The present disclosure is generally related to communications devices, and more particularly, to predistortion techniques.
Communications devices continue to expand in the functionality and services available to a user, providing on demand video, audio, and/or Internet services, in addition to wireless radio frequency (RF) transmission and reception. This ever expanding functionality presents challenges to the design of communications devices, particularly in efforts that seek to improve energy efficiency and data communication integrity while reducing semiconductor real estate. For instance, many wireless standards specify a total power dissipation that is not to be exceeded by a power amplifier located within a wireless transmitter. One technique to reduce power dissipation that has been the focus of much literature is the use of a nonlinear power amplifier in combination with the implementation of linearization techniques, such as predistortion. Predistortion uses information about the nonlinearity of the power amplifier to predistort signals before they are amplified to counter the nonlinearity of the power amplifier when signals are amplified. Such techniques use calibrations to characterize the nonlinear operation of the power amplifier.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Disclosed herein are certain embodiments of predistortion calibration systems and methods that involve wireless transceiver calibration through a receiver path with separate transconductors and shared downconversion mixers. More particularly, in one embodiment, a separate power amplifier predistortion calibration path is added to a receiver in-phase/quadrature (IQ) calibration path. The predistortion calibration path comprises its own transconductance stage. The predistortion calibration path is completely isolated from a main receiver path and its associated inductance circuitry. The two calibration paths share the same receive mixers, which simplifies the local oscillator (LO) path and saves on die area.
In contrast, existing systems may rely on looping back the transmission signal to the receiver path, usually at the mixer input. Most wireless receiver front ends comprise low noise circuitry (e.g., low noise amplifiers, inductors/baluns) that drive a mixer. The mixer is further divided into a transconductance stage and a frequency translating switching quad. Some shortcomings of these conventional designs may include secondary loopbacks and parasitic coupling. For instance, during a loopback operation, the low noise amplifiers are turned off to prevent a secondary loopback from being present. However, even with the low noise amplifiers turned off, a finite coupling occurs through the low noise amplifiers (e.g., parasitic magnetic, substrate, and/or package coupling).
Certain embodiments address one or more of these challenges by rejecting the parasitic coupling path through the use of a secondary (auxiliary) transconductance stage associated with the mixer, the secondary transconductance stage used exclusively for this loopback. In loopback operation, the primary mixer transconductance stage is powered off. Hence, improvements may be realized in fidelity of the loopback path due to reductions in stray coupling paths, enabling a more accurate replication of transmitter path non-ideal effects and enabling improved cancellation of such non-ideal effects through the process of predistortion.
Having summarized features/benefits of certain embodiments of predistortion calibration systems, reference will now be made in detail to the description of the disclosure as illustrated in the drawings. While the disclosure will be described in connection with these drawings, there is no intent to limit it to the embodiment or embodiments disclosed herein. For instance, though described in the context of a wireless communications device (e.g., wireless transceiver), certain embodiments of predistortion calibration systems may be employed in any device where parasitic coupling paths are of concern. Further, although the description identifies or describes specifics of one or more embodiments, such specifics are not necessarily part of every embodiment, nor are all various stated advantages necessarily associated with a single embodiment or all embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents included within the spirit and scope of the disclosure as defined by the appended claims. Further, it should be appreciated in the context of the present disclosure that the claims are not necessarily limited to the particular embodiments set out in the description.
Referring to
At the output of the transconductance circuits 106 and 108 is convert and process circuitry 114, which includes a mixer (e.g., an in-phase or I signal mixer) among other well-known signal processing circuitry to filter and convert a signal to enable digital signal processing. At the output of the transconductance circuits 110 and 112 is convert and process circuitry 116, which also includes a mixer (e.g., a quadrature or Q signal mixer) among other well-known signal processing circuitry similar to that found in circuitry 114. It should be appreciated that the general depiction of components shown in
The baseband processor 118 is coupled to transmitter (Tx) circuitry 120, which comprises well-known circuitry to convert the digital signal of the baseband processor 118 to an analog circuit, as well as perform filtering and mixing (e.g., upconversion) functions as would be appreciated by one having ordinary skill in the art. The transmitter circuitry 120 is coupled at its output to a power amplifier (PA) 122. The power amplifier 122 amplifies the processed analog signal for transmission via transmit antenna 126. The power amplifier 122 is a non-linear component for which predistortion is applied to linearize non-ideal effects of the power amplifier. To facilitate the predistortion process, the output of the power amplifier 122 is also looped back to the first and second transconductance stages. As depicted in
The receiver IQ calibration path 130 is coupled to the receiver circuitry 104. As should be appreciated by one having ordinary skill in the art, the receiver IQ calibration path 130 is used to calibrate IQ un-balance between the receiver transconductance circuitry 108 plus convert and process circuitry 114 and the receiver transconductance circuitry 110 plus convert and process circuitry 116, using the power amplifier output as a test signal. The IQ un-balance refers to the undesired deviation from the perfectly quadrature (i.e., ninety (90) degrees) relationship between the receiver transconductance circuitry 108 plus convert and process circuitry 114 and the receiver transconductance circuitry 110 plus convert and process circuitry 116. Known circuitry is used to calibrate the IQ un-balance of the transmitter circuitry 120 and the power amplifier 122. The IQ un-balance may arise primarily from the transmitter circuitry 120. For instance, an envelope detector may sense the output of the transmitter circuitry 120 (or power amplifier output in some embodiments), and the baseband processor 118 may cooperate with additional circuitry (e.g., a baseband amplifier and analog to digital converter in the convert and process circuitry 114) to determine the amount of IQ un-balance in the transmitter circuitry 120. The baseband processor 118 may then cancel the un-balance by adjusting the signal phases at an I input of the transmitter circuitry 120 (e.g., at a digital to analog converter) and a Q input of the transmitter circuitry 120 (e.g., at a digital to analog converter). Another path, referred to herein as the power amplifier predistortion calibration path and denoted as 132, includes the second transconductance stage comprising the auxiliary transconductance circuitry 106 and 112 and is decoupled from the receiver circuitry 104. The receiver IQ calibration path 130 is not needed for PA predistortion calibration.
In one embodiment, the switch 128 activates either the receiver IQ calibration path 130 or the power amplifier predistortion calibration path 132. In other words, either the first transconductance stage is activated (e.g., during a first instance or time period) or the second transconductance stage is activated (e.g., during another instance or time period that does not overlap the first instance), but not both at the same time. In one embodiment, the receiver IQ calibration path 130 and the power amplifier predistortion calibration path 132 are disabled during actual reception/transmission of a signal (e.g., applied only during idle time and before transmission or receipt of a data packet). In some embodiments, the switch 128 may be omitted, wherein the isolation of the first transconductance stage, when it is turned off, is sufficient to mitigate parasitic (e.g., magnetic) coupling (e.g., compared to the use of only the first transconductance stage) borne from inductive sources (e.g., inductors/baluns, LNAs, etc.) of the receiver circuitry 104.
In operation, signal information received at the baseband processor 118 from the calibration paths and convert and process circuitry 114, 116 is evaluated by the baseband processor 118 to determine, among other things, how much distortion is associated with the power amplifier 122, and hence how much predistortion to apply to the power amplifier 122 to linearize the non-ideal effects. The first and second transconductance stages serve to suppress the noise of subsequent stages, providing a low noise figure to facilitate the linearization operation of the baseband processor 118. The addition of the second transconductance stage provides linearization and noise suppression as part of the predistortion process without the deleterious effects of parasitic coupling from the receiver circuitry 104.
Having described an example environment 100 in which an embodiment of a predistortion calibration system may be employed, attention is directed to
In one embodiment, at any given instance of time, either the output of the auxiliary transconductance circuit 106 or receiver transconductance circuit 108 (e.g., but not both in this embodiment) is provided to the I signal path of the convert and process circuitry 114. The I signal path comprises a downconversion mixer 210 that receives an oscillation signal, LO_I, and uses the oscillation signal to downconvert the signal received from the auxiliary transconductance circuit 106 or receiver transconductance circuit 108. The I signal path further comprises a transimpedance amplifier (TIA) 212, which converts the downconverted current signals to voltage signals. The voltage signals are low pass filtered and DC corrected by another I signal path component, low pass filter (LPF) and DC correction loop circuitry 214, and then provided to an analog to digital converter (ADC_I) 216 for digitizing signals of the I signal path. The output of the ADC_I 216 is provided to the baseband processor 118. The Q signal path of the convert and process circuitry 116 is functionally and architecturally similar to the I signal path of the convert and process circuitry 114, and comprises a downconversion mixer 218 (which receives oscillation signal, LO_Q) coupled to a transimpedance amplifier (TIA) 220, which is coupled to a low pass filter (LPF) and DC correction loop circuitry 222. The Q signal path further comprises an analog to digital converter (ADC_Q) 224 coupled to the output of the low pass filter and DC correction loop circuitry 222, the analog to digital converter 224 digitizing the filtered signal received from the low pass filter and DC correction loop circuitry 222 and providing an output to the baseband processor 118.
The baseband processor 118 processes input signals (e.g., voice, data, etc.) and provides the processed signals adjusted for predistortion to the transmitter circuitry 120 for eventual transmission. In one embodiment, the transmitter circuitry 120 comprises I and Q signal paths. In the I signal path, the transmitter circuitry 120 comprises a digital to analog converter (DAC) 226, low pass filter (LPF) 228, upconversion mixer 230 that outputs to a summer 232. The Q signal path likewise comprises a digital to analog converter (DAC) 234, low pass filter (LFP) 236, and upconversion mixer 238 that outputs to the summer 232. The digital to analog converters 226 and 234 convert the baseband signals to analog, and the low pass filters 228 and 236 filter the converted analog signals. The outputs of the low pass filters 228 and 236 are provided to upconversion mixers 230, 238, which respectively receive oscillation signals (LO_I and LO_Q) to upconvert the filtered analog signals. It is noted that the aforementioned IQ un-balance described in association with
In one embodiment of example operations, as described in association with
Note that the transceivers 100 and 100A depicted in
It should be appreciated in the context of the above description that one method embodiment, denoted method 300 and shown in
The predistortion calibration system may be implemented in hardware, software (e.g., including firmware), or a combination thereof. In one embodiment(s), the predistortion calibration system is implemented with any or a combination of the following technologies, which are all well known in the art: a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit (ASIC) having appropriate combinational logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc. In embodiments, where all or a portion of the predistortion calibration systems is implemented in software, the software is stored in a memory and that is executed by a suitable instruction execution system (e.g., a computer system, including one or more processors, memory encoded with encoding software/firmware and an operating system, etc.).
Any process descriptions or blocks in flow diagrams should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included within the scope of the disclosure in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art.
It should be emphasized that the above-described embodiments of the present disclosure are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4031469 | Johnson | Jun 1977 | A |
5381108 | Whitmarsh et al. | Jan 1995 | A |
6366177 | McCune et al. | Apr 2002 | B1 |
6724331 | El-Ghoroury et al. | Apr 2004 | B1 |
7187916 | Mo et al. | Mar 2007 | B2 |
7415261 | Rosik et al. | Aug 2008 | B2 |
7463864 | Vassiliou et al. | Dec 2008 | B2 |
7532679 | Staszewski et al. | May 2009 | B2 |
7565119 | Cohen | Jul 2009 | B2 |
7596363 | Mo et al. | Sep 2009 | B2 |
7616929 | Behzad | Nov 2009 | B2 |
7620373 | Cole et al. | Nov 2009 | B2 |
7627060 | Taylor | Dec 2009 | B2 |
7715836 | Vassiliou et al. | May 2010 | B2 |
7817747 | Waheed et al. | Oct 2010 | B2 |
7817970 | Puma | Oct 2010 | B2 |
7818028 | Vassiliou et al. | Oct 2010 | B2 |
7840198 | Behzad et al. | Nov 2010 | B2 |
7873325 | Behzad | Jan 2011 | B2 |
7881463 | Sodersjerna et al. | Feb 2011 | B1 |
7907916 | Cole et al. | Mar 2011 | B2 |
7965988 | Cole et al. | Jun 2011 | B2 |
7974593 | Cole et al. | Jul 2011 | B2 |
8010076 | Mo et al. | Aug 2011 | B2 |
8041306 | Behzad | Oct 2011 | B2 |
8055217 | Ba et al. | Nov 2011 | B2 |
8073074 | Waheed et al. | Dec 2011 | B2 |
8180304 | Ma et al. | May 2012 | B2 |
8195103 | Waheed et al. | Jun 2012 | B2 |
8224250 | Behzad et al. | Jul 2012 | B2 |
8355462 | Beidas et al. | Jan 2013 | B2 |
8699620 | Wu | Apr 2014 | B1 |
20020027474 | Bonds | Mar 2002 | A1 |
20020113645 | Lauffenburger | Aug 2002 | A1 |
20030032394 | Westra | Feb 2003 | A1 |
20030107434 | Mitzlaff | Jun 2003 | A1 |
20040106380 | Vassiliou et al. | Jun 2004 | A1 |
20050156662 | Raghupathy et al. | Jul 2005 | A1 |
20050157819 | Wang | Jul 2005 | A1 |
20050181754 | Wu | Aug 2005 | A1 |
20070042743 | Ali et al. | Feb 2007 | A1 |
20070190952 | Waheed | Aug 2007 | A1 |
20070281652 | Tanaka | Dec 2007 | A1 |
20080139119 | Behzad et al. | Jun 2008 | A1 |
20080144539 | Sperlich et al. | Jun 2008 | A1 |
20090088086 | Vassiliou et al. | Apr 2009 | A1 |
20090184763 | Kim | Jul 2009 | A1 |
20090270054 | Ridgers et al. | Oct 2009 | A1 |
20090289707 | Watanabe | Nov 2009 | A1 |
20100090765 | Hurwitz | Apr 2010 | A1 |
20100112967 | Sorensen | May 2010 | A1 |
20100167677 | Klesenski | Jul 2010 | A1 |
20110051868 | Roufoogaran et al. | Mar 2011 | A1 |
20110069767 | Zhu | Mar 2011 | A1 |
20110092180 | Chen et al. | Apr 2011 | A1 |
20110217945 | Uehara et al. | Sep 2011 | A1 |
20120170622 | Ly-Gagnon | Jul 2012 | A1 |
20120263215 | Peng | Oct 2012 | A1 |
20130058388 | Muhammad | Mar 2013 | A1 |
20130195152 | Muhammad | Aug 2013 | A1 |
20130208827 | Muhammad et al. | Aug 2013 | A1 |
20130279630 | Xu et al. | Oct 2013 | A1 |
20130344827 | Epifano | Dec 2013 | A1 |
20140057684 | Khlat | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
102474221 | May 2012 | CN |
200525878 | Aug 2005 | TW |
200843369 | Nov 2008 | TW |
200904017 | Jan 2009 | TW |
200941928 | Oct 2009 | TW |
0163791 | Aug 2001 | WO |
Entry |
---|
European Search Report in co-pending, related EP Application No. 13003506.6 mailed Oct. 31, 2013. |
Number | Date | Country | |
---|---|---|---|
20140036973 A1 | Feb 2014 | US |