The present invention relates to the diagnostic imaging systems and methods. It finds particular application in conjunction with multi-modality systems such as the GEMINI™ PET-CT system manufactured by Philips. It will be appreciated that the invention is also applicable to the combination of SPECT and CT scanners, and the like combinations.
In multi-modality tomographic systems, two or more different sensing modalities are used to locate or measure different constituents in the object space. In the PET-CT system, the PET creates images of high metabolic activity in the body, rather than creating images of surrounding anatomy. CT scans allow doctors to see the internal structures within the human body. Before having a PET-CT scan, the patient receives a dose of a radiopharmaceutical. The pharmaceutical concentrates in a particular organ or region and causes radiation to be emitted from this organ or region. During the scan, tracings of the emitted radiation are detected by the system creating an image of the distribution of the radiopharmaceutical in the patient. The image can show the circulatory system and/or the relative absorption of the radiopharmaceutical in various regions or organs. Integration of the anatomical data from the CT scan with the metabolic data from the PET scan in the PET-CT image gives physicians visual information to determine if disease is present, the location and extent of disease and track how rapidly it is spreading. The PET-CT system is particularly helpful in difficult-to-treat regions (e.g. head & neck area, mediastinum, postsurgical abdomen) and localization of the treatment area for the patients receiving radiation therapy or chemotherapy.
The most significant problem in the multi-modality imaging systems is image registration. In the GEMINI™ PET-CT scanner, patients requiring both procedures undergo a CT scan immediately followed by a PET scan while positioned in the same scanning bed. Although positioning the patient in the same position for both exams by moving the patient a known longitudinal distance reduces the possibility of misregistration of the CT and PET images, there remains the possibility of misregistration due to mechanical misalignments between the two imaging spaces, aging of the imaging systems, and the like. Furthermore, since one image (e.g., CT) may be used to correct the other image (e.g., attenuation correction of PET or SPECT using a CT generated attenuation map), such misregistrations can affect overall image quality as well as registration of the two images.
There is a need for a calibration technique, which is simple and easy to perform, to compensate for static misalignment between the PET and CT imaging spaces. The present invention provides a new and improved imaging apparatus and method which overcomes the above-referenced problems and others.
In accordance with one aspect of the present invention, a system for calibrating a multi-modality imaging apparatus is disclosed. The system includes a phantom that receives markers. The markers include CT markers, which are imageable by a CT scanner and positioned at fixed locations in the phantom, and radioisotope markers, which are imageable by a nuclear imaging system. A means determines a transformation that brings the CT markers in a CT image and radioisotope markers in a nuclear image into alignment.
In accordance with another aspect of the present invention, a method of aligning a nuclear imaging system and a CT scanner in a multi-modality imaging system is disclosed. Markers are received in a phantom. The markers include CT markers, which are imageable by the CT scanner and positioned at fixed locations in the phantom, and radioisotope markers, which are imageable by the nuclear imaging system. A transformation, which brings the CT markers in a CT image and radioisotope markers in a nuclear image into alignment, is determined.
One advantage of the present invention resides in improving the overall image quality and image registration by reducing alignment errors attributable to the mechanical misalignment of scanners.
Another advantage of the present invention resides in providing a fast and convenient way of aligning and recalibrating scanners in multi-modality systems.
Yet another advantage of the present invention resides in providing a calibration phantom with interchangeable markers.
Still further advantages and benefits of the present invention will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description of the preferred embodiments.
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
With reference to
The nuclear imaging system 12 preferably includes a positron emission tomography (PET) scanner 28 which is mounted on tracks 30. Of course, SPECT and other nuclear imaging systems are also contemplated. The tracks 30 extend in parallel to a longitudinal axis of a subject support or couch 32, thus enabling the CT scanner 14 and PET scanner 28 to form a closed system as seen in
With continuing reference to
The couch moving means 42 moves the couch 32 to position the phantom 44 in the CT scanner examination region 24, where the CT image is taken. More particularly, the phantom 44 is moved to the position in the CT examination 24 region that is geometrically and mechanically predicted as being the same as its imaged position in the PET imaging region. Electronic data is reconstructed into a 3D CT image by a CT reconstruction processor 60 and stored in a CT image memory 62. A CT marker centroid calculating means 64 calculates coordinates of a center of mass for each CT-nuclear marker 46. The CT markers' centroid positions are stored in a CT marker position memory 66. The radioisotope markers position coordinates, previously calculated for the PET image, are translated into CT image space by a PET to CT space image translating processor or means 68 using the known geometry and mechanical alignment of the PET and CT scanners. A CT marker search processor or means 70 retrieves the radioisotope markers position information and looks in the CT marker position memory 66 for the coordinates of the corresponding markers. More specifically, the search means 70 goes to the coordinate locations in the CT marker position memory 66 that correspond to the PET locations to see if the CT-nuclear marker centroids overlay the radioisotope PET markers 48, i.e., to see if they are aligned. If the PET and CT markers are not aligned, the search means 70 moves from the corresponding CT coordinate position outward in generally concentric spheres until the locations of the corresponding CT marker centroids is identified. A transformation processor or means 72 receives the coordinates of the corresponding markers and determines the amount of linear shift and rotation to bring the PET image and the CT image into precise alignment, i.e., such that the center of mass points from the CT marker image overlie the center of mass points in the PET marker image. Alternatively, the transformation means 72 may include a scaling algorithm or means 74 or non-linear distortion correction algorithm or means 76. The transformation parameters, determined by the transformation means 72, are stored in a calibration memory 78 and are used by an aligning processor or means 80 to align PET and CT images with each other in the subsequent scans. A video processor 82 processes the received data for a display on a monitor 84.
With reference to
With continuing reference to
With reference to
With reference to
The invention has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon a reading and understanding of the preceding detailed description. It is intended that the invention be constructed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims the benefit of U.S. provisional application Ser. No. 60/497,651 filed Aug. 25, 2003, which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2004/002634 | 8/6/2004 | WO | 00 | 2/22/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/018456 | 3/3/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5469847 | Zinreich et al. | Nov 1995 | A |
5565684 | Gullberg et al. | Oct 1996 | A |
5672877 | Liebig et al. | Sep 1997 | A |
5703056 | Blasberg et al. | Dec 1997 | A |
5871013 | Wainer et al. | Feb 1999 | A |
6205347 | Morgan et al. | Mar 2001 | B1 |
6328700 | Rheinhardt et al. | Dec 2001 | B1 |
6364526 | Ivan et al. | Apr 2002 | B2 |
6419680 | Cosman et al. | Jul 2002 | B1 |
6448559 | Saoudi et al. | Sep 2002 | B1 |
6493574 | Ehnholm et al. | Dec 2002 | B1 |
20010004395 | McCrory et al. | Jun 2001 | A1 |
20030212320 | Wilk et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
1 413 251 | Apr 2004 | EP |
WO 0075691 | Dec 2000 | WO |
WO 0234136 | May 2002 | WO |
WO 03025621 | Mar 2003 | WO |
WO 03040745 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080212859 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60497651 | Aug 2003 | US |