beckman et al. | Dec 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7664276 | McKee | Feb 2010 | B2 |
7676044 | Sasaki et al. | Mar 2010 | B2 |
7689305 | Kreifeldt et al. | Mar 2010 | B2 |
7697701 | Pedersen et al. | Apr 2010 | B2 |
7720237 | Bharitkar et al. | May 2010 | B2 |
7742740 | Goldberg et al. | Jun 2010 | B2 |
7769183 | Bharitkar et al. | Aug 2010 | B2 |
7792311 | Holmgren et al. | Sep 2010 | B1 |
7796068 | Raz et al. | Sep 2010 | B2 |
7835689 | Goldberg et al. | Nov 2010 | B2 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7876903 | Sauk | Jan 2011 | B2 |
7925203 | Lane et al. | Apr 2011 | B2 |
7949140 | Kino | May 2011 | B2 |
7949707 | McDowall et al. | May 2011 | B2 |
7961893 | Kino | Jun 2011 | B2 |
7970922 | Svendsen | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8005228 | Bharitkar et al. | Aug 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8042961 | Massara et al. | Oct 2011 | B2 |
8045721 | Burgan et al. | Oct 2011 | B2 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8050652 | Qureshey et al. | Nov 2011 | B2 |
8063698 | Howard | Nov 2011 | B2 |
8074253 | Nathan | Dec 2011 | B1 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8116476 | Inohara | Feb 2012 | B2 |
8126156 | Corbett et al. | Feb 2012 | B2 |
8126172 | Horbach et al. | Feb 2012 | B2 |
8131390 | Braithwaite et al. | Mar 2012 | B2 |
8139774 | Berardi et al. | Mar 2012 | B2 |
8144883 | Pdersen et al. | Mar 2012 | B2 |
8160276 | Liao et al. | Apr 2012 | B2 |
8160281 | Kim et al. | Apr 2012 | B2 |
8170260 | Reining et al. | May 2012 | B2 |
8175292 | Aylward et al. | May 2012 | B2 |
8175297 | Ho et al. | May 2012 | B1 |
8194874 | Starobin et al. | Jun 2012 | B2 |
8229125 | Short | Jul 2012 | B2 |
8233632 | MacDonald et al. | Jul 2012 | B1 |
8234395 | Millington | Jul 2012 | B2 |
8238547 | Ohki et al. | Aug 2012 | B2 |
8238578 | Aylward | Aug 2012 | B2 |
8243961 | Morrill | Aug 2012 | B1 |
8264408 | Kainulainen et al. | Sep 2012 | B2 |
8265310 | Berardi et al. | Sep 2012 | B2 |
8270620 | Christensen | Sep 2012 | B2 |
8279709 | Choisel et al. | Oct 2012 | B2 |
8281001 | Busam et al. | Oct 2012 | B2 |
8290185 | Kim | Oct 2012 | B2 |
8291349 | Park et al. | Oct 2012 | B1 |
8300845 | Zurek et al. | Oct 2012 | B2 |
8306235 | Mahowald | Nov 2012 | B2 |
8325931 | Howard et al. | Dec 2012 | B2 |
8325935 | Rutschman | Dec 2012 | B2 |
8325944 | Duwenhorst et al. | Dec 2012 | B1 |
8331585 | Hagen et al. | Dec 2012 | B2 |
8332414 | Nguyen et al. | Dec 2012 | B2 |
8379876 | Zhang | Feb 2013 | B2 |
8385557 | Tashev et al. | Feb 2013 | B2 |
8391501 | Khawand et al. | Mar 2013 | B2 |
8392505 | Haughay et al. | Mar 2013 | B2 |
8401202 | Brooking | Mar 2013 | B2 |
8433076 | Zurek et al. | Apr 2013 | B2 |
8452020 | Gregg et al. | May 2013 | B2 |
8463184 | Dua | Jun 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8488799 | Goldstein et al. | Jul 2013 | B2 |
8503669 | Mao | Aug 2013 | B2 |
8527876 | Wood et al. | Sep 2013 | B2 |
8577045 | Gibbs | Nov 2013 | B2 |
8577048 | Chaikin et al. | Nov 2013 | B2 |
8600075 | Lim | Dec 2013 | B2 |
8620006 | Berardi et al. | Dec 2013 | B2 |
8682002 | Wihardja et al. | Mar 2014 | B2 |
8731206 | Park | May 2014 | B1 |
8755538 | Kwon | Jun 2014 | B2 |
8798280 | Goldberg et al. | Aug 2014 | B2 |
8819554 | Basso et al. | Aug 2014 | B2 |
8831244 | Apfel | Sep 2014 | B2 |
8855319 | Liu et al. | Oct 2014 | B2 |
8862273 | Karr | Oct 2014 | B2 |
8879761 | Johnson et al. | Nov 2014 | B2 |
8903526 | Beckhardt et al. | Dec 2014 | B2 |
8914559 | Kalayjian et al. | Dec 2014 | B2 |
8930005 | Reimann | Jan 2015 | B2 |
8934647 | Joyce et al. | Jan 2015 | B2 |
8934655 | Breen et al. | Jan 2015 | B2 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8965033 | Wiggins | Feb 2015 | B2 |
8965546 | Visser et al. | Feb 2015 | B2 |
8977974 | Kraut | Mar 2015 | B2 |
8984442 | Pirnack et al. | Mar 2015 | B2 |
8989406 | Wong et al. | Mar 2015 | B2 |
8995687 | Marino, Jr. et al. | Mar 2015 | B2 |
8995688 | Chemtob et al. | Mar 2015 | B1 |
8996370 | Ansell | Mar 2015 | B2 |
9014380 | Gautama et al. | Apr 2015 | B2 |
9020153 | Britt, Jr. | Apr 2015 | B2 |
9021153 | Lu | Apr 2015 | B2 |
9042556 | Kallai et al. | May 2015 | B2 |
9065929 | Chen et al. | Jun 2015 | B2 |
9084058 | Reilly et al. | Jul 2015 | B2 |
9100766 | Soulodre et al. | Aug 2015 | B2 |
9106192 | Sheen et al. | Aug 2015 | B2 |
9179233 | Kang | Nov 2015 | B2 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9219460 | Bush | Dec 2015 | B2 |
9231545 | Agustin et al. | Jan 2016 | B2 |
9247365 | Ellis et al. | Jan 2016 | B1 |
9264839 | Oishi et al. | Feb 2016 | B2 |
9286384 | Kuper et al. | Mar 2016 | B2 |
9288596 | Gossain et al. | Mar 2016 | B2 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9307340 | Seefeldt | Apr 2016 | B2 |
9319816 | Narayanan | Apr 2016 | B1 |
9332371 | De Bruijn | May 2016 | B2 |
9348824 | Coburn, IV | May 2016 | B2 |
9355555 | Reichert et al. | May 2016 | B2 |
9398392 | Ridihalgh et al. | Jul 2016 | B2 |
9451377 | Massey et al. | Sep 2016 | B2 |
9462399 | Bharitkar et al. | Oct 2016 | B2 |
9467779 | Iyengar et al. | Oct 2016 | B2 |
9472201 | Sleator | Oct 2016 | B1 |
9473207 | McCormack et al. | Oct 2016 | B2 |
9489948 | Chu et al. | Nov 2016 | B1 |
9491499 | Wagenaar et al. | Nov 2016 | B2 |
9524098 | Griffiths et al. | Dec 2016 | B2 |
9538305 | Lehnert et al. | Jan 2017 | B2 |
9538308 | Isaac et al. | Jan 2017 | B2 |
9544701 | Rappoport | Jan 2017 | B1 |
9560449 | Carlsson et al. | Jan 2017 | B2 |
9560460 | Chaikin et al. | Jan 2017 | B2 |
9569073 | Tan | Feb 2017 | B2 |
9575615 | Nicholls | Feb 2017 | B1 |
9584915 | Fullam et al. | Feb 2017 | B2 |
9596531 | Zhang | Mar 2017 | B1 |
9609383 | Hirst | Mar 2017 | B1 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9628911 | Rabinowitz et al. | Apr 2017 | B2 |
9648422 | Sheen et al. | May 2017 | B2 |
9654073 | Apodaca | May 2017 | B2 |
9654545 | Gossain | May 2017 | B2 |
9674625 | Armstrong-Muntner et al. | Jun 2017 | B2 |
9678708 | Bierbower et al. | Jun 2017 | B2 |
9686625 | Patel | Jun 2017 | B2 |
9689960 | Barton et al. | Jun 2017 | B1 |
9690271 | Sheen et al. | Jun 2017 | B2 |
9690539 | Sheen et al. | Jun 2017 | B2 |
9693165 | Downing et al. | Jun 2017 | B2 |
9699582 | Sheerin et al. | Jul 2017 | B2 |
9706319 | Peters et al. | Jul 2017 | B2 |
9706323 | Sheen et al. | Jul 2017 | B2 |
9715365 | Kusano et al. | Jul 2017 | B2 |
9723420 | Family et al. | Aug 2017 | B2 |
9729984 | Tan et al. | Aug 2017 | B2 |
9736584 | Sheen et al. | Aug 2017 | B2 |
9743207 | Hartung | Aug 2017 | B1 |
9743208 | Oishi et al. | Aug 2017 | B2 |
9749763 | Sheen | Aug 2017 | B2 |
9763018 | McPherson et al. | Sep 2017 | B1 |
9781532 | Sheen | Oct 2017 | B2 |
9788113 | Wilberding et al. | Oct 2017 | B2 |
9794722 | Petrov | Oct 2017 | B2 |
9807536 | Liu et al. | Oct 2017 | B2 |
9810784 | Altman et al. | Nov 2017 | B2 |
9817549 | Chandrasekaran | Nov 2017 | B2 |
9860662 | Jarvis et al. | Jan 2018 | B2 |
9864574 | Hartung et al. | Jan 2018 | B2 |
9910634 | Sheen et al. | Mar 2018 | B2 |
9913056 | Master et al. | Mar 2018 | B2 |
9916126 | Lang | Mar 2018 | B2 |
9952825 | Sheen | Apr 2018 | B2 |
9984703 | Ur et al. | May 2018 | B2 |
10007481 | Daly et al. | Jun 2018 | B2 |
10045142 | McPherson et al. | Aug 2018 | B2 |
10111002 | Poulad | Oct 2018 | B1 |
10114605 | Gossain et al. | Oct 2018 | B2 |
10125006 | Jacobsen et al. | Nov 2018 | B2 |
10127006 | Sheen | Nov 2018 | B2 |
10154359 | Sheen | Dec 2018 | B2 |
10206052 | Perianu | Feb 2019 | B2 |
10275213 | Daly | Apr 2019 | B2 |
10299054 | McPherson et al. | May 2019 | B2 |
10299061 | Sheen | May 2019 | B1 |
10402154 | Hartung et al. | Sep 2019 | B2 |
10440492 | Crockett | Oct 2019 | B2 |
10567901 | Po et al. | Feb 2020 | B2 |
10791407 | Oishi et al. | Sep 2020 | B2 |
10853022 | Wilberding | Dec 2020 | B2 |
10863295 | Bush | Dec 2020 | B2 |
10904691 | Tu et al. | Jan 2021 | B2 |
11513216 | Kamath Koteshwara et al. | Nov 2022 | B1 |
20010038702 | Lavoie et al. | Nov 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20010043592 | Jimenez et al. | Nov 2001 | A1 |
20010053228 | Jones | Dec 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020078161 | Cheng | Jun 2002 | A1 |
20020089529 | Robbin | Jul 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20020126852 | Kashani | Sep 2002 | A1 |
20020136414 | Jordan et al. | Sep 2002 | A1 |
20020146136 | Carter, Jr. | Oct 2002 | A1 |
20030002689 | Folio | Jan 2003 | A1 |
20030031334 | Layton et al. | Feb 2003 | A1 |
20030081115 | Curry et al. | May 2003 | A1 |
20030108212 | Yun | Jun 2003 | A1 |
20030157951 | Hasty, Jr. | Aug 2003 | A1 |
20030159569 | Ohta | Aug 2003 | A1 |
20030161479 | Yang et al. | Aug 2003 | A1 |
20030161492 | Miller et al. | Aug 2003 | A1 |
20030179891 | Rabinowitz et al. | Sep 2003 | A1 |
20030235311 | Grancea et al. | Dec 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040071294 | Halgas, Jr. et al. | Apr 2004 | A1 |
20040114771 | Vaughan et al. | Jun 2004 | A1 |
20040131338 | Asada et al. | Jul 2004 | A1 |
20040237750 | Smith et al. | Dec 2004 | A1 |
20050021470 | Martin et al. | Jan 2005 | A1 |
20050031143 | Devantier et al. | Feb 2005 | A1 |
20050063554 | Devantier et al. | Mar 2005 | A1 |
20050147261 | Yeh | Jul 2005 | A1 |
20050157885 | Olney et al. | Jul 2005 | A1 |
20050276425 | Forrester et al. | Dec 2005 | A1 |
20060008256 | Khedouri et al. | Jan 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060032357 | Roovers et al. | Feb 2006 | A1 |
20060104454 | Guitarte Perez et al. | May 2006 | A1 |
20060147057 | Aggarwal et al. | Jul 2006 | A1 |
20060153391 | Hooley et al. | Jul 2006 | A1 |
20060195480 | Spiegelman et al. | Aug 2006 | A1 |
20060209197 | Vanhatalo | Sep 2006 | A1 |
20060225097 | Lawrence-Apfelbaum | Oct 2006 | A1 |
20070003067 | Gierl et al. | Jan 2007 | A1 |
20070022207 | Millington | Jan 2007 | A1 |
20070025559 | Mihelich et al. | Feb 2007 | A1 |
20070032895 | Nackvi et al. | Feb 2007 | A1 |
20070038999 | Millington | Feb 2007 | A1 |
20070086597 | Kino | Apr 2007 | A1 |
20070087686 | Holm et al. | Apr 2007 | A1 |
20070116254 | Looney et al. | May 2007 | A1 |
20070121955 | Johnston et al. | May 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070217619 | Hall et al. | Sep 2007 | A1 |
20080002839 | Eng | Jan 2008 | A1 |
20080014989 | Sandegard et al. | Jan 2008 | A1 |
20080065247 | Igoe | Mar 2008 | A1 |
20080069378 | Rabinowitz et al. | Mar 2008 | A1 |
20080077261 | Baudino et al. | Mar 2008 | A1 |
20080098027 | Aarts | Apr 2008 | A1 |
20080107128 | Lo et al. | May 2008 | A1 |
20080136623 | Calvarese | Jun 2008 | A1 |
20080144864 | Huon et al. | Jun 2008 | A1 |
20080175411 | Greve | Jul 2008 | A1 |
20080214160 | Jonsson | Sep 2008 | A1 |
20080232603 | Soulodre | Sep 2008 | A1 |
20080266385 | Smith et al. | Oct 2008 | A1 |
20080281523 | Dahl et al. | Nov 2008 | A1 |
20090003613 | Christensen | Jan 2009 | A1 |
20090024662 | Park et al. | Jan 2009 | A1 |
20090047993 | Vasa | Feb 2009 | A1 |
20090063274 | Dublin, III et al. | Mar 2009 | A1 |
20090089054 | Wang et al. | Apr 2009 | A1 |
20090110218 | Swain | Apr 2009 | A1 |
20090138507 | Burckart et al. | May 2009 | A1 |
20090147134 | Iwamatsu | Jun 2009 | A1 |
20090169025 | Chen | Jul 2009 | A1 |
20090175476 | Bottum | Jul 2009 | A1 |
20090180632 | Goldberg et al. | Jul 2009 | A1 |
20090196428 | Kim | Aug 2009 | A1 |
20090202082 | Bharitkar et al. | Aug 2009 | A1 |
20090252481 | Ekstrand | Oct 2009 | A1 |
20090285404 | Hsu et al. | Nov 2009 | A1 |
20090304194 | Eggleston et al. | Dec 2009 | A1 |
20090304205 | Hardacker et al. | Dec 2009 | A1 |
20090316923 | Tashev et al. | Dec 2009 | A1 |
20100013550 | Tanaka | Jan 2010 | A1 |
20100095332 | Gran et al. | Apr 2010 | A1 |
20100104114 | Chapman | Apr 2010 | A1 |
20100128902 | Liu et al. | May 2010 | A1 |
20100135501 | Corbett et al. | Jun 2010 | A1 |
20100142735 | Yoon et al. | Jun 2010 | A1 |
20100146445 | Kraut | Jun 2010 | A1 |
20100162117 | Basso et al. | Jun 2010 | A1 |
20100189203 | Wilhelmsson et al. | Jul 2010 | A1 |
20100195846 | Yokoyama | Aug 2010 | A1 |
20100272270 | Chaikin et al. | Oct 2010 | A1 |
20100296659 | Tanaka | Nov 2010 | A1 |
20100303248 | Tawada | Dec 2010 | A1 |
20100303250 | Goldberg et al. | Dec 2010 | A1 |
20100323793 | Andall | Dec 2010 | A1 |
20110002471 | Wihardja et al. | Jan 2011 | A1 |
20110007904 | Tomoda et al. | Jan 2011 | A1 |
20110007905 | Sato et al. | Jan 2011 | A1 |
20110029111 | Sabin et al. | Feb 2011 | A1 |
20110087842 | Lu et al. | Apr 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110135103 | Sun et al. | Jun 2011 | A1 |
20110150228 | Yoon et al. | Jun 2011 | A1 |
20110150230 | Tanaka | Jun 2011 | A1 |
20110150247 | Oliveras | Jun 2011 | A1 |
20110170710 | Son | Jul 2011 | A1 |
20110216924 | Berardi et al. | Sep 2011 | A1 |
20110234480 | Fino et al. | Sep 2011 | A1 |
20110235808 | Kon | Sep 2011 | A1 |
20110267985 | Wilkinson | Nov 2011 | A1 |
20110268281 | Florencio et al. | Nov 2011 | A1 |
20110293123 | Neumeyer et al. | Dec 2011 | A1 |
20120032928 | Alberth et al. | Feb 2012 | A1 |
20120051558 | Kim et al. | Mar 2012 | A1 |
20120057724 | Rabinowitz et al. | Mar 2012 | A1 |
20120063615 | Crockett et al. | Mar 2012 | A1 |
20120093320 | Flaks et al. | Apr 2012 | A1 |
20120114152 | Nguyen et al. | May 2012 | A1 |
20120127831 | Gicklhorn et al. | May 2012 | A1 |
20120140936 | Bonnick et al. | Jun 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120183156 | Schlessinger et al. | Jul 2012 | A1 |
20120184335 | Kim et al. | Jul 2012 | A1 |
20120213391 | Usami et al. | Aug 2012 | A1 |
20120215530 | Harsch | Aug 2012 | A1 |
20120237037 | Ninan et al. | Sep 2012 | A1 |
20120243697 | Frye et al. | Sep 2012 | A1 |
20120263325 | Freeman et al. | Oct 2012 | A1 |
20120268145 | Chandra et al. | Oct 2012 | A1 |
20120269356 | Sheerin et al. | Oct 2012 | A1 |
20120270653 | Kareemi | Oct 2012 | A1 |
20120275613 | Soulodre | Nov 2012 | A1 |
20120283593 | Searchfield et al. | Nov 2012 | A1 |
20120288124 | Fejzo et al. | Nov 2012 | A1 |
20130003981 | Lane | Jan 2013 | A1 |
20130010970 | Hegarty et al. | Jan 2013 | A1 |
20130019193 | Rhee et al. | Jan 2013 | A1 |
20130024880 | Moloney-Egnatios et al. | Jan 2013 | A1 |
20130028443 | Pance et al. | Jan 2013 | A1 |
20130051572 | Goh et al. | Feb 2013 | A1 |
20130066453 | Seefeldt | Mar 2013 | A1 |
20130108055 | Hanna et al. | May 2013 | A1 |
20130129102 | Li et al. | May 2013 | A1 |
20130129122 | Johnson et al. | May 2013 | A1 |
20130166227 | Hermann et al. | Jun 2013 | A1 |
20130170647 | Reilly et al. | Jul 2013 | A1 |
20130173794 | Agerbak et al. | Jul 2013 | A1 |
20130179535 | Baalu et al. | Jul 2013 | A1 |
20130202131 | Kemmochi et al. | Aug 2013 | A1 |
20130211843 | Clarkson | Aug 2013 | A1 |
20130216071 | Maher et al. | Aug 2013 | A1 |
20130223642 | Warren et al. | Aug 2013 | A1 |
20130230175 | Bech et al. | Sep 2013 | A1 |
20130259254 | Xiang et al. | Oct 2013 | A1 |
20130279706 | Marti et al. | Oct 2013 | A1 |
20130305152 | Griffiths et al. | Nov 2013 | A1 |
20130315405 | Kanishima et al. | Nov 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt et al. | Dec 2013 | A1 |
20130346559 | Van Erven et al. | Dec 2013 | A1 |
20140003611 | Mohammad et al. | Jan 2014 | A1 |
20140003622 | Kizyan et al. | Jan 2014 | A1 |
20140003623 | Lang | Jan 2014 | A1 |
20140003625 | Sheen et al. | Jan 2014 | A1 |
20140003626 | Holman et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140006587 | Kusano | Jan 2014 | A1 |
20140016784 | Sen et al. | Jan 2014 | A1 |
20140016786 | Sen | Jan 2014 | A1 |
20140016802 | Sen | Jan 2014 | A1 |
20140023196 | Xiang et al. | Jan 2014 | A1 |
20140029201 | Yang et al. | Jan 2014 | A1 |
20140032709 | Saussy et al. | Jan 2014 | A1 |
20140037097 | Labosco | Feb 2014 | A1 |
20140037107 | Marino, Jr. et al. | Feb 2014 | A1 |
20140052770 | Gran et al. | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140079242 | Nguyen et al. | Mar 2014 | A1 |
20140084014 | Sim et al. | Mar 2014 | A1 |
20140086423 | Domingo et al. | Mar 2014 | A1 |
20140112481 | Li et al. | Apr 2014 | A1 |
20140119551 | Bharitkar et al. | May 2014 | A1 |
20140126730 | Crawley et al. | May 2014 | A1 |
20140161265 | Chaikin et al. | Jun 2014 | A1 |
20140169569 | Toivanen et al. | Jun 2014 | A1 |
20140180684 | Strub | Jun 2014 | A1 |
20140192986 | Lee et al. | Jul 2014 | A1 |
20140219456 | Morrell et al. | Aug 2014 | A1 |
20140219483 | Hong | Aug 2014 | A1 |
20140226823 | Sen et al. | Aug 2014 | A1 |
20140226837 | Grokop | Aug 2014 | A1 |
20140242913 | Pang | Aug 2014 | A1 |
20140267148 | Luna et al. | Sep 2014 | A1 |
20140270202 | Ivanov et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140273859 | Luna et al. | Sep 2014 | A1 |
20140274212 | Zurek et al. | Sep 2014 | A1 |
20140279889 | Luna | Sep 2014 | A1 |
20140285313 | Luna et al. | Sep 2014 | A1 |
20140286496 | Luna et al. | Sep 2014 | A1 |
20140294200 | Baumgarte et al. | Oct 2014 | A1 |
20140294201 | Johnson et al. | Oct 2014 | A1 |
20140310269 | Zhang et al. | Oct 2014 | A1 |
20140321670 | Nystrom et al. | Oct 2014 | A1 |
20140323036 | Daley et al. | Oct 2014 | A1 |
20140334644 | Selig et al. | Nov 2014 | A1 |
20140341399 | Dusse et al. | Nov 2014 | A1 |
20140344689 | Scott et al. | Nov 2014 | A1 |
20140355768 | Sen et al. | Dec 2014 | A1 |
20140355794 | Morrell et al. | Dec 2014 | A1 |
20140364056 | Belk et al. | Dec 2014 | A1 |
20140369519 | Leschka et al. | Dec 2014 | A1 |
20150011195 | Li | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150023509 | Devantier et al. | Jan 2015 | A1 |
20150031287 | Pang et al. | Jan 2015 | A1 |
20150032844 | Tarr et al. | Jan 2015 | A1 |
20150036847 | Donaldson | Feb 2015 | A1 |
20150036848 | Donaldson | Feb 2015 | A1 |
20150043736 | Olsen et al. | Feb 2015 | A1 |
20150063610 | Mossner | Mar 2015 | A1 |
20150078586 | Ang et al. | Mar 2015 | A1 |
20150078596 | Sprogis | Mar 2015 | A1 |
20150100991 | Risberg et al. | Apr 2015 | A1 |
20150146886 | Baumgarte | May 2015 | A1 |
20150149943 | Nguyen et al. | May 2015 | A1 |
20150161360 | Paruchuri et al. | Jun 2015 | A1 |
20150195666 | Massey et al. | Jul 2015 | A1 |
20150201274 | Ellner et al. | Jul 2015 | A1 |
20150208184 | Tan et al. | Jul 2015 | A1 |
20150208188 | Carlsson et al. | Jul 2015 | A1 |
20150220558 | Snibbe et al. | Aug 2015 | A1 |
20150223002 | Mehta et al. | Aug 2015 | A1 |
20150223004 | Deprez et al. | Aug 2015 | A1 |
20150229699 | Liu | Aug 2015 | A1 |
20150260754 | Perotti et al. | Sep 2015 | A1 |
20150263692 | Bush | Sep 2015 | A1 |
20150264023 | Reno | Sep 2015 | A1 |
20150271593 | Sun | Sep 2015 | A1 |
20150271616 | Kechichian et al. | Sep 2015 | A1 |
20150271620 | Lando et al. | Sep 2015 | A1 |
20150281866 | Williams et al. | Oct 2015 | A1 |
20150286360 | Wachter | Oct 2015 | A1 |
20150289064 | Jensen et al. | Oct 2015 | A1 |
20150358756 | Harma et al. | Dec 2015 | A1 |
20150382128 | Ridihalgh et al. | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160011846 | Sheen | Jan 2016 | A1 |
20160011850 | Sheen et al. | Jan 2016 | A1 |
20160014509 | Hansson et al. | Jan 2016 | A1 |
20160014510 | Sheen | Jan 2016 | A1 |
20160014511 | Sheen et al. | Jan 2016 | A1 |
20160014534 | Sheen | Jan 2016 | A1 |
20160014535 | Wilberding | Jan 2016 | A1 |
20160014536 | Sheen | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160021473 | Riggi | Jan 2016 | A1 |
20160021481 | Johnson et al. | Jan 2016 | A1 |
20160027467 | Proud | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160035337 | Aggarwal et al. | Feb 2016 | A1 |
20160036404 | Fleischmann et al. | Feb 2016 | A1 |
20160036881 | Tembey et al. | Feb 2016 | A1 |
20160037277 | Matsumoto et al. | Feb 2016 | A1 |
20160061597 | De et al. | Mar 2016 | A1 |
20160070525 | Sheen et al. | Mar 2016 | A1 |
20160070526 | Sheen | Mar 2016 | A1 |
20160073210 | Sheen | Mar 2016 | A1 |
20160088438 | O'Keeffe | Mar 2016 | A1 |
20160119730 | Virtanen | Apr 2016 | A1 |
20160140969 | Srinivasan et al. | May 2016 | A1 |
20160142849 | Satheesh et al. | May 2016 | A1 |
20160165297 | Jamal-Syed et al. | Jun 2016 | A1 |
20160192098 | Oishi et al. | Jun 2016 | A1 |
20160192099 | Oishi et al. | Jun 2016 | A1 |
20160192100 | Rabinowitz et al. | Jun 2016 | A1 |
20160212535 | Le Nerriec et al. | Jul 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160241907 | Pearson | Aug 2016 | A1 |
20160246449 | Jarske | Aug 2016 | A1 |
20160254696 | Plumb et al. | Sep 2016 | A1 |
20160260140 | Shirley et al. | Sep 2016 | A1 |
20160309276 | Ridihalgh et al. | Oct 2016 | A1 |
20160330562 | Crockett | Nov 2016 | A1 |
20160342201 | Jehan | Nov 2016 | A1 |
20160353018 | Anderson et al. | Dec 2016 | A1 |
20160366517 | Chandran et al. | Dec 2016 | A1 |
20160373860 | Leschka et al. | Dec 2016 | A1 |
20170026769 | Patel | Jan 2017 | A1 |
20170041724 | Master et al. | Feb 2017 | A1 |
20170069338 | Elliot et al. | Mar 2017 | A1 |
20170083279 | Sheen | Mar 2017 | A1 |
20170086003 | Rabinowitz et al. | Mar 2017 | A1 |
20170105084 | Holman | Apr 2017 | A1 |
20170133011 | Chen et al. | May 2017 | A1 |
20170142532 | Pan | May 2017 | A1 |
20170207762 | Porter et al. | Jul 2017 | A1 |
20170215017 | Hartung et al. | Jul 2017 | A1 |
20170223447 | Johnson et al. | Aug 2017 | A1 |
20170230772 | Johnson et al. | Aug 2017 | A1 |
20170257722 | Kerdranvat et al. | Sep 2017 | A1 |
20170280265 | Po | Sep 2017 | A1 |
20170286052 | Hartung et al. | Oct 2017 | A1 |
20170303039 | Iyer et al. | Oct 2017 | A1 |
20170311108 | Patel | Oct 2017 | A1 |
20170374482 | McPherson et al. | Dec 2017 | A1 |
20180096460 | Tripp | Apr 2018 | A1 |
20180122378 | Mixter et al. | May 2018 | A1 |
20180376268 | Kerdranvat et al. | Dec 2018 | A1 |
20190037328 | McPherson et al. | Jan 2019 | A1 |
20190058942 | Garner et al. | Feb 2019 | A1 |
20190320278 | McPherson et al. | Oct 2019 | A1 |
20200005830 | Wasada et al. | Jan 2020 | A1 |
20200249346 | Lim et al. | Aug 2020 | A1 |
20200382888 | McPherson et al. | Dec 2020 | A1 |
20210118429 | Shan | Apr 2021 | A1 |
20210141050 | Janssen et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
1369188 | Sep 2002 | CN |
1447624 | Oct 2003 | CN |
1622694 | Jun 2005 | CN |
1984507 | Jun 2007 | CN |
101032187 | Sep 2007 | CN |
101047777 | Oct 2007 | CN |
101366177 | Feb 2009 | CN |
101478296 | Jul 2009 | CN |
101491116 | Jul 2009 | CN |
101681219 | Mar 2010 | CN |
101754087 | Jun 2010 | CN |
101800051 | Aug 2010 | CN |
102318325 | Jan 2012 | CN |
102823277 | Dec 2012 | CN |
102893633 | Jan 2013 | CN |
103491397 | Jan 2014 | CN |
103811010 | May 2014 | CN |
103988523 | Aug 2014 | CN |
104219604 | Dec 2014 | CN |
104247461 | Dec 2014 | CN |
104284291 | Jan 2015 | CN |
104584061 | Apr 2015 | CN |
104967953 | Oct 2015 | CN |
105163221 | Dec 2015 | CN |
102007032281 | Jan 2009 | DE |
0505949 | Sep 1992 | EP |
0772374 | May 1997 | EP |
1133896 | Aug 2002 | EP |
1349427 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2043381 | Apr 2009 | EP |
1349427 | Dec 2009 | EP |
2161950 | Mar 2010 | EP |
2194471 | Jun 2010 | EP |
2197220 | Jun 2010 | EP |
2288178 | Feb 2011 | EP |
2429155 | Mar 2012 | EP |
1825713 | Oct 2012 | EP |
2613573 | Jul 2013 | EP |
2591617 | Jun 2014 | EP |
2747081 | Jun 2014 | EP |
2835989 | Feb 2015 | EP |
2860992 | Apr 2015 | EP |
2874413 | May 2015 | EP |
3128767 | Feb 2017 | EP |
2974382 | Apr 2017 | EP |
2986034 | May 2017 | EP |
3285502 | Feb 2018 | EP |
102004823 | Apr 2011 | IN |
H02280199 | Nov 1990 | JP |
H05199593 | Aug 1993 | JP |
H105211700 | Aug 1993 | JP |
H06327089 | Nov 1994 | JP |
H0723490 | Jan 1995 | JP |
H1069280 | Mar 1998 | JP |
H10307592 | Nov 1998 | JP |
2002502193 | Jan 2002 | JP |
2002067815 | Mar 2002 | JP |
2002101500 | Apr 2002 | JP |
2003143252 | May 2003 | JP |
2003304590 | Oct 2003 | JP |
2005086686 | Mar 2005 | JP |
2005538633 | Dec 2005 | JP |
2006017893 | Jan 2006 | JP |
2006180039 | Jul 2006 | JP |
2006191562 | Jul 2006 | JP |
2006340285 | Dec 2006 | JP |
2007068125 | Mar 2007 | JP |
2007271802 | Oct 2007 | JP |
2007325073 | Dec 2007 | JP |
2008035254 | Feb 2008 | JP |
2008228133 | Sep 2008 | JP |
2009188474 | Aug 2009 | JP |
2009288260 | Dec 2009 | JP |
2010056970 | Mar 2010 | JP |
2010081124 | Apr 2010 | JP |
2010141892 | Jun 2010 | JP |
2011123376 | Jun 2011 | JP |
2011130212 | Jun 2011 | JP |
2011164166 | Aug 2011 | JP |
2011215378 | Oct 2011 | JP |
2011217068 | Oct 2011 | JP |
2013247456 | Dec 2013 | JP |
2013253884 | Dec 2013 | JP |
2014519274 | Aug 2014 | JP |
2014523165 | Sep 2014 | JP |
6356331 | Jul 2018 | JP |
6567735 | Aug 2019 | JP |
1020060116383 | Nov 2006 | KR |
1020080011831 | Feb 2008 | KR |
200153994 | Jul 2001 | WO |
0182650 | Nov 2001 | WO |
200182650 | Nov 2001 | WO |
2003093950 | Nov 2003 | WO |
2004066673 | Aug 2004 | WO |
2007016465 | Feb 2007 | WO |
2011139502 | Nov 2011 | WO |
2013006323 | Jan 2013 | WO |
2013016500 | Jan 2013 | WO |
2013126603 | Aug 2013 | WO |
2014032709 | Mar 2014 | WO |
2014032709 | Mar 2014 | WO |
2014036121 | Mar 2014 | WO |
2014040667 | Mar 2014 | WO |
2015024881 | Feb 2015 | WO |
2015108794 | Jul 2015 | WO |
2015178950 | Nov 2015 | WO |
2016040324 | Mar 2016 | WO |
2016054090 | Apr 2016 | WO |
2016118327 | Jul 2016 | WO |
2017049169 | Mar 2017 | WO |
Entry |
---|
Advisory Action dated Jul. 1, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 2 pages. |
Advisory Action dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 3 pages. |
Advisory Action dated Dec. 11, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 3 pages. |
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 3 pages. |
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 3 pages. |
Advisory Action dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 3 pages. |
Advisory Action dated Jun. 19, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 3 pages. |
Advisory Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 3 pages. |
Advisory Action dated Nov. 22, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 4 pages. |
Advisory Action dated Jun. 3, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 3 pages. |
Advisory Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 3 pages. |
Advisory Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 3 pages. |
An Overview of IEEE 1451.4 Transducer Electronic Data Sheets (TEDS) National Instruments, 19 pages. |
Audio Tron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
Audio Tron Reference Manual, Version 3.0, May 2002, 70 pages. |
Audio Tron Setup Guide, Version 3.0, May 2002, 38 pages. |
“AV Amplifier DSP-Z7”, Yamaha, 2008 [retrieved on Jan. 3, 2022]. Retrieved from the Internet: URL: https://de.yamaha.com/files/download/other_assets/6/318616/DSP-Z7_en.pdf, pp. 1-154. |
BeoLab5 User Manual. Bang & Olufsen. Version 1.0, 20 pages [produced by Google in WDTX Case No. 6:20-cv-00881 Answer on Jan. 8, 2021]. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc Scatternet for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Burger, Dennis, “Automated Room Correction Explained,” hometheaterreview.com, Nov. 18, 2013, http://hometheaterreview.com/automated-room-correction-explained/ Retrieved Oct. 10, 2014, 3 pages. |
Chen, Trista P. et al. VRAPS: Visual Rhythm-Based Audio Playback System. IEEE, Gracenote, Inc., 2010, pp. 721-722. |
Chinese Patent Office, Chinese Office Action and Translation dated Apr. 1, 2021, issued in connection with Chinese Application No. 201910395715.4, 8 pages. |
Chinese Patent Office, First Office Action and Translation dated Nov. 3, 2021, issued in connection with Chinese Application No. 202011278502.2, 10 pages. |
Chinese Patent Office, First Office Action and Translation dated Jun. 19, 2019, issued in connection with Chinese Application No. 201680054189.X, 11 pages. |
Chinese Patent Office, First Office Action and Translation dated Feb. 22, 2021, issued in connection with Chinese Application No. 202010187024.8, 11 pages. |
Chinese Patent Office, First Office Action and Translation dated Dec. 24, 2020, issued in connection with Chinese Application No. 201910978233.1, 15 pages. |
Chinese Patent Office, First Office Action and Translation dated Jan. 28, 2021, issued in connection with Chinese Application No. 201680054164.X, 19 pages. |
Chinese Patent Office, First Office Action and Translation dated Jun. 29, 2020, issued in connection with Chinese Application No. 201780057093.3, 11 pages. |
Chinese Patent Office, First Office Action and Translation dated Feb. 3, 2021, issued in connection with Chinese Application No. 202010095178.4, 15 pages. |
Chinese Patent Office, First Office Action and Translation dated Aug. 4, 2020, issued in connection with Chinese Application No. 201910395715.4, 22 pages. |
Chinese Patent Office, First Office Action dated Aug. 11, 2017, issued in connection with Chinese Patent Application No. 201580013837.2, 8 pages. |
Chinese Patent Office, First Office Action dated Nov. 20, 2018, issued in connection with Chinese Application No. 201580047998.3, 21 pages. |
Chinese Patent Office, First Office Action dated Sep. 25, 2017, issued in connection with Chinese Patent Application No. 201580013894.0, 9 pages. |
Chinese Patent Office, First Office Action dated Nov. 5, 2018, issued in connection with Chinese Application No. 201680044080.8, 5 pages. |
Chinese Patent Office, Office Action dated Nov. 14, 2019, issued in connection with Chinese Application No. 201680040086.8, 9 pages. |
Chinese Patent Office, Second Office Action and Translation dated Aug. 26, 2019, issued in connection with Chinese Application No. 201580047998.3, 25 pages. |
Chinese Patent Office, Second Office Action dated Jan. 11, 2019, issued in connection with Chinese Application No. 201680044080.8, 4 pages. |
Chinese Patent Office, Second Office Action dated Feb. 3, 2019, issued in connection with Chinese Application No. 201580048594.6, 11 pages. |
Chinese Patent Office, Second Office Action dated May 6, 2020, issued in connection with Chinese Application No. 201680040086.8, 3 pages. |
Chinese Patent Office, Second Office Action with Translation dated Jan. 9, 2018, issued in connection with Chinese Patent Application No. 201580013837.2, 10 pages. |
Chinese Patent Office, Third Office Action dated Apr. 11, 2019, issued in connection with Chinese Application No. 201580048594.6, 4 pages. |
“Constellation Acoustic System: a revolutionary breakthrough in acoustical design,” Meyer Sound Laboratories, Inc. 2012, 32 pages. |
“Constellation Microphones,” Meyer Sound Laboratories, Inc. 2013, 2 pages. |
Corrected Notice of Allowability dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 11 pages. |
Daddy, B., “Calibrating Your Audio with a Sound Pressure Level (SPL) Meter,” Blue-ray.com, Feb. 22, 2008 Retrieved Oct. 10, 2014, 15 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European EPC Article 94.3 dated Aug. 16, 2021, issued in connection with European Application No. 19765920.4, 5 pages. |
Final Office Action dated Feb. 14, 2019, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 37 pages. |
Final Office Action dated Oct. 14, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 16 pages. |
Final Office Action dated Oct. 17, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Final Office Action dated Sep. 17, 2021, issued in connection with U.S. Appl. No. 16/564,766, filed Sep. 9, 2019, 8 pages. |
Final Office Action dated Apr. 18, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 16 pages. |
Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 8 pages. |
Final Office Action dated Dec. 18, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 12 pages. |
Final Office Action dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 15 pages. |
Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 14 pages. |
Final Office Action dated Aug. 20, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 22 pages. |
Final Office Action dated Oct. 21, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages. |
Final Office Action dated Sep. 22, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages. |
Final Office Action dated Jan. 25, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages. |
Final Office Action dated Mar. 25, 2019, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 11 pages. |
Final Office Action dated Oct. 28, 2019, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 17 pages. |
Final Office Action dated Apr. 3, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 12 pages. |
Final Office Action dated Mar. 3, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 13 pages. |
Final Office Action dated Aug. 30, 2022, issued in connection with U.S. Appl. No. 17/107,157, filed Nov. 30, 2020, 32 pages. |
Final Office Action dated Feb. 5, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 21 pages. |
Final Office Action dated Mar. 5, 2019, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 9 pages. |
Final Office Action dated Dec. 6, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 18 pages. |
Final Office Action dated Apr. 9, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 33 pages. |
First Action Interview Office Action dated Mar. 3, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 9 pages. |
First Action Interview Office Action dated Jul. 12, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
First Action Interview Office Action dated Jun. 30, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Apr. 5, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 4 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Oct. 7, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 5 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Feb. 16, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 5 pages. |
Gonzalez et al., “Simultaneous Measurement of Multichannel Acoustic Systems,” J. Audio Eng. Soc., 2004, pp. 26-42, vol. 52, No. 1/2. |
Google LLC v. Sonos, Inc., Declaration of Jeffery S. Vipperman, PHD. In Support of Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Feb. 2, 2021, 92 pages. |
Google LLC v. Sonos, Inc., Declaration of Michael T. Johnson, Ph.D. Exhibit 2016 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 117 pages. |
Google LLC v. Sonos, Inc., Deposition of Jeffrey S. Vipperman, Ph.D. Exhibit 2017 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 183 pages. |
Google LLC v. Sonos, Inc., File History of U.S. Appl. No. 61/601,529 Maher. Exhibit 2018 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 14 pages. |
Google LLC v. Sonos, Inc., Judgment. Final Written Decision Determining All Challenged Claims Unpatentable for IPR of U.S. Pat. No. 9,219,460, IPR2021-00475, Feb. 15, 2023, 45 pages. |
Google LLC v. Sonos, Inc., Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, PR2021-00475, Jun. 13, 2022, 49 pages. |
Google LLC v. Sonos, Inc., Patent Owner Sur-Reply to Petitioner's Reply for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Oct. 12, 2022, 32 pages. |
Google LLC v. Sonos, Inc., Petition for IPR of U.S. Pat. No. 9,219,460, IPR2021-00475, Feb. 5, 2021, 88 pages. |
Google LLC v. Sonos, Inc., Petitioner's Reply for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Sep. 6, 2022, 30 pages. |
Google LLC v. Sonos, Inc., Record of Oral Hearing for IPR of U.S. Pat. No. 9,219,460, IPR2021-00475, Dec. 14, 2022, 60 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 15, 2019, issued in connection with International Application No. PCT/US2017/042191, filed on Jul. 14, 2017, 10 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 20, 2018, issued in connection with International Application No. PCT/US2016/052264, filed on Sep. 16, 2016, 10 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 20, 2018, issued in connection with International Application No. PCT/US2016/052266, filed on Sep. 16, 2016, 7 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2016/043109, filed on Jul. 20, 2016, 7 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2016/043116, filed on Jul. 20, 2016, 8 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028997, filed on Apr. 22, 2016, 7 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 9, 2018, issued in connection with International Application No. PCT/US2016/041179, filed on Jul. 6, 2016, 6 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048366, filed on Aug. 27, 2019, 7 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048569, filed on Aug. 28, 2019, 11 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 24, 2015, issued In connection with International Application No. PCT/US2014/030560, filed on Mar. 17, 2014, 7 pages. |
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 8 pages. |
European Patent Office, European EPC Article 94.3 dated Oct. 29, 2021, issued in connection with European Application No. 20196286.7, 5 pages. |
European Patent Office, European EPC Article 94.3 dated Feb. 3, 2023, issued in connection with European Application No. 19765920.4, 5 pages. |
European Patent Office, European EPC Article 94.3 dated Apr. 30, 2021, issued in connection with European Application No. 20196286.7, 5 pages. |
European Patent Office, European Examination Report dated May 11, 2018, issued in connection with European Application No. 16748186.0, 6 pages. |
European Patent Office, European Extended Search Report dated Jun. 10, 2022, issued in connection with European Application No. 22155834.9, 8 pages. |
European Patent Office, European Extended Search Report dated Dec. 11, 2020, issued in connection with European Application No. 20196286.7, 6 pages. |
European Patent Office, European Extended Search Report dated Jan. 14, 2022, issued in connection with European Application No. 21171959.6, 12 pages. |
European Patent Office, European Extended Search Report dated Mar. 16, 2020, issued in connection with European Application No. 19209551.1, 7 pages. |
European Patent Office, European Extended Search Report dated Oct. 16, 2018, issued in connection with European Application No. 17185193.4, 6 pages. |
European Patent Office, European Extended Search Report dated Jul. 17, 2019, issued in connection with European Application No. 19167365.6, 7 pages. |
European Patent Office, European Extended Search Report dated Mar. 25, 2020, issued in connection with European Application No. 19215348.4, 10 pages. |
European Patent Office, European Extended Search Report dated Jun. 26, 2018, issued in connection with European Application No. 18171206.8, 9 pages. |
European Patent Office, European Extended Search Report dated Sep. 8, 2017, issued in connection with European Application No. 17000460.0, 8 pages. |
European Patent Office, European Office Action dated Nov. 10, 2020, issued in connection with European Application No. 19168800.1, 5 pages. |
European Patent Office, European Office Action dated Dec. 11, 2018, issued in connection with European Application No. 15778787.0, 6 pages. |
European Patent Office, European Office Action dated Jul. 11, 2019, issued in connection with European Application No. 15778787.0, 10 pages. |
European Patent Office, European Office Action dated Sep. 16, 2020, issued in connection with European Application No. 15778787.0, 7 pages. |
European Patent Office, European Office Action dated Aug. 19, 2020, issued in connection with European Application No. 17754501.9, 6 pages. |
European Patent Office, European Office Action dated Nov. 2, 2018, issued in connection with European Application No. 18171206.8, 6 pages. |
European Patent Office, European Office Action dated Jan. 3, 2020, issued in connection with European Application No. 17703876.7, 8 pages. |
European Patent Office, European Office Action dated Feb. 4, 2019, issued in connection with European Application No. 17703876.7, 9 pages. |
European Patent Office, European Office Action dated Sep. 7, 2020, issued in connection with European Application No. 19161826.3, 6 pages. |
European Patent Office, European Office Action dated Jul. 9, 2020, issued in connection with European Application No. 19167365.6, 4 pages. |
European Patent Office, European Office Action dated May 9, 2019, issued in connection with European Application No. 18171206.8, 7 pages. |
European Patent Office, European Partial Search Report dated Jun. 7, 2019, issued in connection with European Application No. 19161826.3, 17 pages. |
European Patent Office, European Search Report dated Jun. 13, 2019, issued in connection with European Application No. 18204450.3, 11 pages. |
European Patent Office, European Search Report dated Sep. 13, 2019, issued in connection with European Application No. 19161826.3, 13 pages. |
European Patent Office, European Search Report dated Jan. 18, 2018, issued in connection with European Patent Application No. 17185193.4, 9 pages. |
European Patent Office, European Search Report dated Jul. 9, 2019, issued in connection with European Application No. 19168800.1, 12 pages. |
European Patent Office, Examination Report dated Jul. 12, 2021, issued in connection with European Patent Application No. 17754501.9 6 pages. |
European Patent Office, Extended European Search Report dated Jan. 5, 2017, issued in connection with European Patent Application No. 15765555.6, 8 pages. |
European Patent Office, Extended Search Report dated Jan. 25, 2017, issued in connection with European Application No. 15765548.1, 7 pages. |
European Patent Office, Extended Search Report dated Apr. 26, 2017, issued in connection with European Application No. 15765548.1, 10 pages. |
European Patent Office, Office Action dated Nov. 12, 2018, issued in connection with European Application No. 17000460.0, 6 pages. |
European Patent Office, Office Action dated Jun. 13, 2017, issued in connection with European patent application No. 17000484.0, 10 pages. |
European Patent Office, Office Action dated Dec. 15, 2016, issued in connection with European Application No. 15766998.7, 7 pages. |
European Patent Office, Summons to Attend Oral Proceedings mailed on Nov. 15, 2018, issued in connection with European Application No. 16748186.0, 57 pages. |
European Patent Office, Summons to Attend Oral Proceedings mailed on Apr. 22, 2022, issued in connection with European Application No. 15778787.0, 6 pages. |
European Patent Office, Summons to Attend Oral Proceedings mailed on Sep. 24, 2019, issued in connection with European Application No. 17000460.0, 5 pages. |
Ex Parte Quayle Office Action mailed on Apr. 15, 2019, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 7 pages. |
Ex Parte Quayle Office Action mailed on Dec. 26, 2019, issued in connection with U.S. Appl. No. 16/542,418, filed Aug. 16, 2019, 7 pages. |
Excerpts from Andrew Tanenbaum, Computer Networks. 4th Edition. Copyright 2003, 87 pages [produced by Google in IPR of U.S. Pat. No. 9,219,460, IPR2021-00475 on Feb. 5, 2021]. |
Excerpts from Morfey, Christopher L., Dictionary of Acoustics. Copyright 2001, 4 pages [produced by Google in IPR of U.S. Pat. No. 9,219,460, IPR2021-00475 on Feb. 5, 2021]. |
Final Office Action dated Jul. 1, 2022, issued in connection with U.S. Appl. No. 17/033,818, filed Sep. 27, 2020, 13 pages. |
Final Office Action dated Dec. 2, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 19 pages. |
Final Office Action dated Apr. 3, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Final Office Action dated Jul. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 10 pages. |
Final Office Action dated Jun. 13, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 22 pages. |
Final Office Action dated Dec. 14, 2020, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 17 pages. |
Final Office Action dated Feb. 14, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages. |
Wikipedia, Server(Computing) https://web.archive.org/web/20160703173710/https://en.wikipedia.org/wiki/Server_ (computing), published Jul. 3, 2016, 7 pages. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.0 Owner's Manual; Copyright 2008, 501 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Non-Final Office Action dated Mar. 29, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 16 pages. |
Non-Final Office Action dated Sep. 29, 2022, issued in connection with U.S. Appl. No. 17/340,353, filed Jun. 7, 2021, 8 pages. |
Non-Final Office Action dated May 3, 2021, issued in connection with U.S. Appl. No. 16/564,766, filed Sep. 9, 2019, 16 pages. |
Non-Final Office Action dated Aug. 30, 2019, issued in connection with U.S. Appl. No. 16/115,525, filed on Aug. 28, 2018, 13 pages. |
Non-Final Office Action dated May 30, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 9 pages. |
Non-Final Office Action dated Sep. 30, 2022, issued in connection with U.S. Appl. No. 17/113,799, filed Dec. 7, 2020, 79 pages. |
Non-Final Office Action dated Mar. 31, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 10 pages. |
Non-Final Office Action dated May 31, 2019, issued in connection with U.S. Appl. No. 16/185,906, filed Nov. 9, 2018, 7 pages. |
Non-Final Office Action dated May 31, 2023, issued in connection with U.S. Appl. No. 17/810,549, filed Jul. 1, 2022, 19 pages. |
Non-Final Office Action dated Mar. 4, 2020, issued in connection with U.S. Appl. No. 15/966,534, filed Apr. 30, 2018, 11 pages. |
Non-Final Office Action dated Jan. 5, 2021, issued in connection with U.S. Appl. No. 17/078,382, filed Oct. 23, 2020, 11 pages. |
Non-Final Office Action dated Jul. 6, 2020, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 15 pages. |
Non-Final Office Action dated Nov. 6, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 13 pages. |
Non-Final Office Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/859,311, filed Dec. 29, 2017, 9 pages. |
Non-Final Office Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/865,221, filed Jan. 8, 2018, 10 pages. |
Non-Final Office Action dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 17/207,640, filed Mar. 20, 2021, 17 pages. |
Non-Final Office Action dated Dec. 9, 2022, issued in connection with U.S. Appl. No. 17/662,282, filed May 6, 2022, 12 pages. |
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 18 pages. |
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 8 pages. |
Notice of Allowance dated Jul. 21, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 8 pages. |
Notice of Allowance dated Aug. 4, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 9 pages. |
Notice of Allowance dated May 1, 2017, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 13 pages. |
Notice of Allowance dated Nov. 2, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages. |
Notice of Allowance dated Jun. 3, 2016, issued in connection with U.S. Appl. No. 14/921,799, filed Oct. 23, 2015, 8 pages. |
Notice of Allowance dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
Notice of Allowance dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 5 pages. |
Notice of Allowance dated Oct. 6, 2022, issued in connection with U.S. Appl. No. 17/582,317, filed Jan. 24, 2022, 9 pages. |
Notice of Allowance dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages. |
Notice of Allowance dated Dec. 8, 2022, issued in connection with U.S. Appl. No. 17/340,353, filed Jun. 7, 2021, 9 pages. |
Notice of Allowance dated Nov. 9, 2016, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 13 pages. |
Notice of Allowance dated Feb. 1, 2018, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages. |
Notice of Allowance dated Nov. 1, 2021, issued in connection with U.S. Appl. No. 17/103,556, filed Nov. 24, 2020, 5 pages. |
Notice of Allowance dated Apr. 10, 2015, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 8 pages. |
Notice of Allowance dated Aug. 10, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 6 pages. |
Notice of Allowance dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 2 pages. |
Notice of Allowance dated Jun. 10, 2020, issued in connection with U.S. Appl. No. 16/713,858, filed Dec. 13, 2019, 8 pages. |
Notice of Allowance dated Dec. 11, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 10 pages. |
Notice of Allowance dated Feb. 11, 2019, issued in connection with U.S. Appl. No. 15/588,186, filed May 5, 2017, 5 pages. |
Notice of Allowance dated Jul. 11, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 11 pages. |
Notice of Allowance dated Mar. 11, 2015, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 7 pages. |
Notice of Allowance dated May 11, 2023, issued in connection with U.S. Appl. No. 17/804,372, filed May 27, 2022, 8 pages. |
Notice of Allowance dated Apr. 12, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 13 pages. |
Notice of Allowance dated Aug. 12, 2019, issued in connection with U.S. Appl. No. 16/416,648, filed May 20, 2019, 7 pages. |
Notice of Allowance dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 24 pages. |
Notice of Allowance dated Dec. 12, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages. |
Notice of Allowance dated Jan. 12, 2022, issued in connection with U.S. Appl. No. 16/994,627, filed Aug. 16, 2020, 7 pages. |
Notice of Allowance dated Nov. 12, 2019, issued in connection with U.S. Appl. No. 15/955,545, filed Apr. 17, 2018, 9 pages. |
Notice of Allowance dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 7 pages. |
Notice of Allowance dated Sep. 12, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 8 pages. |
Notice of Allowance dated Mar. 3, 2022, issued in connection with U.S. Appl. No. 17/135,308, filed Dec. 28, 2020, 7 pages. |
Notice of Allowance dated May 3, 2019, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 7 pages. |
Notice of Allowance dated May 3, 2019, issued in connection with U.S. Appl. No. 16/181,583, filed Nov. 6, 2018, 7 pages. |
Notice of Allowance dated Aug. 30, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 10 pages. |
Notice of Allowance dated Dec. 30, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages. |
Notice of Allowance dated Jan. 30, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 8 pages. |
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 7 pages. |
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 8 pages. |
Notice of Allowance dated Aug. 31, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 8 pages. |
Notice of Allowance dated Mar. 31, 2020, issued in connection with U.S. Appl. No. 16/538,629, filed Aug. 12, 2019, 9 pages. |
Notice of Allowance dated Apr. 4, 2017, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages. |
Notice of Allowance dated Feb. 4, 2019, issued in connection with U.S. Appl. No. 15/166,241, filed Aug. 26, 2016, 8 pages. |
Notice of Allowance dated Feb. 4, 2019, issued in connection with U.S. Appl. No. 16/181,583, filed Nov. 6, 2018, 9 pages. |
Notice of Allowance dated Feb. 4, 2020, issued in connection with U.S. Appl. No. 16/416,619, filed May 20, 2019, 7 pages. |
Notice of Allowance dated Oct. 4, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 7 pages. |
Notice of Allowance dated Apr. 5, 2018, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages. |
Notice of Allowance dated Apr. 5, 2023, issued in connection with U.S. Appl. No. 17/562,465, filed Dec. 27, 2021, 10 pages. |
Notice of Allowance dated Feb. 5, 2021, issued in connection with U.S. Appl. No. 16/827,143, filed Mar. 23, 2020, 9 pages. |
Notice of Allowance dated Jun. 5, 2019, issued in connection with U.S. Appl. No. 15/859,311, filed Dec. 29, 2017, 8 pages. |
Notice of Allowance dated Jun. 5, 2019, issued in connection with U.S. Appl. No. 15/865,221, filed Jan. 8, 2018, 8 pages. |
Notice of Allowance dated Mar. 5, 2019, issued in connection with U.S. Appl. No. 16/102,499, filed Aug. 13, 2018, 8 pages. |
Notice of Allowance dated May 5, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages. |
Notice of Allowance dated May 5, 2022, issued in connection with U.S. Appl. No. 17/316,371, filed May 10, 2021, 10 pages. |
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 10 pages. |
Notice of Allowance dated Aug. 6, 2020, issued in connection with U.S. Appl. No. 16/564,684, filed Sep. 9, 2019, 8 pages. |
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages. |
Notice of Allowance dated Apr. 8, 2019, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 8 pages. |
Notice of Allowance dated Jul. 8, 2019, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 5 pages. |
Notice of Allowance dated Jun. 8, 2020, issued in connection with U.S. Appl. No. 16/658,896, filed Oct. 21, 2019, 8 pages. |
Notice of Allowance dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 8 pages. |
Notice of Allowance dated May 8, 2018, issued in connection with U.S. Appl. No. 15/650,386, filed Jul. 14, 2017, 13 pages. |
Notice of Allowance dated Apr. 9, 2020, issued in connection with U.S. Appl. No. 16/416,593, filed May 20, 2019, 9 pages. |
Notice of Allowance dated Jun. 9, 2020, issued in connection with U.S. Appl. No. 15/966,534, filed Apr. 30, 2018, 16 pages. |
Notice of Allowance dated May 9, 2019, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 7 pages. |
Notice of Allowance dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Papp Istvan et al. “Adaptive Microphone Array for Unknown Desired Speaker's Transfer Function”, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY vol. 122, No. 2, Jul. 19, 2007, pp. 44-49. |
Pre-Brief Appeal Conference Decision dated Mar. 19, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 2 pages. |
Preinterview First Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 6 pages. |
Preinterview First Office Action dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages. |
Preinterview First Office Action dated May 17, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 7 pages. |
Preinterview First Office Action dated May 25, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 7 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
Prismiq, Inc., “PRISMIQ Media Player User Guide,” 2003, 44 pages. |
Ross, Alex, “Wizards of Sound: Retouching acoustics, from the restaurant to the concert hall,” The New Yorker, Feb. 23, 2015. Web. Feb. 26, 2015, 9 pages. |
Sonos, Inc. v. Google LLC, WDTX Case No. 6:20-cv-00881, Google's Answer and Counterclaims; dated Jan. 8, 2021, 39 pages. |
Supplemental Notice of Allowability dated Oct. 27, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 6 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Notice of Allowance dated Apr. 22, 2021, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 12 pages. |
Notice of Allowance dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 9 pages. |
Notice of Allowance dated Jun. 22, 2017, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages. |
Notice of Allowance dated Jun. 22, 2023, issued in connection with U.S. Appl. No. 17/407,793, filed Aug. 20, 2021, 10 pages. |
Notice of Allowance dated Mar. 22, 2023, issued in connection with U.S. Appl. No. 17/662,282, filed May 6, 2022, 5 pages. |
Notice of Allowance dated Aug. 23, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages. |
Notice of Allowance dated Feb. 23, 2021, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 8 pages. |
Notice of Allowance dated Jun. 23, 2016, issued in connection with U.S. Appl. No. 14/921,781, filed Oct. 23, 2015, 8 pages. |
Notice of Allowance dated Mar. 23, 2020, issued in connection with U.S. Appl. No. 16/542,418, filed Aug. 16, 2019, 5 pages. |
Notice of Allowance dated May 23, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 8 pages. |
Notice of Allowance dated Nov. 23, 2020, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages. |
Notice of Allowance dated Oct. 23, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 16 pages. |
Notice of Allowance dated Oct. 23, 2020, issued in connection with U.S. Appl. No. 16/555,846, filed Aug. 29, 2019, 5 pages. |
Notice of Allowance dated Sep. 23, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 7 pages. |
Notice of Allowance dated Sep. 23, 2022, issued in connection with U.S. Appl. No. 17/373,179, filed Jul. 12, 2021, 5 pages. |
Notice of Allowance dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 13 pages. |
Notice of Allowance dated Jul. 24, 2020, issued in connection with U.S. Appl. No. 16/665,415, filed Oct. 28, 2019, 12 pages. |
Notice of Allowance dated May 24, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 5 pages. |
Notice of Allowance dated Nov. 24, 2017, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages. |
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 7 pages. |
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 7 pages. |
Notice of Allowance dated Apr. 25, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 8 pages. |
Notice of Allowance dated Jan. 25, 2021, issued in connection with U.S. Appl. No. 17/129,670, filed Dec. 21, 2020, 10 pages. |
Notice of Allowance dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages. |
Notice of Allowance dated Apr. 26, 2023, issued in connection with U.S. Appl. No. 18/058,667, filed Nov. 23, 2022, 8 pages. |
Notice of Allowance dated Feb. 26, 2016, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 7 pages. |
Notice of Allowance dated Jul. 26, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 12 pages. |
Notice of Allowance dated Oct. 26, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 11 pages. |
Notice of Allowance dated Feb. 27, 2017, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 9 pages. |
Notice of Allowance dated Feb. 27, 2023, issued in connection with U.S. Appl. No. 17/107,157, filed Nov. 30, 2020, 13 pages. |
Notice of Allowance dated Jul. 27, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages. |
Notice of Allowance dated Jun. 27, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 8 pages. |
Notice of Allowance dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/555,832, filed Aug. 29, 2019, 5 pages. |
Notice of Allowance dated Oct. 27, 2021, issued in connection with U.S. Appl. No. 17/135,293, filed Dec. 28, 2020, 11 pages. |
Notice of Allowance dated Aug. 28, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 5 pages. |
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 10 pages. |
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 15/211,822, filed Jul. 15, 2016, 9 pages. |
Notice of Allowance dated Jun. 28, 2023, issued in connection with U.S. Appl. No. 18/189,876, filed Mar. 24, 2023, 20 pages. |
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 5 pages. |
Notice of Allowance dated Mar. 28, 2023, issued in connection with U.S. Appl. No. 18/058,659, filed Nov. 23, 2022, 10 pages. |
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 11 pages. |
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 8 pages. |
Notice of Allowance dated Aug. 29, 2019, issued in connection with U.S. Appl. No. 16/185,906, filed Nov. 9, 2018, 8 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages. |
Notice of Allowance dated Jul. 29, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 11 pages. |
Notice of Allowance dated Mar. 29, 2023, issued in connection with U.S. Appl. No. 17/807,595, filed Jun. 17, 2022, 6 pages. |
Notice of Allowance dated Oct. 29, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 9 pages. |
Notice of Allowance dated Sep. 29, 2021, issued in connection with U.S. Appl. No. 17/207,640, filed Mar. 20, 2021, 13 pages. |
Notice of Allowance dated Mar. 3, 2021, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages. |
Notice of Allowance dated Mar. 3, 2021, issued in connection with U.S. Appl. No. 17/078,382, filed Oct. 23, 2020, 9 pages. |
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 9 pages. |
International Bureau, International Preliminary Report on Patentability, dated Aug. 9, 2018, issued in connection with International Application No. PCT/US2017/014596, filed on Jan. 23, 2017, 11 pages. |
International Bureau, International Search Report and Written Opinion dated Dec. 15, 2020, issued in connection with International Application No. PCT/US2020/045746, filed on Aug. 11, 2020, 23 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 25, 2019, issued in connection with International Application No. PCT/US2019/048569, filed on Aug. 28, 2019, 13 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 7, 2019, issued in connection with International Application No. PCT/US2019/048366, filed on Aug. 27, 2019, 9 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Mar. 23, 2017, issued in connection with International Patent Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 8 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028994 filed on Apr. 22, 2016, 7 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jul. 4, 2016, issued in connection with International Application No. PCT/US2016/028994, filed on Apr. 22, 2016, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jul. 5, 2016, issued in connection with International Application No. PCT/US2016/028997, filed on Apr. 22, 2016, 13 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jun. 5, 2015, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 12, 2016, issued in connection with International Application No. PCT/US2016/041179 filed on Jul. 6, 2016, 9 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jun. 16, 2015, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 18, 2015, issued in connection with International Application No. PCT/US2015/048954, filed on Sep. 8, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043116, filed on Jul. 20, 2016, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043840, filed on Jul. 25, 2016, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048942, filed on Sep. 8, 2015, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2016, issued in connection with International Patent Application No. PCT/US2016/052266, filed on Sep. 16, 2016, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jan. 24, 2017, issued in connection with International Application No. PCT/US2016/052264, filed on Sep. 16, 2016, 17 bages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 25, 2016, issued in connection with International Application No. PCT/US2016/043109, filed on Jul. 20, 2016, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Sep. 25, 2017, issued in connection with International Application No. PCT/US2017/042191, filed on Jul. 14, 2017, 16 pages. |
International Searching Authority, International Search Report and Written Opinion dated Aug. 3, 2017, in connection with International Application No. PCT/US2017014596, 20 pages. |
Japanese Patent Office, English Translation of Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 4 pages. |
Japanese Patent Office, Examination Report and Translation dated Dec. 7, 2021, issued in connection with Japanese Patent Application No. 2020-185230, 10 pages. |
Japanese Patent Office, Japanese Office Action dated Oct. 3, 2017, issued in connection with Japanese Application No. 2017-501082, 7 pages. |
Japanese Patent Office, Non-Final Office Action and Translation dated Dec. 10, 2019, issued in connection with Japanese Patent Application No. 2018-213477, 8 pages. |
Japanese Patent Office, Non-Final Office Action with Translation dated Apr. 25, 2017, issued in connection with Japanese Patent Application No. 2016-568888, 7 pages. |
Japanese Patent Office, Non-Final Office Action with Translation dated Oct. 3, 2017, issued in connection with Japanese Patent Application No. 2017-501082, 3 pages. |
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Oct. 5, 2021, issued in connection with Japanese Patent Application No. 2020-134012, 10 pages. |
Japanese Patent Office, Office Action and Translation dated Jun. 12, 2020, issued in connection with Japanese Patent Application No. 2019-056360, 6 pages. |
Japanese Patent Office, Office Action and Translation dated Apr. 13, 2021, issued in connection with Japanese Patent Application No. 2020-048867, 4 pages. |
Japanese Patent Office, Office Action and Translation dated Nov. 4, 2020, issued in connection with Japanese Patent Application No. 2019-141349, 6 pages. |
Japanese Patent Office, Office Action and Translation dated Mar. 7, 2023, issued in connection with Japanese Application No. 2022-001030, 11 pages. |
Japanese Patent Office, Office Action dated Dec. 7, 2021, issued in connection with Japanese Patent Application No. 2020-185230, 8 pages. |
Japanese Patent Office, Office Action dated Jun. 12, 2018, issued in connection with Japanese Application No. 2018-502729, 4 pages. |
Japanese Patent Office, Office Action dated May 14, 2019, issued in connection with Japanese Patent Application No. 2018-500529, 8 pages. |
Japanese Patent Office, Office Action dated Aug. 21, 2018, issued in connection with Japanese Application No. 2018-514418, 7 pages. |
Japanese Patent Office, Office Action dated Jul. 24, 2018, issued in connection with Japanese Application No. 2018-514419, 5 pages. |
Japanese Patent Office, Office Action dated Feb. 4, 2020, issued in connection with Japanese Patent Application No. 2018-500529, 6 pages. |
Japanese Patent Office, Office Action dated Jun. 4, 2019, issued in connection with Japanese Patent Application No. 2018-112810, 4 pages. |
Japanese Patent Office, Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 8 pages. |
Japanese Patent Office, Office Action with English Summary dated Jul. 18, 2017, issued in connection with Japanese Patent Application No. 2017-513171, 4 pages. |
Japanese Patent Office, Translation of Office Action dated May 14, 2019, issued in connection with Japanese Patent Application No. 2018-500529, 5 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
John Mark and Paul Hufnagel “What is 1451.4, what are its uses and how does it work?” IEEE Standards Association, The IEEE 1451.4 Standard for Smart Transducers, 14pages. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages. |
“AuEQ for the iPhone,” Mar. 25, 2015, retrieved from the internet: URL:https://web.archive.org/web20150325152629/http://www.hotto.de/mobileapps/iphoneaueq.html [retrieved on Jun. 24, 2016], 6 pages. |
Lei et al. An Audio Frequency Acquision and Release System Based on TMS320VC5509, Instrumentation Technology, Editorial Department Email, Issue 02, 2007, 4 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Microsoft Corporation, “Using Microsoft Outlook 2003,” Cambridge College, 2003. |
Motorola, “Simplefi, Wireless Digital Audio Receiver, Installation and User Guide,” Dec. 31, 2001, 111 pages. |
Mulcahy, John, “Room EQ Wizard: Room Acoustics Software,” REW, 2014, retrieved Oct. 10, 2014, 4 pages. |
Non-Final Action dated Jan. 29, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages. |
Non-Final Office Action dated Sep. 16, 2021, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 10 pages. |
Non-Final Office Action dated Jul. 21, 2021, issued in connection with U.S. Appl. No. 16/570,679, filed Sep. 13, 2019, 18 pages. |
Non-Final Office Action dated Sep. 7, 2021, issued in connection with U.S. Appl. No. 16/994,627, filed Aug. 16, 2020, 11 pages. |
Non-Final Office Action dated Mar. 1, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 20 pages. |
Non-Final Office Action dated Nov. 1, 2017, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 15 pages. |
Non-Final Office Action dated Jun. 2, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 14 pages. |
Non-Final Office Action dated Jun. 2, 2017, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 18 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 12 pages. |
Non-Final Office Action dated Oct. 2, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages. |
Non-Final Office Action dated Feb. 3, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 12 pages. |
Non-Final Office Action dated Jul. 3, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 30 pages. |
Non-Final Office Action dated Jan. 4, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 6 pages. |
Non-Final Office Action dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 10 pages. |
Non-Final Office Action dated Sep. 4, 2019, issued in connection with U.S. Appl. No. 16/213,552, filed Dec. 7, 2018, 16 pages. |
Non-Final Office Action dated Jul. 5, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 8 pages. |
Non-Final Office Action dated Jul. 6, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 6 pages. |
Non-Final Office Action dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages. |
Non-Final Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 30 pages. |
Non-Final Office Action dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 5 pages. |
Non-Final Office Action dated Jul. 7, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 6 pages. |
Non-Final Office Action dated Mar. 7, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 24 pages. |
Non-Final Office Action dated Sep. 7, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 12 pages. |
Non-Final Office Action dated Jul. 8, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 6 pages. |
Non-Final Office Action dated Dec. 9, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Non-Final Office Action dated Apr. 10, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages. |
Non-Final Office Action dated Mar. 10, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 10 pages. |
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 8 pages. |
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 13 pages. |
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 9 pages. |
Non-Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/556,297, filed Aug. 30, 2019, 9 pages. |
Non-Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/658,896, filed Oct. 21, 2019, 14 pages. |
Non-Final Office Action dated Feb. 11, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 39 pages. |
Non-Final Office Action dated May 11, 2023, issued in connection with U.S. Appl. No. 17/458,673, filed Aug. 27, 2021, 18 pages. |
Non-Final Office Action dated Oct. 11, 2017, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages. |
Non-Final Office Action dated Oct. 11, 2018, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 13 pages. |
Non-Final Office Action dated Mar. 12, 2020, issued in connection with U.S. Appl. No. 16/796,496, filed Feb. 20, 2020, 13 pages. |
Non-Final Office Action dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 24 pages. |
Non-Final Office Action dated Aug. 13, 2021, issued in connection with U.S. Appl. No. 16/994,874, filed Aug. 17, 2020, 10 pages. |
Non-Final Office Action dated Jul. 13, 2016, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 16 pages. |
Non-Final Office Action dated Mar. 13, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 20 pages. |
Non-Final Office Action dated Dec. 14, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 19 pages. |
Non-Final Office Action dated Mar. 14, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 12 pages. |
Non-Final Office Action dated May 14, 2019, issued in connection with U.S. Appl. No. 15/955,545, filed Apr. 17, 2018, 15 pages. |
Non-Final Office Action dated Oct. 14, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages. |
Non-Final Office Action dated Dec. 15, 2022, issued in connection with U.S. Appl. No. 17/807,595, filed Jun. 17, 2022, 16 pages. |
Non-Final Office Action dated May 15, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 17 pages. |
Non-Final Office Action dated May 15, 2023, issued in connection with U.S. Appl. No. 17/567,311, filed Jan. 3, 2022, 12 pages. |
Non-Final Office Action dated Nov. 15, 2021, issued in connection with U.S. Appl. No. 17/135,308, filed Dec. 28, 2020, 19 pages. |
Non-Final Office Action dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages. |
Non-Final Office Action dated Nov. 16, 2018, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages. |
Non-Final Office Action dated Sep. 16, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 11 pages. |
Non-Final Office Action dated Jan. 17, 2023, issued in connection with U.S. Appl. No. 17/407,793, filed Aug. 20, 2021, 9 pages. |
Non-Final Office Action dated Aug. 18, 2020, issued in connection with U.S. Appl. No. 16/827,143, filed Mar. 23, 2020, 8 pages. |
Non-Final Office Action dated Dec. 18, 2018, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 10 pages. |
Non-Final Office Action dated Feb. 18, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 10 pages. |
Non-Final Office Action dated Jun. 18, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages. |
Non-Final Office Action dated Mar. 18, 2022, issued in connection with U.S. Appl. No. 17/033,818, filed Sep. 27, 2020, 12 pages. |
Non-Final Office Action dated Apr. 19, 2023, issued in connection with U.S. Appl. No. 17/807,270, filed Jun. 16, 2022, 19 pages. |
Non-Final Office Action dated Aug. 19, 2021, issued in connection with U.S. Appl. No. 17/357,302, filed Jun. 24, 2021, 16 pages. |
Non-Final Office Action dated Feb. 19, 2020, issued in connection with U.S. Appl. No. 16/665,415, filed Oct. 28, 2019, 53 pages. |
Non-Final Office Action dated Jun. 19, 2020, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages. |
Non-Final Office Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 7 pages. |
Non-Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 6 pages. |
Non-Final Office Action dated Aug. 2, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 22 pages. |
Non-Final Office Action dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages. |
Non-Final Office Action dated Jul. 20, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 13 pages. |
Non-Final Office Action dated Jun. 20, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 17 pages. |
Non-Final Office Action dated Dec. 21, 2018, issued in connection with U.S. Appl. No. 16/181,213, filed Nov. 5, 2018, 13 pages. |
Non-Final Office Action dated Jun. 21, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 10 pages. |
Non-Final Office Action dated Jun. 21, 2019, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 12 pages. |
Non-Final Office Action dated Nov. 21, 2014, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 20 pages. |
Non-Final Office Action dated Jun. 22, 2018, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 33 pages. |
Non-Final Office Action dated Jun. 22, 2020, issued in connection with U.S. Appl. No. 16/555,832, filed Aug. 29, 2019, 15 pages. |
Non-Final Office Action dated Oct. 22, 2019, issued in connection with U.S. Appl. No. 16/416,619, filed May 20, 2019, 12 pages. |
Non-Final Office Action dated Oct. 22, 2021, issued in connection with U.S. Appl. No. 16/949,951, filed Nov. 20, 2020, 10 pages. |
Non-Final Office Action dated Jan. 23, 2019, issued in connection with U.S. Appl. No. 16/113,032, filed Aug. 27, 2018, 8 pages. |
Non-Final Office Action dated Jun. 23, 2023, issued in connection with U.S. Appl. No. 18/189,869, filed Mar. 24, 2023, 13 pages. |
Non-Final Office Action dated Jun. 24, 2022, issued in connection with U.S. Appl. No. 17/373,179, filed Jul. 12, 2021, 8 pages. |
Non-Final Office Action dated May 24, 2019, issued in connection with U.S. Appl. No. 16/401,981, filed May 2, 2019, 14 pages. |
Non-Final Office Action dated May 24, 2023, issued in connection with U.S. Appl. No. 18/175,283, filed Feb. 27, 2023, 13 pages. |
Non-Final Office Action dated Feb. 25, 2022, issued in connection with U.S. Appl. No. 17/107,157, filed Nov. 30, 2020, 30 pages. |
Non-Final Office Action dated Jan. 25, 2023, issued in connection with U.S. Appl. No. 17/816,238, filed Jul. 29, 2022, 10 pages. |
Non-Final Office Action dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 9 pages. |
Non-Final Office Action dated Jun. 26, 2023, issued in connection with U.S. Appl. No. 17/543,014, filed Dec. 6, 2021, 17 pages. |
Non-Final Office Action dated Sep. 26, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 25 pages. |
Non-Final Office Action dated Dec. 27, 2017, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 28 pages. |
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 19 pages. |
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 19 pages. |
Non-Final Office Action dated Jul. 27, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 11 pages. |
Non-Final Office Action dated Mar. 27, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 30 pages. |
Non-Final Office Action dated Mar. 27, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 11 pages. |
Non-Final Office Action dated Jul. 28, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages. |
Non-Final Office Action dated May 28, 2021, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 14 pages. |
Non-Final Office Action dated Nov. 28, 2017, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 7 pages. |
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/588,186, filed May 5, 2017, 12 pages. |
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/595,519, filed May 15, 2017, 12 pages. |
Notice of Allowance dated Apr. 13, 2020, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 10 pages. |
Notice of Allowance dated Apr. 13, 2023, issued in connection with U.S. Appl. No. 18/058,639, filed Nov. 23, 2022, 15 pages. |
Notice of Allowance dated Feb. 13, 2017, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 8 pages. |
Notice of Allowance dated Feb. 13, 2023, issued in connection with U.S. Appl. No. 17/543,430, filed Dec. 6, 2021, 10 pages. |
Notice of Allowance dated Jul. 13, 2022, issued in connection with U.S. Appl. No. 17/033,821, filed Sep. 27, 2020, 8 pages. |
Notice of Allowance dated Nov. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 8 pages. |
Notice of Allowance dated Jul. 14, 2020, issued in connection with U.S. Appl. No. 16/556,297, filed Aug. 30, 2019, 11 pages. |
Notice of Allowance dated Jun. 14, 2023, issued in connection with U.S. Appl. No. 17/816,238, filed Jul. 29, 2022, 11 pages. |
Notice of Allowance dated Mar. 14, 2019, issued in connection with U.S. Appl. No. 15/343,996, filed Nov. 4, 2016, 8 pages. |
Notice of Allowance dated Oct. 14, 2021, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 5 pages. |
Notice of Allowance dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 8 pages. |
Notice of Allowance dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 5 pages. |
Notice of Allowance dated Mar. 15, 2017, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 7 pages. |
Notice of Allowance dated May 15, 2019, issued in connection with U.S. Appl. No. 16/113,032, filed Aug. 27, 2018, 9 pages. |
Notice of Allowance dated Nov. 15, 2021, issued in connection with U.S. Appl. No. 16/994,874, filed Aug. 17, 2020, 9 pages. |
Notice of Allowance dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 10 pages. |
Notice of Allowance dated Sep. 15, 2022, issued in connection with U.S. Appl. No. 17/033,818, filed Sep. 27, 2020, 7 pages. |
Notice of Allowance dated Feb. 16, 2022, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 9 pages. |
Notice of Allowance dated Jul. 16, 2020, issued in connection with U.S. Appl. No. 16/530,324, filed Aug. 2, 2019, 9 pages. |
Notice of Allowance dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages. |
Notice of Allowance dated May 16, 2019, issued in connection with U.S. Appl. No. 16/181,213, filed Nov. 5, 2018, 10 pages. |
Notice of Allowance dated Oct. 16, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 10 pages. |
Notice of Allowance dated Oct. 16, 2019, issued in connection with U.S. Appl. No. 16/401,981, filed May 2, 2019, 8 pages. |
Notice of Allowance dated Sep. 16, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 7 pages. |
Notice of Allowance dated Aug. 17, 2022, issued in connection with U.S. Appl. No. 17/316,371, filed May 10, 2021, 9 pages. |
Notice of Allowance dated Dec. 17, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 5 pages. |
Notice of Allowance dated May 17, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 7 pages. |
Notice of Allowance dated Oct. 17, 2019, issued in connection with U.S. Appl. No. 16/542,433, filed Aug. 16, 2019, 9 pages. |
Notice of Allowance dated Aug. 18, 2022, issued in connection with U.S. Appl. No. 17/660,185, filed Apr. 21, 2022, 11 pages. |
Notice of Allowance dated Mar. 18, 2019, issued in connection with U.S. Appl. No. 16/056,862, filed Aug. 7, 2018, 12 pages. |
Notice of Allowance dated Mar. 18, 2021, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 8 pages. |
Notice of Allowance dated Oct. 18, 2021, issued in connection with U.S. Appl. No. 16/570,679, filed Sep. 13, 2019, 9 pages. |
Notice of Allowance dated Apr. 19, 2023, issued in connection with U.S. Appl. No. 17/113,799, filed Dec. 7, 2020, 7 pages. |
Notice of Allowance dated Aug. 19, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages. |
Notice of Allowance dated Jan. 19, 2022, issued in connection with U.S. Appl. No. 17/399,294, filed Aug. 11, 2021, 11 pages. |
Notice of Allowance dated Jun. 19, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 5 pages. |
Notice of Allowance dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 16 pages. |
Notice of Allowance dated Sep. 19, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 10 pages. |
Notice of Allowance dated Feb. 2, 2022, issued in connection with U.S. Appl. No. 16/949,951, filed Nov. 20, 2020, 8 pages. |
Notice of Allowance dated Mar. 2, 2020, issued in connection with U.S. Appl. No. 16/213,552, filed Dec. 7, 2018, 9 pages. |
Notice of Allowance dated Sep. 2, 2021, issued in connection with U.S. Appl. No. 17/357,302, filed Jun. 24, 2021, 10 pages. |
Notice of Allowance dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 11 pages. |
Notice of Allowance dated Apr. 20, 2022, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 5 pages. |
Notice of Allowance dated Nov. 20, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 10 pages. |
Notice of Allowance dated Sep. 20, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
Notice of Allowance dated Dec. 21, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages. |
Notice of Allowance dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages. |
Notice of Allowance dated Jul. 21, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 10 pages. |
Notice of Allowance dated Jun. 21, 2019, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 11 pages. |
Notice of Allowance dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 16/182,886, filed Nov. 7, 2018, 10 pages. |
Co-pending U.S. Appl. No. 202318352394, inventor H. Bush; William, filed Jul. 14, 2023. |
Final Office Action dated Sep. 20, 2023, issued in connection with U.S. Appl. No. 17/810,549, filed Jul. 1, 2022, 18 pages. |
Japanese Patent Office, Office Action and Translation dated Sep. 5, 2023, issued in connection with Japanese Application No. 2022-115789, 6 pages. |
Non-Final Office Action dated Sep. 21, 2023, issued in connection with U.S. Appl. No. 18/352,394, filed Jul. 14, 2023, 6 pages. |
Non-Final Office Action dated Aug. 7, 2023, issued in connection with U.S. Appl. No. 17/807,270, filed Jun. 16, 2022, 20 pages. |
Notice of Allowance dated Sep. 13, 2023, issued in connection with U.S. Appl. No. 17/543,014, filed Dec. 6, 2021, 9 pages. |
Notice of Allowance dated Sep. 21, 2023, issued in connection with U.S. Appl. No. 17/567,311, filed Jan. 3, 2022, 8 pages. |
Notice of Allowance dated Aug. 23, 2023, issued in connection with U.S. Appl. No. 18/308,016, filed Apr. 27, 2023, 13 pages. |
Notice of Allowance dated Aug. 29, 2023, issued in connection with U.S. Appl. No. 17/804,372, filed May 27, 2022, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20230221916 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17582317 | Jan 2022 | US |
Child | 18066077 | US | |
Parent | 17103556 | Nov 2020 | US |
Child | 17582317 | US | |
Parent | 16530324 | Aug 2019 | US |
Child | 17103556 | US | |
Parent | 15217399 | Jul 2016 | US |
Child | 16530324 | US |