1. Field of the Invention
This invention relates to a system and a method for cyclical robot calibration in connection with vehicle body assembly.
2. Background Art
Robot work position accuracy is affected by heat created during normal operation. The range of deviation (accuracy) from the work position will vary based on a multitude of factors, which include but are not limited to, ambient temperature change, robot manufacturer and type, payload, speed, time of use, etc.
Prior robot compensation has utilized sensors remotely located from the work site and operable to sense robot and effector movement thereto between cycles of assembly. Often times the compensation requires more than one cycle of assembly to permit sufficient movement and sensing of the robot effector location to detect the robot calibration necessary.
Prior art patents noted during an investigation conducted in connection with the present invention include U.S. Pat. Nos. 4,841,460 Dewar et al.; 6,166,811 Long et al.; 6,321,137 De Smet; 6,408,252 De Smet; 6,434,449 De Smet and 7,143,494 Savoy.
One object of the present invention is to provides an improved system for cyclical robot temperature calibration in connection with vehicle body assembly.
In carrying out the above object, a system for cyclical robotic vehicle body assembly with robot temperature calibration in accordance with the invention includes a robot having an arm for mounting an end effector capable of operating on a positioned vehicle body workpiece and having a positioning target. A controller of the system initially operates the robot so its arm positions the end effector immediately adjacent the vehicle body workpiece in an almost ready work position in preparation for each cycle of operation. A laser sensor senses the location of the positioning target on the end effector in the almost ready work position and generates a position signal the controller uses to operate the robot and move its arm and the end effector thereon to a final temperature compensated work position for operation on the vehicle body workpiece in a temperature calibrated manner.
As disclosed, the system also includes at least one sensor, and preferably a plurality of sensors, for locating the vehicle body workpiece and generating a signal used by the controller to operate the robot in positioning the end effector.
The system as disclosed also includes another robot and another laser sensor operated by the controller in the same manner as the first mentioned robot and laser sensor to provide temperature compensated robot end effector positioning in a temperature calibrated manner.
Another object of the present invention is to provide a method for cyclical temperature calibration in connection with vehicle body assembly.
In carrying out the immediately preceding object, the method for cyclically operating a robot in accordance with the invention in a temperature calibrated manner in connection with vehicle body assembly is performed by operating a robot having an arm mounting an end effector to position the end effector and a target thereon in an almost ready work position immediately adjacent a vehicle body workpiece to initiate a cycle of operation. A laser senses the location of the positioning target on the end effector and generating a position signal used to operate the robot and move the end effector to a final temperature compensated work position for operation on the vehicle body workpiece in a temperature calibrated manner.
As disclosed, the position of the workpiece is initially sensed, preferably by a plurality of laser sensors, to initially operate the robot for positioning in the almost ready work position before the temperature calibration.
The method for a robot operation in a temperature calibrated manner in connection with vehicle body assembly as disclosed also operates another robot in cooperation with another laser sensor in the same manner as the first mentioned robot and laser sensor to provide further temperature compensated robot end effector positioning in a temperature calibrated manner.
With reference to
With continuing reference to
A temperature calibration laser position sensor 36 associated with each robot initially senses the position of a target 38 on the robot end effector 20 in an almost ready work position shown in
Operation of the controller 24 shown in
It should be appreciated that other types of end effectors can also use this temperature calibrated operation with single as well as multiple workpieces, such as welding or assembly with fasteners, etc.
A prior art temperature compensation system is set up where the calibration stands are located between the robot and a safety fence, resulting in wide fence lines, while the present system does not require calibration stands and thus will have no impact to fence lines.
Prior temperature compensation systems are set up to be initiated during blocked and starved situations, which creates partial readings and intermittent temperature compensation adjustments and start up procedures. The present system provides complete “on the fly” temperature compensation adjustments with no added start up procedures.
Prior temperature compensation systems are placed 180 degrees away from the work position of the robot, and normally requires thirty-two separate measurements at different robot positions. The present system requires only one measurement taken within the normal working path of the robot.
Prior temperature compensation systems is a completely different apparatus from that used for the vehicle body assembly, while the present system uses the same apparatus used for vehicle body assembly.
Prior temperature compensation system requires thirty-two separate measurements at different robot positions to make an adjustment, while the present system requires only one measurement to make an adjustment.
Prior temperature compensation systems require significant training because of their uniqueness to vehicle body assembly systems. The new solution would require no additional training, while the present system does.
The present calibration system is also less expensive than prior systems.
While an embodiment and practice of the invention have been illustrated and described, it is not intended that this embodiment and practice illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
This application claims the benefit of U.S. provisional application Ser. No. 61/133,191 filed Jun. 26, 2008.
Number | Date | Country | |
---|---|---|---|
61133191 | Jun 2008 | US |