Calibration interface

Information

  • Patent Grant
  • 11516606
  • Patent Number
    11,516,606
  • Date Filed
    Sunday, September 27, 2020
    4 years ago
  • Date Issued
    Tuesday, November 29, 2022
    2 years ago
Abstract
Examples disclosed herein relate to playback device calibration. A calibration state variable may represent a calibration state of a playback device. A control device may display an indications of the calibration state. For instance, in a first instance, the control device may display an indication that a first playback device is in an uncalibrated state. Further, in a second instance, the control device may display an indication that the first playback device is in an calibrated state, perhaps after instructing the first playback device to initiate calibration.
Description
FIELD OF THE DISCLOSURE

The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.


BACKGROUND

Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.


Given the ever growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.





BRIEF DESCRIPTION OF THE DRAWINGS

Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1 shows an example media playback system configuration in which certain embodiments may be practiced;



FIG. 2 shows a functional block diagram of an example playback device;



FIG. 3 shows a functional block diagram of an example control device;



FIG. 4 shows an example controller interface;



FIG. 5 shows an example flow diagram to update and send a calibration state variable;



FIG. 6 is a table representing an instance of calibration state variables stored by an example device, according to an example embodiment;



FIG. 7 shows another example media playback system configuration in which certain embodiments may be practiced;



FIG. 8 is a table representing another instance of calibration state variables stored by an example device, according to an example embodiment;



FIG. 9 shows an example flow diagram to display an indication of a calibration state variable;



FIG. 10 shows an example controller interface that indicates that a zone is uncalibrated, according to an example embodiment;



FIG. 11 shows another example controller interface that indicates that a zone is uncalibrated, according to an example embodiment;



FIG. 12 shows an example zone settings interface, according to an example embodiment;



FIG. 13 shows an example settings interface for a first zone, according to an example embodiment; and



FIG. 14 shows an example zone settings interface for a second zone, according to an example embodiment.





The drawings are for the purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings.


DETAILED DESCRIPTION
I. Overview

Embodiments described herein involve, inter alia, techniques to maintain a calibration state of one or more playback devices across a media playback system by way of a calibration state variable. The calibration state variable may indicate the calibration status of one or more playback devices of the media playback system (i.e., whether a given playback device is calibrated). In some implementations, the calibration state may also indicate a calibration profile of one or more playback devices (e.g., a profile to equalize the response of a given playback device within a particular environment).


Within examples, a calibration state variable may be stored on a playback device and shared with other devices of the media playback system (e.g., playback devices and/or control devices). For instance, a given playback device of a media playback system may maintain in data storage a state variable (or collection of state variables) indicating the calibration state of the playback devices of the media playback system. The given playback device may share the calibration state variable(s) with other devices (e.g., the playback devices and/or the control devices) by transmitting an indication of the state variable(s) to the devices via a network interface. In some implementations, multiple instances of the calibration state variable(s) may be stored on multiple devices, which may provide redundancy across the media playback system, among other possible benefits.


Calibration state variables maintained by a media playback system may facilitate a playback device retaining its calibrated state through power-cycling (i.e., being powered off and subsequently being powered back on). For instance, after being powered-on, a first playback device may receive, from a second device, an indication of a calibration state variable corresponding to that first playback device. In some instances, the calibration state variable may indicate that the first playback device is calibrated. In such instances, the first playback device may configure itself with a pre-existing calibration profile (perhaps stored on the first playback device or on another device of the media playback system (e.g., the second device).


Calibration state variables may also trigger calibration of uncalibrated devices. For example, referring back to the example above, the calibration state variable corresponding to the first playback device may indicate that the first playback device is not calibrated. Receiving an indication of such a calibration state variable may trigger the first playback device to initiate a calibration procedure.


Some calibration procedures contemplated herein involve a control device of the media playback system detecting and analyzing sound waves (e.g., one or more calibration sounds) which were emitted by one or more playback devices of the media playback system. In some cases, such calibration sounds may facilitate the control device determining respective frequency responses of the one or more playback devices within a given environment. After determining such a response for a given playback device, the control device may instruct the given playback device to adopt a certain calibration profile (e.g., an equalization) that offsets the acoustics of the given environment.


Performing such a calibration procedure on a playback device may cause the media playback system to update a calibration state variable that corresponds to that playback device. For instance, a control device may perform a calibration procedure with a given playback device and then send an instruction to the one or more playback devices that are maintaining the calibration state variables which causes the calibration state variable that corresponds to the calibrated playback device to reflect that device's updated calibration status.


A calibration state variable that is stored by a playback device may be updated based on a variety of conditions. For instance, a playback device may lose its calibrated status when the playback device is joined with one or more additional playback devices into a bonded zone (e.g., a stereo pair or surround sound group), as the playback device may operate differently as a member of such a group. Further, since acoustics of an environment may vary from location to location within the environment, a playback device may lose its calibrated state when physical moved. For example, sensors on a playback device may sense a change in physical orientation or a movement to another location. As another example, a playback device that is moved to another zone (e.g., from a “Living Room” zone to a “Bedroom” zone) may lose its calibrated status, as such a zone change may create a presumption that the device has been moved to another physical location. Upon detecting such a condition with respect to a playback device, a device may update calibration state variable(s) to indicate a new calibration state of that playback device perhaps by updating its own calibration state variable(s) or by instructing other devices to update the calibration state variable(s).


A control device of a media playback system may display a graphical user interface that facilitates control of the playback devices of the media playback system. Such a graphical user interface may include one or more interfaces that include an indication of the calibration state variable(s) that correspond to the playback devices of the media playback system. In some embodiments, multiple interfaces may provide varying levels of information on the calibration state. For instance, a first interface may indicate that there is an issue with a particular playback device (or zone that includes the particular playback device). A second interface, possibly accessed via a control on the first interface, may indicate that the particular device is uncalibrated. One or more of the interfaces may provide a control to initiate calibration of the playback devices of the media playback system. A control device may keep the calibration status up to date by receiving an indication of the calibration state variable(s) from the playback device(s) that are maintaining the calibration state variable(s) for the media playback system.


As noted, example techniques may involve a calibration state variable. In one aspect, a method is provided. The method may involve receiving, via a network interface, an indication that the first playback device is calibrated. The method may also involve updating a calibration state variable to indicate that the first playback device is calibrated based on receiving the indication that the first playback device is calibrated. The method may further involve sending, via the network interface, an indication of the updated calibration state variable to a second device.


In another aspect, a device is provided. The device includes a network interface, at least one processor, a data storage, and program logic stored in the data storage and executable by the at least one processor to perform operations. The operations may include receiving, via the network interface, an indication that the first playback device is calibrated. The operations may also include updating a calibration state variable to indicate that the first playback device is calibrated based on receiving the indication that the first playback device is calibrated. The operations may further include sending, via the network interface, an indication of the updated calibration state variable to a second device.


In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform operations. The operations may include receiving, via the network interface, an indication that the first playback device is calibrated. The operations may also include updating a calibration state variable to indicate that the first playback device is calibrated based on receiving the indication that the first playback device is calibrated. The operations may further include sending, via the network interface, an indication of the updated calibration state variable to a second device.


Further example techniques may involve a graphical user interface displaying an indication of a calibration state variable. In one aspect, a method is provided. The method may involve receiving, from a first playback device of a media playback system, a calibration state variable indicating that the first playback device is uncalibrated. The method may also involve causing a graphical interface to display an indication that the first playback device is uncalibrated. The method may further involve causing the graphical interface to display a selectable control that, when selected, initiates calibration of the first playback device and initiating calibration of the first playback device.


In another aspect, a device is provided. The device includes a network interface, at least one processor, a data storage, and program logic stored in the data storage and executable by the at least one processor to perform operations. The operations may include receiving, from a first playback device of a media playback system, a calibration state variable indicating that the first playback device is uncalibrated. The operations may also include causing a graphical interface to display an indication that the first playback device is uncalibrated. The operations may further include causing the graphical interface to display a selectable control that, when selected, initiates calibration of the first playback device and initiating calibration of the first playback device.


In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform operations. The operations may include receiving, from a first playback device of a media playback system, a calibration state variable indicating that the first playback device is uncalibrated. The operations may also include causing a graphical interface to display an indication that the first playback device is uncalibrated. The operations may further include causing the graphical interface to display a selectable control that, when selected, initiates calibration of the first playback device and initiating calibration of the first playback device.


It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments. It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments. While some examples described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this description is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.


II. Example Operating Environment


FIG. 1 illustrates an example configuration of a media playback system 100 in which one or more embodiments disclosed herein may be practiced or implemented. The media playback system 100 as shown is associated with an example home environment having several rooms and spaces, such as for example, a master bedroom, an office, a dining room, and a living room. As shown in the example of FIG. 1, the media playback system 100 includes playback devices 102-124, control devices 126 and 128, and a wired or wireless network router 130.


Further discussions relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in FIG. 1. For instance, the technologies described herein may be useful in environments where multi-zone audio may be desired, such as, for example, a commercial setting like a restaurant, mall or airport, a vehicle like a sports utility vehicle (SUV), bus or car, a ship or boat, an airplane, and so on.


a. Example Playback Devices



FIG. 2 shows a functional block diagram of an example playback device 200 that may be configured to be one or more of the playback devices 102-124 of the media playback system 100 of FIG. 1. The playback device 200 may include a processor 202, software components 204, memory 206, audio processing components 208, audio amplifier(s) 210, speaker(s) 212, and a network interface 214 including wireless interface(s) 216 and wired interface(s) 218. In one case, the playback device 200 may not include the speaker(s) 212, but rather a speaker interface for connecting the playback device 200 to external speakers. In another case, the playback device 200 may include neither the speaker(s) 212 nor the audio amplifier(s) 210, but rather an audio interface for connecting the playback device 200 to an external audio amplifier or audio-visual receiver.


In one example, the processor 202 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 206. The memory 206 may be a tangible computer-readable medium configured to store instructions executable by the processor 202. For instance, the memory 206 may be data storage that can be loaded with one or more of the software components 204 executable by the processor 202 to achieve certain functions. In one example, the functions may involve the playback device 200 retrieving audio data from an audio source or another playback device. In another example, the functions may involve the playback device 200 sending audio data to another device or playback device on a network. In yet another example, the functions may involve pairing of the playback device 200 with one or more playback devices to create a multi-channel audio environment.


Certain functions may involve the playback device 200 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener will preferably not be able to perceive time-delay differences between playback of the audio content by the playback device 200 and the one or more other playback devices. U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference, provides in more detail some examples for audio playback synchronization among playback devices.


The memory 206 may further be configured to store data associated with the playback device 200, such as one or more zones and/or zone groups the playback device 200 is a part of, audio sources accessible by the playback device 200, or a playback queue that the playback device 200 (or some other playback device) may be associated with. The data may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device 200. The memory 206 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.


The audio processing components 208 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In one embodiment, one or more of the audio processing components 208 may be a subcomponent of the processor 202. In one example, audio content may be processed and/or intentionally altered by the audio processing components 208 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback by the playback device 200, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.


Audio content to be processed and/or played back by the playback device 200 may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 214.


The network interface 214 may be configured to facilitate a data flow between the playback device 200 and one or more other devices on a data network. As such, the playback device 200 may be configured to receive audio content over the data network from one or more other playback devices in communication with the playback device 200, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 200 may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 214 may be configured to parse the digital packet data such that the data destined for the playback device 200 is properly received and processed by the playback device 200.


As shown, the network interface 214 may include wireless interface(s) 216 and wired interface(s) 218. The wireless interface(s) 216 may provide network interface functions for the playback device 200 to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device 200 is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 218 may provide network interface functions for the playback device 200 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 214 shown in FIG. 2 includes both wireless interface(s) 216 and wired interface(s) 218, the network interface 214 may in some embodiments include only wireless interface(s) or only wired interface(s).


In one example, the playback device 200 and one other playback device may be paired to play two separate audio components of audio content. For instance, playback device 200 may be configured to play a left channel audio component, while the other playback device may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. The paired playback devices (also referred to as “bonded playback devices”) may further play audio content in synchrony with other playback devices.


In another example, the playback device 200 may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may be configured to process and reproduce sound differently than an unconsolidated playback device or playback devices that are paired, because a consolidated playback device may have additional speaker drivers through which audio content may be rendered. For instance, if the playback device 200 is a playback device designed to render low frequency range audio content (i.e. a subwoofer), the playback device 200 may be consolidated with a playback device designed to render full frequency range audio content. In such a case, the full frequency range playback device, when consolidated with the low frequency playback device 200, may be configured to render only the mid and high frequency components of audio content, while the low frequency range playback device 200 renders the low frequency component of the audio content. The consolidated playback device may further be paired with a single playback device or yet another consolidated playback device.


By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in FIG. 2 or to the SONOS product offerings. For example, a playback device may include a wired or wireless headphone. In another example, a playback device may include or interact with a docking station for personal mobile media playback devices. In yet another example, a playback device may be integral to another device or component such as a television, a lighting fixture, or some other device for indoor or outdoor use.


b. Example Playback Zone Configurations


Referring back to the media playback system 100 of FIG. 1, the environment may have one or more playback zones, each with one or more playback devices. The media playback system 100 may be established with one or more playback zones, after which one or more zones may be added, or removed to arrive at the example configuration shown in FIG. 1. Each zone may be given a name according to a different room or space such as an office, bathroom, master bedroom, bedroom, kitchen, dining room, living room, and/or balcony. In one case, a single playback zone may include multiple rooms or spaces. In another case, a single room or space may include multiple playback zones.


As shown in FIG. 1, the balcony, dining room, kitchen, bathroom, office, and bedroom zones each have one playback device, while the living room and master bedroom zones each have multiple playback devices. In the living room zone, playback devices 104, 106, 108, and 110 may be configured to play audio content in synchrony as individual playback devices, as one or more bonded playback devices, as one or more consolidated playback devices, or any combination thereof. Similarly, in the case of the master bedroom, playback devices 122 and 124 may be configured to play audio content in synchrony as individual playback devices, as a bonded playback device, or as a consolidated playback device.


In one example, one or more playback zones in the environment of FIG. 1 may each be playing different audio content. For instance, the user may be grilling in the balcony zone and listening to hip hop music being played by the playback device 102 while another user may be preparing food in the kitchen zone and listening to classical music being played by the playback device 114. In another example, a playback zone may play the same audio content in synchrony with another playback zone. For instance, the user may be in the office zone where the playback device 118 is playing the same rock music that is being playing by playback device 102 in the balcony zone. In such a case, playback devices 102 and 118 may be playing the rock music in synchrony such that the user may seamlessly (or at least substantially seamlessly) enjoy the audio content that is being played out-loud while moving between different playback zones. Synchronization among playback zones may be achieved in a manner similar to that of synchronization among playback devices, as described in previously referenced U.S. Pat. No. 8,234,395.


As suggested above, the zone configurations of the media playback system 100 may be dynamically modified, and in some embodiments, the media playback system 100 supports numerous configurations. For instance, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102 from the balcony zone to the office zone, the office zone may now include both the playback device 118 and the playback device 102. The playback device 102 may be paired or grouped with the office zone and/or renamed if so desired via a control device such as the control devices 126 and 128. On the other hand, if the one or more playback devices are moved to a particular area in the home environment that is not already a playback zone, a new playback zone may be created for the particular area.


Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For instance, the dining room zone and the kitchen zone 114 may be combined into a zone group for a dinner party such that playback devices 112 and 114 may render audio content in synchrony. On the other hand, the living room zone may be split into a television zone including playback device 104, and a listening zone including playback devices 106, 108, and 110, if the user wishes to listen to music in the living room space while another user wishes to watch television.


c. Example Control Devices



FIG. 3 shows a functional block diagram of an example control device 300 that may be configured to be one or both of the control devices 126 and 128 of the media playback system 100. Control device 300 may also be referred to as a controller 300. As shown, the control device 300 may include a processor 302, memory 304, a network interface 306, and a user interface 308. In one example, the control device 300 may be a dedicated controller for the media playback system 100. In another example, the control device 300 may be a network device on which media playback system controller application software may be installed, such as for example, an iPhone™ iPad™ or any other smart phone, tablet or network device (e.g., a networked computer such as a PC or Mac™)


The processor 302 may be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 304 may be configured to store instructions executable by the processor 302 to perform those functions. The memory 304 may also be configured to store the media playback system controller application software and other data associated with the media playback system 100 and the user.


In one example, the network interface 306 may be based on an industry standard (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The network interface 306 may provide a means for the control device 300 to communicate with other devices in the media playback system 100. In one example, data and information (e.g., such as a state variable) may be communicated between control device 300 and other devices via the network interface 306. For instance, playback zone and zone group configurations in the media playback system 100 may be received by the control device 300 from a playback device or another network device, or transmitted by the control device 300 to another playback device or network device via the network interface 306. In some cases, the other network device may be another control device.


Playback device control commands such as volume control and audio playback control may also be communicated from the control device 300 to a playback device via the network interface 306. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the control device 300. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others. Accordingly, the control device 300 may sometimes be referred to as a controller, whether the control device 300 is a dedicated controller or a network device on which media playback system controller application software is installed.


The user interface 308 of the control device 300 may be configured to facilitate user access and control of the media playback system 100, by providing a controller interface such as the controller interface 400A shown in FIG. 4. The controller interface 400A includes a playback control region 410, a playback zone region 420, a playback status region 430, a playback queue region 440, and an audio content sources region 450. The user interface 400A as shown is just one example of a user interface that may be provided on a network device such as the control device 300 of FIG. 3 (and/or the control devices 126 and 128 of FIG. 1) and accessed by users to control a media playback system such as the media playback system 100. Other user interfaces of varying formats, styles, and interactive sequences may alternatively be implemented on one or more network devices to provide comparable control access to a media playback system.


The playback control region 410 may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 410 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.


The playback zone region 420 may include representations of playback zones within the media playback system 100. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.


For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400A are also possible. The representations of playback zones in the playback zone region 420 may be dynamically updated as playback zone or zone group configurations are modified.


The playback status region 430 may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 420 and/or the playback status region 430. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 400A.


The playback queue region 440 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.


In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.


When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.


Referring back to the user interface 400A of FIG. 4, the graphical representations of audio content in the playback queue region 440 may include track titles, artist names, track lengths, and other relevant information associated with the audio content in the playback queue. In one example, graphical representations of audio content may be selectable to bring up additional selectable icons to manage and/or manipulate the playback queue and/or audio content represented in the playback queue. For instance, a represented audio content may be removed from the playback queue, moved to a different position within the playback queue, or selected to be played immediately, or after any currently playing audio content, among other possibilities. A playback queue associated with a playback zone or zone group may be stored in a memory on one or more playback devices in the playback zone or zone group, on a playback device that is not in the playback zone or zone group, and/or some other designated device. Playback of such a playback queue may involve one or more playback devices playing back media items of the queue, perhaps in sequential or random order.


The audio content sources region 450 may include graphical representations of selectable audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. Discussions pertaining to audio content sources may be found in the following section.


d. Example Audio Content Sources


As indicated previously, one or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g., according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.


Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of FIG. 1, local music libraries on one or more network devices (such as a control device, a network-enabled personal computer, or a networked-attached storage (NAS), for example), streaming audio services providing audio content via the Internet (e.g., the cloud), or audio sources connected to the media playback system via a line-in input connection on a playback device or network devise, among other possibilities.


In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of FIG. 1. In one example, an indexing of audio items may be performed whenever one or more audio content sources are added, removed or updated. Indexing of audio items may involve scanning for identifiable audio items in all folders/directory shared over a network accessible by playback devices in the media playback system, and generating or updating an audio content database containing metadata (e.g., title, artist, album, track length, among others) and other associated information, such as a URI or URL for each identifiable audio item found. Other examples for managing and maintaining audio content sources may also be possible.


Moving now to several example implementations, implementations 500 and 900 shown in FIGS. 5 and 9, respectively present example embodiments of techniques described herein. These example embodiments that can be implemented within an operating environment including, for example, the media playback system 100 of FIG. 1, one or more of the playback device 200 of FIG. 2, or one or more of the control device 300 of FIG. 3. Further, operations illustrated by way of example as being performed by a media playback system can be performed by any suitable device, such as a playback device or a control device of a media playback system. Implementations 500 and 900 may include one or more operations, functions, or actions as illustrated by one or more of blocks shown in FIGS. 5 and 9. Although the blocks are illustrated in sequential order, these blocks may also be performed in parallel, and/or in a different order than those described herein. Also, the various blocks may be combined into fewer blocks, divided into additional blocks, and/or removed based upon the desired implementation.


In addition, for the implementations disclosed herein, the flowcharts show functionality and operation of one possible implementation of present embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as computer-readable media that stores data for short periods of time like register memory, processor cache, and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the implementations disclosed herein, each block may represent circuitry that is wired to perform the specific logical functions in the process.


III. Example Techniques to Maintain a Calibration State Variable

As discussed above, embodiments described herein may involve a calibration state variable. FIG. 5 illustrates an example implementation 500 to update a calibration state variable and share the calibration state indicated by the calibration state variable with another device.


a. Receive Indication that a First Playback Device is Calibrated


At block 502, implementation 500 involves receiving an indication that a first playback device is calibrated. For instance, a first playback device (e.g., one of playback devices 102-124 of media playback system 100 shown in FIG. 1) may receive, via a network interface, an indication that the first playback device is calibrated. The indication may be sent to the first playback device from another playback device (e.g., another of playback devices 102-124 of media playback system 100) or from a control device (e.g., control device 126 or 128), among other possible examples (e.g., a remote server).


Calibration of a playback device may involve adjusting one or more acoustic parameters of a playback device's speakers (e.g., channels) in an attempt to improve acoustic characteristic of those speakers within a given environment. For instance, a calibration profile may offset the acoustics of the given environment to produce a desired response in that environment (e.g., a flat response, perhaps adjusted by an equalization to boost or cut certain frequencies). To determine a calibration profile for a playback device in a particular position within a given environment, a playback device may perform a calibration procedure, perhaps in combination with a control device. For instance, some example calibration procedures involve a playback device of a media playback system emitting sound waves (e.g., one or more calibration sounds) and a control device of the media playback system detecting and analyzing the emitted sound waves.


As one example, referring to FIG. 1, playback device 122 of media playback system 100 may be calibrated using such a procedure, perhaps with control device 126 detecting and analyzing calibration sounds emitted by playback device 122. After performing the calibration procedure, control device 126 may send to playback device 122 an indication that playback device 122 is calibrated via a network interface. Playback device 122 may receive the indication from control device 126 via an interface of its own. In some embodiments, the indication may include a calibration profile indicating one or more calibration values that adjust equalization of the playback device 122, perhaps to offset acoustic characteristics of the Master Bedroom environment.


As another example, referring again to FIG. 1, playback device 122 may receive an indication that playback device 122 is calibrated from another playback device of media playback system 100, such as playback device 124. Playback device 124 may store a calibration state variable indicating the calibration state of playback device 122. Playback device 124 may send an indication of this calibration state to playback device in various circumstances, such as upon detecting that playback device 122 has been powered on or as part of a regular (e.g., periodic) transmission.


As a further example, playback device 122 may receive an indication that playback device 122 is calibrated from a remote server. Such a remote server may be involved in providing a cloud service to media playback system 100. The cloud service may maintain calibration state variables indicating the calibration state of playback devices 102-124 of media playback system 100. The cloud service might also store calibration state variables indicating the calibration state of other media playback systems, perhaps in other households.


b. Configure a Calibration State Variable to Indicate that the First Playback Device is Calibrated


Referring back to FIG. 5, at block 504, implementation 500 involves configuring a calibration state variable to indicate that the first playback device is calibrated. For instance, referring to FIG. 1, playback device 122 may store a calibration state variable indicating the calibration state of playback device 122 in data storage (e.g., in a data storage such as memory 206 of playback device 200 shown in FIG. 2). Playback device 122 may configure that calibration state variable to indicate the calibration state of playback device 122 (e.g., that playback device 122 is calibrated, or that playback device 122 is uncalibrated). In some embodiments, playback device 122 may update such a state variable when playback device 122 receives an indication of a calibration state of playback device 122 (and perhaps also the calibration state of another playback device), perhaps as the indication of the calibration state may include an instruction to update the state variable.



FIG. 6 depicts a table 600 that indicates playback devices of media playback system 100 of FIG. 1 and their respective calibration state, which may be stored as one or more calibration state variables. In this example instance, playback devices of media playback system 100 each calibrated to a particular environment (e.g., a zone). Such calibration states may be stored as one or more calibration state variable(s). State variables, such as the calibration state variables, may also store an indication of the time at which the playback device was last calibrated and possibly the bonded zone configuration at last calibration. Although not shown in FIG. 6, the calibration state variable(s) indicating the calibration states represented by table 600 may also include a calibration profile indicating one or more calibration values that adjust equalization of the playback devices, perhaps to offset acoustic characteristics of the respective environments.


Calibration state variables indicating the calibration state of playback devices may be stored on various devices that are accessible to the media playback system. For instance, in some cases, the media playback system itself may store the state variables, perhaps in data storage of one or more playback device(s) or control device(s) of a media playback system, perhaps using a database or table. Alternatively, a remote server (e.g., a server that provides a cloud service) may store the state variables. Other examples are possible as well.


Within examples, calibration state variables may be maintained across a media playback system using various configurations. For instance, in some examples, each playback device of a media playback system may store calibration state variables indicating the calibration state of the other playback devices of the media playback system. Alternatively, a given device may store a subset of the calibration state variables of a media playback system. For instance, referring to FIG. 6, devices of the Living Room zone may store calibration state variables indicating the calibration state of playback devices that belong to the Living Room zone.


c. Detect Trigger Condition Indicating that the First Playback Device has Become Uncalibrated


In FIG. 5, at block 506, implementation 500 involves detecting a trigger condition indicating that the first playback device has become uncalibrated. For instance, referring to FIG. 1, playback device 122 may detect a trigger condition indicating that playback device 122 has become uncalibrated. As several examples, changes to the environment, the physical location or orientation of the device, or the configuration of the device may trigger a loss of calibration state.


In some examples, detecting the trigger condition indicating that the first playback device may involve receiving a command that changes the zone configuration of the first playback device. For instance, referring again to FIG. 1, a control device, such as control device 126, may send a command that instructs playback device 122 to change its zone configuration. Various changes to the zone configuration of a playback device may indicate that the playback device is no longer calibrated.



FIG. 7 illustrates example media playback system 700, which is another example configuration of media playback system 100 of FIG. 1. Compared to FIG. 1, certain playback devices have been moved or reconfigured within the household. As described below, such changes may indicate a loss of calibration state.


Within examples, detecting the trigger condition indicating that the first playback device has become uncalibrated may involve receiving a command that causes the first playback device to join (or leave) a bonded zone. For instance, referring to FIG. 7, playback device 112 may receive a command from control device 128 that instructs playback device 112 to join the Kitchen zone as a first channel of a stereo pair that includes a second device (i.e., playback device 114) as a second channel of the stereo pair. Playback device 112 may operate differently as a channel of a stereo pair as compared with operating independently, such that a joining or leaving a stereo pair may trigger a loss of calibration. To become calibrated, playback devices 112 and 114 may perform a calibration procedure as the stereo pair. Another command might instruct playback device 112 to unbond from the bonded zone configuration (i.e., the stereo pair) with playback device 114, which might again trigger a loss in calibration state.


Some playback devices, such as subwoofers, may output specific frequency ranges, which may affect calibration state when such playback devices join or leave a bonded zone configuration. For instance, referring to FIG. 7, the Living Room zone includes a playback device 110 that outputs low frequencies (i.e., a subwoofer) and playback devices 104, 106, and 108 that output mid and high range frequencies. If playback device 110 leaves the Living Room zone, such a change may indicate that playback devices 104, 106, and 108, as the removal of the subwoofer from the zone may suggest that playback devices 104, 106, and 108 should be recalibrated over a range that includes low frequencies.


In some embodiments, a playback device may be assigned a particular name, which may correspond to a particular zone to which the playback device belongs. Changes to this particular name may trigger a loss in calibration state, as such a change may create a presumption that the playback device has been moved to a different zone. For instance, referring to FIG. 7, playback device 118 may be moved from the Office zone to the Balcony zone. To cause playback device 118 to operate as part of the Balcony zone, a control device, such as control device 128, may send a command that instructs playback device 118 to join the Balcony zone, which may cause the assigned name of playback device 118 to change from Office to Balcony. In another example, a control device may send a command to a playback device that causes the playback device to form a new zone (e.g., a Den zone) which may change the name of the playback device to reflect that of the new zone. Such a change to the zone of the playback device may suggest calibrating the playback device in the environment corresponding to this new zone.


As noted above, changes to the physical position or orientation may trigger a loss of calibration, as rotating or moving a playback device may change how that playback device sounds within the environment. For example, when a playback device is pointed into the center of a room, that playback device will typically sound differently than when the device is pointed at a wall. In some embodiments, a playback device may include one or more sensors (e.g., an accelerometer) to detect changes to the physical orientation of the playback device. Such sensors may also detect changes to the physical position of the playback device within the environment. To illustrate, in FIG. 7, playback devices 122 and 124 have been rotated relative to their physical orientation shown in FIG. 1. Detecting that such a physical rotation has exceeded a threshold rotation (e.g., greater than 15 degrees) by way of one or more sensors may indicate that playback device 122 and/or playback device 124 has become uncalibrated. Other positioning techniques, such as echo-location may also be used to detect a change to physical orientation or position.


In other examples, changes to the controller configuration on a playback device may indicate that the playback device has lost its calibration. For instance, the playback device may receive a command that instructs the playback device to reset to factory default settings, which may clear a previous calibration. As another example, the playback device may receive a software update, which may have various effects, such as clearing a previous calibration and/or changing how the playback device operates, that cause the playback device to lose a calibrated state.


As described above in connection with example control devices, a control device of a media playback system may display a graphical user interface containing controls to control operation of the playback devices within that media playback system. Certain controls may indicate that a playback device has become uncalibrated. For instance, a controller interface may display a prompt that requests an indication of whether a playback device has been moved to another physical location. Detecting selection of a control that indicates that the playback device has been moved may indicate that the playback device has become uncalibrated. Such a user interface may also include controls that cause various configuration changes such as causing a playback device to join a zone or to form a bonded zone configuration, which may trigger a loss of calibration state.


d. Update the Calibration State Variable to Indicate that the First Playback Device is Uncalibrated


Referring again to FIG. 5, at block 508, implementation 500 involves updating a calibration state variable to indicate that the first playback device is uncalibrated. As noted above, playback devices, such as playback device 122 of FIG. 1 may store a calibration state variable indicating their calibration state in data storage (e.g., in a data storage such as memory 206 of playback device 200 shown in FIG. 2). Upon receiving an indication of a new calibration state, the playback device may update the calibration state to indicate the new calibration state.


For example, based on detecting a trigger condition indicating that the first playback device has become uncalibrated, the first playback device may update the calibration state variable to indicate that the first playback device is uncalibrated. Updating such a calibration state variable may be responsive to detecting such a trigger, such that the playback device updates its calibration state variables when such a trigger is detected.



FIG. 8 depicts a table 800 that indicates the playback devices of media playback system 100 of FIG. 7 and their respective calibration states, which may be stored as one or more calibration state variables. Table 800 represents how the calibration state variables stored by a playback device might be updated based on the changes made media playback system 100 as shown in FIG. 7, as compared with FIG. 1. As shown, playback device 102 and 118 might become uncalibrated, as playback device 118 is moved to the Balcony zone and joined into a stereo pair with playback device 112. Playback device 110 might also become uncalibrated, as it was instructed to leave the Living Room zone. Playback devices 112 and 114 might become uncalibrated when joined as a stereo pair, and remain uncalibrated when the stereo pair is separated and the playback devices are returned to their original zones. In addition, playback devices 122 and 124 may become uncalibrated when they are rotated. Based on detecting such trigger conditions that indicate a change in calibration state, the calibration state variables representing such states may be updated to reflect the change in calibration state, as shown in FIG. 8.


After the playback devices are recalibrated to their new position and/or configuration, the calibration state variables may be updated to indicate that the playback devices are calibrated. For instance, playback devices 122 and 124 may perform a calibration procedure with control device 126. Control device 126 may send playback devices 122 and 124 a calibration profile and instruct the playback devices to update calibration state variables to indicate that the current calibration state. The playback devices may also update state variables to indicate the time of last calibration and the bonded zone configuration of the playback devices during the last calibration.


e. Send Indication of Updated Calibration State Variable to Second Device


In FIG. 5, at block 510, implementation 500 involves sending an indication of the updated state variable to a second device. For instance, playback device 122 may send an indication of the updated state variables to a second playback device, such as playback device 124, or to a control device, such as control device 126 and/or 128. By sending such an indication to a second device, the first playback device may share the current calibration state with the second device(s).


As noted above, in some cases, the first playback device may send an indication of the updated state variable to a second playback device. In some embodiments, sending such an indication may involve sending an instruction that causes the second playback device to update a state variable that is stored on the second playback device. For instance, playback device 122 may send an instruction that causes playback device 124 to update a state variable stored on playback device 124 to indicate that playback device 122 is uncalibrated (or that playback device 122 is calibrated, depending on the circumstances). Further, in some cases, playback device 122 may send an instruction to additional playback devices (e.g., one or more of playback devices 102-120) that cause these playback devices to update respective calibration state variables. Such sharing may help to maintain current calibration states of playback devices across multiple devices. Within example embodiments, the first playback device may transmit calibration states periodically, or perhaps in response to a query from a second device for a calibration state of a given playback device.


In some examples, the first playback device may store calibration state variables indicating calibration states of the second playback devices. For instance, after receiving an indication that a second playback device is calibrated (or uncalibrated), the first playback device may update a calibration state variable to indicate that the second playback device is calibrated. The first playback device may share the calibration state of the second playback device with other devices, such as control devices or other playback devices.


Also as noted above, the first playback device may send an indication of the updated state variable to a control device. For instance, playback device 122 may send an indication of the updated state variable to one or more control devices, such as control device 126 and/or control device. Such an indication may cause the control device to update a displayed interface to indicate the updated calibration state of the playback device (e.g., that playback device 122 is uncalibrated).


Within examples, the first playback device may share information in addition to the calibration state with one or more second devices. For instance, the first playback device may send calibration information with which the first playback device was calibrated. Such calibration information may include a calibration profile that indicates one or more calibration values that adjust equalization of the first playback device. As noted above, such an equalization adjustment may offset the acoustics of a given environment to produce a desired frequency response for sound emitted by the speakers of the first playback device. By sharing such a profile with second devices, the second devices may have the information to send back to the first playback device should the first playback device need or request the profile (e.g., to recover from power loss).


The first playback device may also share contextual information about a calibration with the one or more second devices. For instance, the first playback device may determine a time at which the first playback device was last calibrated and possibly also identify a bonded zone configuration in which the first playback device was configured when the first playback device was last calibrated. After making such determinations, the first playback device may send an indication of these calibration parameters to one or more second devices.


Having such calibration parameters may facilitate a second device detecting that the first playback device has become uncalibrated. For instance, if the first playback device shares that the first playback device was in a first bonded zone configuration when it was last calibrated, and the second device later receives an indication that the first playback device is in a second bonded zone configuration, the second device may determine that the calibration of the first playback device is out of date. Based on making such a determination, a second playback device might send an indication that the first playback device is no longer calibrated to the first playback device. A control device might initiate a procedure to calibrate the first playback device, or possibly display an indication of the uncalibrated state of the first playback device, among other possible operations.


As described above, example devices of a media playback system may store, update, and/or share a calibration state variable, which may provide various benefits, as discussed herein.


IV. Example Techniques to Display an Indication of a Calibration State Variable

As discussed above, embodiments described herein may involve a calibration state variable. FIG. 9 illustrates an example implementation 900 to display an indication of a calibration state variable.


a. Receive a Calibration State Variable Indicating Calibration State of a First Zone


At block 902, implementation 900 involves receiving a calibration state variable indicating a calibration state of a first zone. For instance, a control device, such as control device 126 or control device 128 depicted in FIG. 1, may receive one or more calibration state variables indicating the calibration state of one or more playback devices of a particular zone (e.g., the Living Room zone of media playback system 100).


In some cases, the calibration state variable may indicate that a zone is uncalibrated (i.e., that one or more playback devices of the zone are not calibrated). A playback device of the zone may share such a calibration state variable when the playback device becomes uncalibrated. For instance, as described above, a playback device, such as playback device 106 of media playback system 100, may detect a trigger condition indicating that the first playback device has become uncalibrated (e.g., one of the trigger conditions described above in connection with block 506 of FIG. 5. Based on detecting such a trigger condition, playback device 106 may update a calibration state variable to indicate that playback device 106 is uncalibrated and send an indication of the updated calibration state variable to a control device.


b. Causing a Graphical Interface to Display an Indication of the Calibration State


Referring back to FIG. 9, at block 904, implementation 900 involves causing a graphical interface to display an indication of the calibration state indicated by the calibration state variable. For example, the control device (e.g., control device 126 or 128) may display a controller interface (e.g., controller interface 400A of FIG. 4) that includes an indication of the calibration state. As noted above, in some cases, a calibration state variable may indicate that a given zone is uncalibrated. In such cases, the control device displays an indication that the given zone is uncalibrated.


As noted above, example media playbacks systems may include one or more zones. For instance, media playback system 100 includes a plurality of zones (e.g., the Living Room zone, Kitchen zone, Dining Room zone, Bedroom zone, and so on). A control device may display a zone control interface that lists the zones of the media playback system. One example of such a zone control interface is playback zone region 420 of controller interface 400A shown in FIG. 4. Such a zone control interface might include an indication of the calibration state of the one or more zones.


To illustrate, FIG. 10 shows controller interface 400B, which is an instance of controller interface 400B that corresponds to media playback system 100 of FIG. 1. Like controller interface 400A, controller interface 400B includes a playback control region 410, a playback zone region 420, a playback status region 430, a playback queue region 440, and an audio content sources region 450. Within playback zone region 420, controller interface 400B also includes a graphical element 402 that indicates an issue with the Living Room zone, which may in turn indicate that the Living Room zone is uncalibrated. Conversely, a lack of such a graphical element, as shown with respect to the Office and Master Bedroom zones might indicate that these zones are calibrated.


As another example, FIG. 11 shows a smartphone 1100 that is displaying a zone control interface 1102. Zone control interface 1102 indicates the zones of media playback system 100. Zone controls 1104, 1106, and 1108 indicate the Office, Master Bedroom, and Living Room zones, respectively. Additional zone controls representing further zones of media playback system 100 may be displayed by way of scrolling. Zone controls, such as zone controls 1104, 1106, and 1108 may indicate media that is playing on the playback device(s) of the zone. Zone control interface 1102 also includes a graphical element 1110 that indicates an issue with at least one of the zones of media playback system 100, which may in turn indicate that at least one of the zones of media playback system 100 is uncalibrated.


In some embodiments, a control device may display a zone settings interface that indicates the calibration state of a given zone (e.g., that the given zone is uncalibrated). In some example interfaces, such an indication may contrast with an indication displayed on a zone control interface by indicating a particular zone that is uncalibrated (as opposed to generally indicating an issue with at least one zone). Selection of a selectable control, such as graphical element 402 of FIG. 10 or graphical element 1110 of FIG. 11, may cause display of such a zone settings interface.


To illustrate a zone settings interface, FIG. 12 shows a smartphone 1200 that is displaying a zone settings interface 1202. Detecting the selection of a selectable control, such as graphical element 1110 of FIG. 11, may cause display of zone settings interface 1202. Zone settings interface 1202 includes selectable controls 1204, 1206, 1208, 1210, 1212, 1214, 1216, and 1218 that, when selected, cause display of a settings interface for the Office, Master Bedroom, Living Room, Dining Room, Kitchen, Bathroom, Bedroom, and Balcony zones, respectively.


Selectable controls 1204-1218 indicate whether the zone corresponding to that selectable control is calibrated. For instance, selectable control 1208 indicates that the Living Room zone is uncalibrated (“Not Tuned”). Likewise, selectable control 1212 indicates that the Kitchen zone is uncalibrated. In contrast, the lack of such indications on selectable controls 1204, 1206, 1210, 1214, 1216, and 1218 may indicate that the zones corresponding to those controls are calibrated. As noted above, the control device (i.e., smartphone 1200) may update a calibration state of a given zone after receiving a calibration state variable indicating whether that zone is calibrated.


Zone settings interface 1202 also includes graphical region 1220, which indicates the effect of calibration on the playback devices of a zone (“Tuning adapts the sound of your speakers for their placement in your room.”). In some examples, graphical region 1220 might not display such an indication if all of the zones of the media playback system are calibrated. In other examples, graphical region 1220 might display a different indication when all of the zones of the media playback system are calibrated. For example, graphical region 1220 might indicate that the zones of the media playback system are tuned.


As noted above, in some embodiments, a control device may display a settings interface for a particular zone of the media playback system. The settings interface for the particular zone may include a plurality of controls that adjust operation of the particular zone in different ways. Further, such a settings interface may include an indication that a particular first playback device of the first zone is uncalibrated. Selection of a selectable control, such as selectable control 1208 or selectable control 1212 of FIG. 12, may cause display of such a settings interface.


By way of example, FIG. 13 shows a smartphone 1300 that is displaying a settings interface 1302 for the Living Room zone of media playback system 100. As noted above, this Living Room zone includes playback devices 104, 106, 108, and 110, which are joined into a surround sound configuration. Detecting the selection of a selectable control (e.g., selectable control 1208 of FIG. 12) may cause display of zone settings interface 1302. Zone settings interface 1302 includes selectable controls 1304, 1306, 1308, 1310, 1312, 1314, 1316, and 1318 that, when selected, adjust or change aspects of how the Living Room zone operates (i.e., how playback devices 104, 106, 108, and 110 operate).


More particularly, selectable control 1304, when selected, provides an interface to change the zone name of the Living Room zone. As described above in connection with block 506 of FIG. 5, a change to the name of a zone may create a presumption that a playback device of the zone has been moved, which may trigger a loss of calibration state. To illustrate, in some examples, upon detecting a change in the zone name of the Living Room zone, a control device such as smartphone 1300 may send an instruction to a playback device of the Living Room zone that indicates that the zone is uncalibrated, which may in turn cause the playback device(s) of the Living Room zone to update calibration state variables to reflect this calibration state.


Other selectable controls adjust other aspects of the zone. Selectable control 1308, when selected, provides an interface to adjust the equalization of the playback devices of the zone (e.g., to boost or cut certain frequencies, such as bass, treble, or mid-range frequencies). Selectable controls 1310 and 1312 adjust operation of playback device 110 (i.e., the subwoofer). In particular, selectable control 1310, when selected, toggles playback device 110 on and off and selectable control 1312, when selected, provides an interface to adjust the volume level of playback device 110. Selectable controls 1314 and 1316 adjust the bonded zone configuration of the Living Room zone (i.e., the surround sound configuration). More particularly, selectable control 1314 removes only playback device 110 from the bonded zone configuration while selectable control 1314 removes playback devices 104, 106, 108, and 110 from the bonded zone configuration. Lastly, selectable control 1318 toggles respective power indicator lights on playback devices 104, 106, 108, and 110 on and off


While some example controls have been shown to illustrate an example settings interface, other example settings interfaces contemplated herein may include additional or fewer controls, or controls that are not shown in the example settings interface.


c. Cause Graphical Interface to Display a Selectable Control that Initiates Calibration of the First Zone


In FIG. 9, at block 906, implementation 900 involves causing the graphical interface to display a selectable control that initiates calibration of the first zone. For example, the control device (e.g., control device 126 or 128) may display a controller interface (e.g., controller interface 400A of FIG. 4) that includes a selectable control that initiates calibration of one or more first playback devices of the first zone. In other examples, a control device may display such a selectable control on a settings interface, such as zone settings interface 1202 of FIG. 12 or settings interface 1302 of FIG. 13.


To illustrate, referring back to FIG. 13, settings interface 1302 includes a selectable control 1306, that when selected, initiates calibration of the Living Room zone. Selectable control 1306 also includes an indication that a particular playback device of the Living Room zone is uncalibrated (i.e., playback device 106). Selection of selectable control 1306 may initiate a calibration procedure that calibrates at least playback device 106 (and possibly other playback devices of the Living Room zone).


d. Initiate Calibration of the Zone


Referring again to FIG. 9, at block 908, implementation 900 involves initiating calibration of the first zone, which may involve calibrating one or more playback devices of the first zone. Some calibration procedures contemplated herein involve a control device detecting and analyzing sound waves (e.g., one or more calibration sounds) emitted by the playback device. In a first phase, the calibration process may involve preparing the playback device, the control device, and/or the environment for calibration of the playback device. A second phase of the calibration process may involve carrying out the calibration itself. In some embodiments, the control device may display a prompt, or a series of prompts, that direct the user to assist in one or both phases of the calibration procedure.


To prepare the playback device for calibration, a control device may provide prompts to position the playback device within the environment as the playback device will later be operated. An environment's acoustics may vary from physical location to physical location within the environment, so calibrating a playback device at a first physical location might not be helpful if the playback device will be listened to at a second physical location. In an attempt to get the playback device to be calibrated in its operating position, the control device may display a prompt to position the playback device in the physical location at which it will be operated.


To prepare the control device for calibration, the control device may provide a prompt to perform a step or steps to improve the acoustics of the microphone that will be detecting the calibration sounds emitted by the playback device. For instance, the control device may prompt to rotate the control device such that its microphone is oriented upwards, as such an orientation may improve the microphone sensitivity or other acoustic characteristics. As another example, the control device may prompt to remove any removable cases or covers that have been installed on the control devices. Cases or covers may negatively influence the microphones ability to sense sounds, as they may physically block or attenuate sound before the sound reaches the microphone. Within examples, the control device may prompt to perform other steps as well.


To prepare the environment for calibration, the control device may provide a prompt to perform one or more steps to reduce or eliminate environmental effects on the calibration. For instance, the control device may prompt to reduce ambient noise within an environment. Since the calibration involves the control device detecting calibration sounds emitted by the playback device, ambient noise may negatively influence the calibration procedure by affecting a microphone's ability to detect the calibration sounds.


Within example embodiments, the first phase may include any combination of the above steps in preparing the playback device, the control device, and the environment. Moreover, these steps may be performed in any order. For instance, the control device may prompt to prepare the environment before the control device. Further, some examples might not include all of these steps. For example, some calibration procedures involve preparing the control device and the playback device but not necessarily the environment. In addition, preparing any of the described entities might not include all of the described examples of how such an entity may be prepared. By way of example, in some embodiments, a control device may prompt to rotate the control device and might not prompt to remove any cases.


After the first phase, the control device may proceed to calibration. In some embodiments, the control device might not initiate (or might not allow calibration to be initiated) until the control device has received an indication that preparation is completed. For instance, the control device may display a selectable control to initiate calibration upon detecting input data indicating that the playback device, control device, and environment have each been prepared for calibration. Then, upon detecting input data indicating a selection the displayed control, the control device may initiate calibration. For instance, the control device may transmit an instruction to the playback device that causes the playback device to begin emitting a calibration sound.


Some calibration procedures may be improved by the control device detecting the calibration sounds at multiple physical locations within the environment. As noted above, acoustics of an environment may vary from location to location within the environment. Detecting the calibration sounds at multiple physical locations within the environment may provide a better understanding of the environment as a whole. To facilitate detecting the calibration sounds at multiple physical locations, the control device may provide a prompt to perform a movement during the calibration procedure. The movement may involve the user carrying the control device around the room while the playback device under calibration emits calibration sounds. In this manner, the control device may detect the calibration sounds at multiple physical locations within the environment.


After detecting the calibration sounds, the control device may analyze the calibration sounds to determine determining respective frequency responses of the one or more playback devices within a given environment. After determining such a response for a given playback device, the control device may instruct the given playback device to adopt a certain calibration profile (e.g., an equalization) that offsets the acoustics of the environment.


Some further example calibration procedures, or aspects thereof, are described in U.S. patent application Ser. No. 13/536,493 filed Jun. 28, 2012, entitled “System and Method for Device Playback Calibration,” U.S. patent application Ser. No. 14/216,306 filed Mar. 17, 2014, entitled “Audio Settings Based On Environment,” U.S. patent application Ser. No. 14/481,511 filed Sep. 9, 2014, entitled “Playback Device Calibration,” and U.S. patent application Ser. No. 14/696,014, entitled “Speaker Calibration,” which are incorporated herein in their entirety.


After a calibration procedure is performed to calibrate the playback devices of a zone (e.g., the Living Room zone of media playback system 100), a control device may perform certain operations to update the media playback system. For instance, the control device may cause the graphical interface to remove the indication(s) that the zone is uncalibrated. In particular, given that the zones of the media playback system are now calibrated, smartphone 1100 might remove or alter graphical element 1110 to no longer indicate that at least one zone of the media playback system is uncalibrated. As another example, smartphone 1200 may alter selectable control 1208 to no longer indicate that the Living Room zone is uncalibrated. And, as yet another example, smartphone 1300 may change selectable control 1306 to no longer indicate that playback device 106 is not calibrated. Other examples are possible as well.


The control device may update playback devices of the media playback system with the updated calibration state of the first zone. For instance, a control device, such as control device 126, may send an instruction that causes playback device 106 to update a calibration state variable to indicate that Living Room zone is now calibrated (i.e., that playback devices 104, 106, 108, and 110 are calibrated). As noted above, in some embodiments, multiple playback devices may store respective calibration variables indicating the calibration state of a given playback device. In some cases, the control device may send an indication of the updated calibration state of the Living Room zone to these playback devices as well. Alternatively, the playback devices may propagate this calibration state through media playback system 100 by sending an indication of the calibration state to one or more additional playback devices.


Referring back to the example zone setting interfaces noted above, in some cases, a control device may detect selection of a selectable control that causes display of a settings interface for a zone that is calibrated. For instance, in FIG. 12, smartphone 1200 may detect selection of selectable control 1216, which may cause smartphone 1200 to display a settings interface for the Bedroom zone. Like settings interface 1302, such a settings interface may include a plurality of controls that control operation of the zone that corresponds to the settings interface (i.e., the Bedroom zone).


To illustrate, FIG. 14 shows a smartphone 1400 that is displaying a settings interface 1402 for the Bedroom zone of media playback system 100. As noted above, this Bedroom zone includes playback devices 120. Detecting the selection of a selectable control (e.g., selectable control 1216 of FIG. 12) may cause display of zone settings interface 1402. Zone settings interface 1402 includes selectable controls 1404, 1406, 1408, 1410, and 1412 that, when selected, adjust or change aspects of how the Bedroom zone operates (i.e., how playback device 120 operates).


Selectable controls 1404, 1410, and 1412 operate similarly to selectable controls 1304, 1308, and 1318 of FIG. 13, respectively. In particular, similar to selectable control 1304, selectable control 1404, when selected, provides an interface to change the zone name of the Bedroom zone. Selectable control 1410, when selected, causes display of an interface to adjust the equalization of playback device 120. And, selectable control 1412, when selected, toggles a power indicator light on playback device 120 on and off. Since the Bedroom zone does not include a bonded zone configuration or certain types of playback devices (e.g., a subwoofer), settings interface 1402 might not include all of the controls that settings interface 1302 includes.


But, settings interface 1402 also includes selectable controls that settings interface 1302 does not include, as the Bedroom zone is calibrated. Instead, settings interface 1402 includes selectable control 1406 and 1408, which adjust the calibrated state of the Bedroom zone. In particular, selectable control 1406, when selected, toggles the calibration of the Bedroom zone on and off. And, selectable control 1408, when selected, initiates a calibration procedure for the Bedroom zone to re-calibrate playback device 120.


V. Conclusion

The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.


Example techniques may involve a calibration state variable. In one aspect, a method is provided. The method may involve receiving, via a network interface, an indication that the first playback device is calibrated. The method may also involve updating a calibration state variable to indicate that the first playback device is calibrated based on receiving the indication that the first playback device is calibrated. The method may further involve sending, via the network interface, an indication of the updated calibration state variable to a second device.


In another aspect, a device is provided. The device includes a network interface, at least one processor, a data storage, and program logic stored in the data storage and executable by the at least one processor to perform operations. The operations may include receiving, via the network interface, an indication that the first playback device is calibrated. The operations may also include updating a calibration state variable to indicate that the first playback device is calibrated based on receiving the indication that the first playback device is calibrated. The operations may further include sending, via the network interface, an indication of the updated calibration state variable to a second device.


In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform operations. The operations may include receiving, via the network interface, an indication that the first playback device is calibrated. The operations may also include updating a calibration state variable to indicate that the first playback device is calibrated based on receiving the indication that the first playback device is calibrated. The operations may further include sending, via the network interface, an indication of the updated calibration state variable to a second device.


Further example techniques may involve a graphical user interface displaying an indication of a calibration state variable. In one aspect, a method is provided. The method may involve receiving, from a first playback device of a media playback system, a calibration state variable indicating that the first playback device is uncalibrated. The method may also involve causing a graphical interface to display an indication that the first playback device is uncalibrated. The method may further involve causing the graphical interface to display a selectable control that, when selected, initiates calibration of the first playback device and initiating calibration of the first playback device.


In another aspect, a device is provided. The device includes a network interface, at least one processor, a data storage, and program logic stored in the data storage and executable by the at least one processor to perform operations. The operations may include receiving, from a first playback device of a media playback system, a calibration state variable indicating that the first playback device is uncalibrated. The operations may also include causing a graphical interface to display an indication that the first playback device is uncalibrated. The operations may further include causing the graphical interface to display a selectable control that, when selected, initiates calibration of the first playback device and initiating calibration of the first playback device.


In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform operations. The operations may include receiving, from a first playback device of a media playback system, a calibration state variable indicating that the first playback device is uncalibrated. The operations may also include causing a graphical interface to display an indication that the first playback device is uncalibrated. The operations may further include causing the graphical interface to display a selectable control that, when selected, initiates calibration of the first playback device and initiating calibration of the first playback device.


The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.


When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.

Claims
  • 1. A system comprising a control device, wherein the control device comprises a network interface, at least one processor and at least one non-transitory computer- readable medium including instructions that are executable by the at least one processor such that the control device is configured to: receive, via the network interface, first state data indicating that a first playback device is in an uncalibrated state;cause, via a graphical display, a graphical interface of a control application to display an indication that the first playback device is in the uncalibrated state;detect, via the control application, input data indicating a command to initiate calibration of the first playback device;send, via the network interface, data representing an instruction to initiate calibration of the first playback device, wherein calibration of the first playback device (i) at least partially offsets acoustic characteristics of an environment surrounding the first playback device and (ii) transitions the first playback device from the uncalibrated state to the calibrated state;after sending the data representing the instruction to initiate calibration of the first playback device, receive, via the network interface, second state data indicating that the first playback device is in a calibrated state; andupdate the graphical interface of the control application to display an indication that the first playback device is in the calibrated state.
  • 2. The system of claim 1, wherein the system further comprises the first playback device, and wherein the first playback device comprises a network interface, at least one processor and at least one non-transitory computer-readable medium including instructions that are executable by the at least one processor such that the first playback device is configured to: receive, via a network interface, the data representing an instruction to initiate calibration of the first playback device; andresponsively, initiate calibration of the first playback device, wherein calibration of the first playback device comprises outputting, via one or more speakers of the first playback device, calibration audio.
  • 3. The system of claim 2, wherein the instructions are executable by the at least one processor such that the control device is further configured to: based on a recording of the calibration audio via one or more microphones, determining a calibration profile that at least partially offsets the acoustic characteristics of the environment surrounding the first playback device when applied to audio playback by the first playback device; andsending, to the first playback device, data representing the first calibration profile.
  • 4. The system of claim 2, wherein the instructions are executable by the at least one processor such that the first playback device is further configured to: while the first playback device is in the calibrated state, detect that the first playback device has been moved from a first location to a second location;responsive to the detection that the first playback device has been moved from the first location to the second location, update state information in data storage of the first playback device to indicate that the first playback device is in the uncalibrated state; andsend, via the network interface, third state data indicating that the first playback device is in the uncalibrated state.
  • 5. The system of claim 4, wherein the instructions are executable by the at least one processor such that the control device is further configured to: receive, via the network interface, the third state data indicating that the first playback device is in the uncalibrated state; andupdate the graphical interface of the control application to display the indication that the first playback device is in the uncalibrated state.
  • 6. The system of claim 1, wherein the instructions are executable by the at least one processor such that the control device is configured to update the graphical interface of the control application to display the indication that the first playback device is in the calibrated state comprise instructions that are executable by the at least one processor such that the control device is configured to: remove, from the graphical interface of the control application, the indication that the first playback device is in the uncalibrated state.
  • 7. The system of claim 1, wherein the instructions are executable by the at least one processor such that the control device is further configured to: cause, via the graphical display, the graphical interface to display one or more of: (i) a prompt to prepare the first playback device for calibration within a given environment, (ii) a prompt to prepare the given environment for calibration of the first playback device, and (iii) a prompt to prepare the control device for calibration of the first playback device.
  • 8. The system of claim 1, wherein the instructions that are executable by the at least one processor such that the control device is configured to: receive, via the network interface, fourth state data indicating that a second playback device is in an calibrated state; andcause, via the graphical display, the graphical interface of the control application to display (i) an indication that the second playback device is in the calibrated state and (ii) a selectable control, that when selected, initiates re-calibration of the second playback device.
  • 9. The system of claim 1, wherein a first zone of a media playback system comprises the first playback device, wherein the media playback system comprises multiple zones including the first zone and one or more additional zones comprising at least one respective playback device, and wherein the instructions that are executable by the at least one processor such that the control device is configured to cause the graphical interface of the control application to display the indication that the first playback device is in the uncalibrated state comprise instructions that are executable by the at least one processor such that the control device is configured to: display a list of the multiple zones; anddisplay, in association with a display name of the first zone, the indication that the first playback device is in the uncalibrated state.
  • 10. The system of claim 9, wherein the instructions that are executable by the at least one processor such that the control device is configured to cause the graphical interface of the control application to display the list of the multiple zones comprise instructions that are executable by the at least one processor such that the control device is configured to: display a settings interface comprising controls selectable to modify settings of the multiple zones; anddisplay, on the settings interface, the list of the multiple zones.
  • 11. A tangible, non-transitory computer-readable medium including instructions that are executable by at least one processor of a control device such that the control device is configured to: receive, via a network interface, first state data indicating that a first playback device is in an uncalibrated state;cause, via a graphical display, a graphical interface of a control application to display an indication that the first playback device is in the uncalibrated state;detect, via the control application, input data indicating a command to initiate calibration of the first playback device;send, via the network interface, data representing an instruction to initiate calibration of the first playback device, wherein calibration of the first playback device (i) at least partially offsets acoustic characteristics of an environment surrounding the first playback device and (ii) transitions the first playback device from the uncalibrated state to the calibrated state;after sending the data representing the instruction to initiate calibration of the first playback device, receive, via the network interface, second state data indicating that the first playback device is in a calibrated state; andupdate the graphical interface of the control application to display an indication that the first playback device is in the calibrated state.
  • 12. The tangible, non-transitory computer-readable medium of claim 11, wherein the control device comprises one or more microphones, and wherein the instructions are executable by the at least one processor such that the control device is further configured to: detect, via the one or more microphones, output of calibration audio by the first playback device;based on the detected output of the calibration audio, determining a calibration profile that at least partially offsets the acoustic characteristics of the environment surrounding the first playback device when applied to audio playback by the first playback device; andsending, to the first playback device, data representing the first calibration profile.
  • 13. The tangible, non-transitory computer-readable medium of claim 11, wherein the instructions are executable by the at least one processor such that the control device is further configured to: while the first playback device is in the calibrated state, detect that the first playback device has been moved from a first location to a second location;based on the detection that the first playback device has been moved from the first location to the second location, send, via the network interface, third state data indicating that the first playback device is in the uncalibrated state; andupdate the graphical interface of the control application to display the indication that the first playback device is in the uncalibrated state.
  • 14. The tangible, non-transitory computer-readable medium of claim 11, wherein the instructions are executable by the at least one processor such that the control device is configured to update the graphical interface of the control application to display the indication that the first playback device is in the calibrated state comprise instructions that are executable by the at least one processor such that the control device is configured to: remove, from the graphical interface of the control application, the indication that the first playback device is in the uncalibrated state.
  • 15. The tangible, non-transitory computer-readable medium of claim 11, wherein the instructions are executable by the at least one processor such that the control device is further configured to: cause, via the graphical display, the graphical interface to display one or more of: (i) a prompt to prepare the first playback device for calibration within a given environment, (ii) a prompt to prepare the given environment for calibration of the first playback device, and (iii) a prompt to prepare the control device for calibration of the first playback device.
  • 16. The tangible, non-transitory computer-readable medium of claim 11, wherein the instructions that are executable by the at least one processor such that the control device is configured to: receive, via the network interface, fourth state data indicating that a second playback device is in a calibrated state; andcause, via the graphical display, the graphical interface of the control application to display (i) an indication that the second playback device is in the calibrated state and (ii) a selectable control, that when selected, initiates re-calibration of the second playback device.
  • 17. The tangible, non-transitory computer-readable medium of claim 11, wherein a first zone of a media playback system comprises the first playback device, wherein the media playback system comprises multiple zones including the first zone and one or more additional zones comprising at least one respective playback device, and wherein the instructions that are executable by the at least one processor such that the control device is configured to cause the graphical interface of the control application to display the indication that the first playback device is in the uncalibrated state comprise instructions that are executable by the at least one processor such that the control device is configured to: display a list of the multiple zones; anddisplay, in association with a display name of the first zone, the indication that the first playback device is in the uncalibrated state.
  • 18. A method to be performed by a system comprising a control device and a playback device, the method comprising: receiving, via a network interface of the control device, first state data indicating that a playback device is in an uncalibrated state;causing, via a graphical display of the control device, a graphical interface of a control application to display an indication that the playback device is in the uncalibrated state;detecting, via the control application, input data indicating a command to initiate calibration of the playback device;sending, via the network interface of the control device, data representing an instruction to initiate calibration of the playback device, wherein calibration of the playback device (i) at least partially offsets acoustic characteristics of an environment surrounding a playback device and (ii) transitions the playback device from the uncalibrated state to the calibrated state;after sending the data representing the instruction to initiate calibration of the playback device, receiving, via the network interface, second state data indicating that the playback device is in a calibrated state; andupdating the graphical interface of the control application to display an indication that the playback device is in the calibrated state.
  • 19. The method of claim 18, further comprising: receive, via a network interface of the playback device, the data representing an instruction to initiate calibration of the playback device; andresponsively, initiate calibration of the playback device, wherein calibration of the playback device comprises outputting, via one or more speakers of the playback device, calibration audio.
  • 20. The method of claim 19, further comprising: based on a recording of the calibration audio via one or more microphones, determining a calibration profile that at least partially offsets the acoustic characteristics of the environment surrounding the playback device when applied to audio playback by the playback device; andapplying the calibration profile to audio playback by the playback device.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. patent application Ser. No. 15/966,534, filed on Apr. 30, 2018, entitled “Calibration Indicator,” the contents of which are hereby incorporated by reference herein in their entirety. U.S. patent application Ser. No. 15/966,534 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. patent application Ser. No. 14/793,205, filed on Jul. 7, 2015, entitled “Calibration Indicator,” and issued as U.S. Pat. No. 9,961,463 on May 1, 2018, the contents of which are hereby incorporated by reference herein in their entirety. This application is related to U.S. patent application Ser. No. 13/536,493 filed on Jun. 28, 2012, entitled “System and Method for Device Playback Calibration,” and U.S. patent application Ser. No. 14/793,190 filed on Jul. 7, 2015, entitled “Calibration State Variable,” which are both hereby incorporated herein in their entirety.

US Referenced Citations (552)
Number Name Date Kind
4306113 Morton Dec 1981 A
4342104 Jack Jul 1982 A
4504704 Ohyaba et al. Mar 1985 A
4592088 Shimada May 1986 A
4628530 Op De Beek et al. Dec 1986 A
4631749 Rapaich Dec 1986 A
4694484 Atkinson et al. Sep 1987 A
4773094 Dolby Sep 1988 A
4995778 Bruessel Feb 1991 A
5218710 Yamaki et al. Jun 1993 A
5255326 Stevenson Oct 1993 A
5323257 Abe et al. Jun 1994 A
5386478 Plunkett Jan 1995 A
5440644 Farinelli et al. Aug 1995 A
5553147 Pineau Sep 1996 A
5581621 Koyama et al. Dec 1996 A
5754774 Bittinger et al. May 1998 A
5757927 Gerzon et al. May 1998 A
5761320 Farinelli et al. Jun 1998 A
5910991 Farrar Jun 1999 A
5923902 Inagaki Jul 1999 A
5939656 Suda Aug 1999 A
6018376 Nakatani Jan 2000 A
6032202 Lea et al. Feb 2000 A
6072879 Ouchi et al. Jun 2000 A
6111957 Thomasson Aug 2000 A
6256554 Dilorenzo Jul 2001 B1
6363155 Horbach Mar 2002 B1
6404811 Cvetko et al. Jun 2002 B1
6469633 Wachter et al. Oct 2002 B1
6522886 Youngs et al. Feb 2003 B1
6573067 Dib-Hajj et al. Jun 2003 B1
6611537 Edens et al. Aug 2003 B1
6631410 Kowalski et al. Oct 2003 B1
6639989 Zacharov et al. Oct 2003 B1
6643744 Cheng Nov 2003 B1
6704421 Kitamura Mar 2004 B1
6721428 Allred et al. Apr 2004 B1
6731760 Pedersen May 2004 B2
6757517 Chang Jun 2004 B2
6760451 Craven et al. Jul 2004 B1
6766025 Levy et al. Jul 2004 B1
6778869 Champion Aug 2004 B2
6798889 Dicker et al. Sep 2004 B1
6862440 Sampath Mar 2005 B2
6916980 Ishida et al. Jul 2005 B2
6931134 Waller, Jr. et al. Aug 2005 B1
6985694 De Bonet et al. Jan 2006 B1
6990211 Parker Jan 2006 B2
7031476 Chrisop et al. Apr 2006 B1
7039212 Poling et al. May 2006 B2
7058186 Tanaka Jun 2006 B2
7072477 Kincaid Jul 2006 B1
7092535 Pedersen et al. Aug 2006 B1
7092537 Allred et al. Aug 2006 B1
7103187 Neuman Sep 2006 B1
7130608 Hollstrom et al. Oct 2006 B2
7130616 Janik Oct 2006 B2
7143939 Henzerling Dec 2006 B2
7187947 White et al. Mar 2007 B1
7236773 Thomas Jun 2007 B2
7289637 Montag et al. Oct 2007 B2
7295548 Blank et al. Nov 2007 B2
7312785 Tsuk et al. Dec 2007 B2
7391791 Balassanian et al. Jun 2008 B2
7477751 Lyon et al. Jan 2009 B2
7483538 McCarty et al. Jan 2009 B2
7483540 Rabinowitz et al. Jan 2009 B2
7489784 Yoshino Feb 2009 B2
7490044 Kulkarni Feb 2009 B2
7492909 Carter et al. Feb 2009 B2
7519188 Berardi et al. Apr 2009 B2
7529377 Nackvi et al. May 2009 B2
7571014 Lambourne et al. Aug 2009 B1
7590772 Marriott et al. Sep 2009 B2
7630500 Beckman et al. Dec 2009 B1
7630501 Blank et al. Dec 2009 B2
7643894 Braithwaite et al. Jan 2010 B2
7657910 McAulay et al. Feb 2010 B1
7664276 McKee Feb 2010 B2
7676044 Sasaki et al. Mar 2010 B2
7689305 Kreifeldt et al. Mar 2010 B2
7697701 Pedersen et al. Apr 2010 B2
7720237 Bharitkar et al. May 2010 B2
7742740 Goldberg et al. Jun 2010 B2
7769183 Bharitkar et al. Aug 2010 B2
7796068 Raz et al. Sep 2010 B2
7835689 Goldberg et al. Nov 2010 B2
7853341 McCarty et al. Dec 2010 B2
7876903 Sauk Jan 2011 B2
7925203 Lane et al. Apr 2011 B2
7949140 Kino May 2011 B2
7949707 McDowall et al. May 2011 B2
7961893 Kino Jun 2011 B2
7970922 Svendsen Jun 2011 B2
7987294 Bryce et al. Jul 2011 B2
8005228 Bharitkar et al. Aug 2011 B2
8014423 Thaler et al. Sep 2011 B2
8042961 Massara et al. Oct 2011 B2
8045721 Burgan et al. Oct 2011 B2
8045952 Qureshey et al. Oct 2011 B2
8050652 Qureshey et al. Nov 2011 B2
8063698 Howard Nov 2011 B2
8074253 Nathan Dec 2011 B1
8103009 McCarty et al. Jan 2012 B2
8116476 Inohara Feb 2012 B2
8126156 Corbett et al. Feb 2012 B2
8126172 Horbach et al. Feb 2012 B2
8131390 Braithwaite et al. Mar 2012 B2
8139774 Berardi et al. Mar 2012 B2
8144883 Pdersen et al. Mar 2012 B2
8160276 Liao et al. Apr 2012 B2
8160281 Kim et al. Apr 2012 B2
8170260 Reining et al. May 2012 B2
8175292 Aylward et al. May 2012 B2
8175297 Ho et al. May 2012 B1
8194874 Starobin et al. Jun 2012 B2
8229125 Short Jul 2012 B2
8233632 MacDonald et al. Jul 2012 B1
8234395 Millington Jul 2012 B2
8238547 Ohki et al. Aug 2012 B2
8238578 Aylward Aug 2012 B2
8243961 Morrill Aug 2012 B1
8264408 Kainulainen et al. Sep 2012 B2
8265310 Berardi et al. Sep 2012 B2
8270620 Christensen et al. Sep 2012 B2
8279709 Choisel et al. Oct 2012 B2
8281001 Busam et al. Oct 2012 B2
8290185 Kim Oct 2012 B2
8291349 Park et al. Oct 2012 B1
8300845 Zurek et al. Oct 2012 B2
8306235 Mahowald Nov 2012 B2
8325931 Howard et al. Dec 2012 B2
8325935 Rutschman Dec 2012 B2
8325944 Duwenhorst et al. Dec 2012 B1
8331585 Hagen et al. Dec 2012 B2
8332414 Nguyen et al. Dec 2012 B2
8379876 Zhang Feb 2013 B2
8385557 Tashev et al. Feb 2013 B2
8391501 Khawand et al. Mar 2013 B2
8392505 Haughay et al. Mar 2013 B2
8401202 Brooking Mar 2013 B2
8433076 Zurek et al. Apr 2013 B2
8452020 Gregg et al. May 2013 B2
8463184 Dua Jun 2013 B2
8483853 Lambourne Jul 2013 B1
8488799 Goldstein et al. Jul 2013 B2
8503669 Mao Aug 2013 B2
8527876 Wood et al. Sep 2013 B2
8577045 Gibbs Nov 2013 B2
8577048 Chaikin et al. Nov 2013 B2
8600075 Lim Dec 2013 B2
8620006 Berardi et al. Dec 2013 B2
8682002 Wihardja et al. Mar 2014 B2
8731206 Park May 2014 B1
8755538 Kwon Jun 2014 B2
8798280 Goldberg et al. Aug 2014 B2
8819554 Basso et al. Aug 2014 B2
8831244 Apfel Sep 2014 B2
8855319 Liu et al. Oct 2014 B2
8862273 Karr Oct 2014 B2
8879761 Johnson et al. Nov 2014 B2
8903526 Beckhardt et al. Dec 2014 B2
8914559 Kalayjian et al. Dec 2014 B2
8930005 Reimann Jan 2015 B2
8934647 Joyce et al. Jan 2015 B2
8934655 Breen et al. Jan 2015 B2
8942252 Balassanian et al. Jan 2015 B2
8965033 Wiggins Feb 2015 B2
8965546 Visser et al. Feb 2015 B2
8977974 Kraut Mar 2015 B2
8984442 Pirnack et al. Mar 2015 B2
8989406 Wong et al. Mar 2015 B2
8995687 Marino, Jr. et al. Mar 2015 B2
8995688 Chemtob Mar 2015 B1
8996370 Ansell Mar 2015 B2
9020153 Britt, Jr. Apr 2015 B2
9021153 Lu Apr 2015 B2
9042556 Kallai et al. May 2015 B2
9065929 Chen et al. Jun 2015 B2
9084058 Reilly et al. Jul 2015 B2
9100766 Soulodre et al. Aug 2015 B2
9106192 Sheen et al. Aug 2015 B2
9179233 Kang Nov 2015 B2
9215545 Dublin et al. Dec 2015 B2
9219460 Bush Dec 2015 B2
9231545 Agustin et al. Jan 2016 B2
9247365 Ellis et al. Jan 2016 B1
9264839 Oishi et al. Feb 2016 B2
9286384 Kuper et al. Mar 2016 B2
9288597 Carlsson et al. Mar 2016 B2
9300266 Grokop Mar 2016 B2
9307340 Seefeldt Apr 2016 B2
9319816 Narayanan Apr 2016 B1
9398392 Ridihalgh et al. Jul 2016 B2
9451377 Massey et al. Sep 2016 B2
9462399 Bharitkar et al. Oct 2016 B2
9467779 Iyengar et al. Oct 2016 B2
9472201 Sleator Oct 2016 B1
9473207 McCormack et al. Oct 2016 B2
9489948 Chu et al. Nov 2016 B1
9524098 Griffiths et al. Dec 2016 B2
9538305 Lehnert et al. Jan 2017 B2
9538308 Isaac et al. Jan 2017 B2
9544701 Rappoport Jan 2017 B1
9560449 Carlsson et al. Jan 2017 B2
9560460 Chaikin et al. Jan 2017 B2
9584915 Fullam et al. Feb 2017 B2
9609383 Hirst Mar 2017 B1
9615171 O'Neill et al. Apr 2017 B1
9648422 Sheen et al. May 2017 B2
9654073 Apodaca May 2017 B2
9674625 Armstrong-Muntner et al. Jun 2017 B2
9678708 Bierbower et al. Jun 2017 B2
9686625 Patel Jun 2017 B2
9689960 Barton et al. Jun 2017 B1
9690271 Sheen et al. Jun 2017 B2
9690539 Sheen et al. Jun 2017 B2
9693165 Downing et al. Jun 2017 B2
9699582 Sheerin et al. Jul 2017 B2
9706323 Sheen et al. Jul 2017 B2
9715365 Kusano et al. Jul 2017 B2
9723420 Family et al. Aug 2017 B2
9729984 Tan et al. Aug 2017 B2
9736584 Sheen et al. Aug 2017 B2
9743207 Hartung Aug 2017 B1
9743208 Oishi et al. Aug 2017 B2
9749763 Sheen Aug 2017 B2
9763018 McPherson et al. Sep 2017 B1
9781532 Sheen Oct 2017 B2
9788113 Wilberding et al. Oct 2017 B2
9794722 Petrov Oct 2017 B2
9807536 Liu et al. Oct 2017 B2
9810784 Altman et al. Nov 2017 B2
9860662 Jarvis et al. Jan 2018 B2
9864574 Hartung et al. Jan 2018 B2
9910634 Sheen et al. Mar 2018 B2
9913056 Master et al. Mar 2018 B2
9916126 Lang Mar 2018 B2
9952825 Sheen Apr 2018 B2
9984703 Ur et al. May 2018 B2
10045142 McPherson et al. Aug 2018 B2
10125006 Jacobsen et al. Nov 2018 B2
10127006 Sheen Nov 2018 B2
10154359 Sheen Dec 2018 B2
10206052 Perianu Feb 2019 B2
10299054 McPherson et al. May 2019 B2
10299061 Sheen May 2019 B1
10402154 Hartung et al. Sep 2019 B2
10791407 Oishi et al. Sep 2020 B2
20010038702 Lavoie et al. Nov 2001 A1
20010042107 Palm Nov 2001 A1
20010043592 Jimenez et al. Nov 2001 A1
20010053228 Jones Dec 2001 A1
20020022453 Balog et al. Feb 2002 A1
20020026442 Lipscomb et al. Feb 2002 A1
20020072816 Shdema et al. Jun 2002 A1
20020078161 Cheng Jun 2002 A1
20020089529 Robbin Jul 2002 A1
20020124097 Isely et al. Sep 2002 A1
20020126852 Kashani et al. Sep 2002 A1
20020136414 Jordan et al. Sep 2002 A1
20020146136 Carter, Jr. Oct 2002 A1
20030002689 Folio Jan 2003 A1
20030031334 Layton et al. Feb 2003 A1
20030081115 Curry et al. May 2003 A1
20030157951 Hasty Aug 2003 A1
20030159569 Ohta Aug 2003 A1
20030161479 Yang et al. Aug 2003 A1
20030161492 Miller et al. Aug 2003 A1
20030179891 Rabinowitz Sep 2003 A1
20030235311 Grancea et al. Dec 2003 A1
20040024478 Hans et al. Feb 2004 A1
20040071294 Halgas, Jr. et al. Apr 2004 A1
20040114771 Vaughan et al. Jun 2004 A1
20040131338 Asada et al. Jul 2004 A1
20040237750 Smith et al. Dec 2004 A1
20050021470 Martin et al. Jan 2005 A1
20050031143 Devantier et al. Feb 2005 A1
20050063554 Devantier et al. Mar 2005 A1
20050147261 Yeh Jul 2005 A1
20050157885 Olney et al. Jul 2005 A1
20050276425 Forrester et al. Dec 2005 A1
20060008256 Khedouri et al. Jan 2006 A1
20060026521 Hotelling et al. Feb 2006 A1
20060032357 Roovers et al. Feb 2006 A1
20060104454 Guitarte Perez et al. May 2006 A1
20060147057 Aggarwal et al. Jul 2006 A1
20060153391 Hooley et al. Jul 2006 A1
20060195480 Spiegelman et al. Aug 2006 A1
20060225097 Lawrence-Apfelbaum Oct 2006 A1
20070003067 Gierl et al. Jan 2007 A1
20070025559 Mihelich et al. Feb 2007 A1
20070032895 Nackvi et al. Feb 2007 A1
20070038999 Millington Feb 2007 A1
20070086597 Kino Apr 2007 A1
20070087686 Holm et al. Apr 2007 A1
20070116254 Looney et al. May 2007 A1
20070121955 Johnston et al. May 2007 A1
20070142944 Goldberg et al. Jun 2007 A1
20080002839 Eng Jan 2008 A1
20080014989 Sandegard et al. Jan 2008 A1
20080065247 Igoe Mar 2008 A1
20080069378 Rabinowitz et al. Mar 2008 A1
20080077261 Baudino et al. Mar 2008 A1
20080098027 Aarts Apr 2008 A1
20080136623 Calvarese Jun 2008 A1
20080144864 Huon et al. Jun 2008 A1
20080175411 Greve Jul 2008 A1
20080214160 Jonsson Sep 2008 A1
20080232603 Soulodre et al. Sep 2008 A1
20080266385 Smith et al. Oct 2008 A1
20080281523 Dahl et al. Nov 2008 A1
20090003613 Christensen et al. Jan 2009 A1
20090024662 Park et al. Jan 2009 A1
20090047993 Vasa Feb 2009 A1
20090063274 Dublin, III et al. Mar 2009 A1
20090089054 Wang et al. Apr 2009 A1
20090110218 Swain Apr 2009 A1
20090138507 Burckart et al. May 2009 A1
20090147134 Iwamatsu Jun 2009 A1
20090175476 Bottum Jul 2009 A1
20090180632 Goldberg et al. Jul 2009 A1
20090196428 Kim Aug 2009 A1
20090202082 Bharitkar et al. Aug 2009 A1
20090252481 Ekstrand Oct 2009 A1
20090285404 Hsu et al. Nov 2009 A1
20090304194 Eggleston et al. Dec 2009 A1
20090304205 Hardacker et al. Dec 2009 A1
20090316923 Tashev et al. Dec 2009 A1
20100013550 Tanaka Jan 2010 A1
20100095332 Gran et al. Apr 2010 A1
20100104114 Chapman Apr 2010 A1
20100128902 Liu et al. May 2010 A1
20100135501 Corbett et al. Jun 2010 A1
20100142735 Yoon et al. Jun 2010 A1
20100146445 Kraut Jun 2010 A1
20100162117 Basso et al. Jun 2010 A1
20100189203 Wilhelmsson et al. Jul 2010 A1
20100195846 Yokoyama Aug 2010 A1
20100272270 Chaikin et al. Oct 2010 A1
20100296659 Tanaka Nov 2010 A1
20100303248 Tawada Dec 2010 A1
20100303250 Goldberg et al. Dec 2010 A1
20100323793 Andall Dec 2010 A1
20110007904 Tomoda et al. Jan 2011 A1
20110007905 Sato et al. Jan 2011 A1
20110029111 Sabin et al. Feb 2011 A1
20110087842 Lu et al. Apr 2011 A1
20110091055 Leblanc Apr 2011 A1
20110135103 Sun et al. Jun 2011 A1
20110150228 Yoon et al. Jun 2011 A1
20110150230 Tanaka Jun 2011 A1
20110150247 Oliveras Jun 2011 A1
20110170710 Son Jul 2011 A1
20110216924 Berardi et al. Sep 2011 A1
20110234480 Fino et al. Sep 2011 A1
20110235808 Kon Sep 2011 A1
20110268281 Florencio et al. Nov 2011 A1
20110293123 Neumeyer et al. Dec 2011 A1
20120032928 Alberth et al. Feb 2012 A1
20120051558 Kim et al. Mar 2012 A1
20120057724 Rabinowitz et al. Mar 2012 A1
20120063615 Crockett et al. Mar 2012 A1
20120093320 Flaks et al. Apr 2012 A1
20120114152 Nguyen et al. May 2012 A1
20120127831 Gicklhorn et al. May 2012 A1
20120140936 Bonnick et al. Jun 2012 A1
20120148075 Goh et al. Jun 2012 A1
20120183156 Schlessinger et al. Jul 2012 A1
20120184335 Kim Jul 2012 A1
20120213391 Usami et al. Aug 2012 A1
20120215530 Harsch et al. Aug 2012 A1
20120237037 Ninan Sep 2012 A1
20120243697 Frye et al. Sep 2012 A1
20120263325 Freeman et al. Oct 2012 A1
20120268145 Chandra et al. Oct 2012 A1
20120269356 Sheerin et al. Oct 2012 A1
20120275613 Soulodre et al. Nov 2012 A1
20120283593 Searchfield et al. Nov 2012 A1
20120288124 Fejzo et al. Nov 2012 A1
20130003981 Lane Jan 2013 A1
20130010970 Hegarty et al. Jan 2013 A1
20130019193 Rhee Jan 2013 A1
20130028443 Pance et al. Jan 2013 A1
20130051572 Goh et al. Feb 2013 A1
20130066453 Seefeldt Mar 2013 A1
20130108055 Hanna et al. May 2013 A1
20130129102 Li et al. May 2013 A1
20130129122 Johnson et al. May 2013 A1
20130166227 Hermann et al. Jun 2013 A1
20130170647 Reilly et al. Jul 2013 A1
20130179535 Baalu et al. Jul 2013 A1
20130202131 Kemmochi et al. Aug 2013 A1
20130211843 Clarkson Aug 2013 A1
20130216071 Maher et al. Aug 2013 A1
20130223642 Warren et al. Aug 2013 A1
20130230175 Bech et al. Sep 2013 A1
20130259254 Xiang et al. Oct 2013 A1
20130279706 Marti et al. Oct 2013 A1
20130305152 Griffiths et al. Nov 2013 A1
20130315405 Kanishima Nov 2013 A1
20130329896 Krishnaswamy et al. Dec 2013 A1
20130331970 Beckhardt et al. Dec 2013 A1
20130346559 Van Erven et al. Dec 2013 A1
20140003611 Mohammad et al. Jan 2014 A1
20140003622 Ikizyan et al. Jan 2014 A1
20140003623 Lang Jan 2014 A1
20140003625 Sheen Jan 2014 A1
20140003626 Holman et al. Jan 2014 A1
20140003635 Mohammad et al. Jan 2014 A1
20140006587 Kusano Jan 2014 A1
20140016784 Sen et al. Jan 2014 A1
20140016786 Sen Jan 2014 A1
20140016802 Sen Jan 2014 A1
20140023196 Xiang et al. Jan 2014 A1
20140029201 Yang et al. Jan 2014 A1
20140032709 Saussy et al. Jan 2014 A1
20140037097 Labosco Feb 2014 A1
20140037107 Marino, Jr. et al. Feb 2014 A1
20140052770 Gran et al. Feb 2014 A1
20140064501 Olsen et al. Mar 2014 A1
20140079242 Nguyen et al. Mar 2014 A1
20140084014 Sim et al. Mar 2014 A1
20140086423 Domingo et al. Mar 2014 A1
20140112481 Li et al. Apr 2014 A1
20140119551 Bharitkar et al. May 2014 A1
20140126730 Crawley et al. May 2014 A1
20140161265 Chaikin et al. Jun 2014 A1
20140169569 Toivanen et al. Jun 2014 A1
20140180684 Strub Jun 2014 A1
20140192986 Lee et al. Jul 2014 A1
20140219456 Morrell et al. Aug 2014 A1
20140219483 Hong Aug 2014 A1
20140226823 Sen et al. Aug 2014 A1
20140242913 Pang Aug 2014 A1
20140267148 Luna et al. Sep 2014 A1
20140270202 Ivanov et al. Sep 2014 A1
20140270282 Tammi et al. Sep 2014 A1
20140273859 Luna et al. Sep 2014 A1
20140274212 Zurek et al. Sep 2014 A1
20140279889 Luna et al. Sep 2014 A1
20140285313 Luna et al. Sep 2014 A1
20140286496 Luna et al. Sep 2014 A1
20140294200 Baumgarte et al. Oct 2014 A1
20140294201 Johnson et al. Oct 2014 A1
20140310269 Zhang et al. Oct 2014 A1
20140321670 Nystrom et al. Oct 2014 A1
20140323036 Daley et al. Oct 2014 A1
20140334644 Selig et al. Nov 2014 A1
20140341399 Dusse et al. Nov 2014 A1
20140344689 Scott et al. Nov 2014 A1
20140355768 Sen et al. Dec 2014 A1
20140355794 Morrell et al. Dec 2014 A1
20140364056 Belk Dec 2014 A1
20150011195 Li Jan 2015 A1
20150016642 Walsh et al. Jan 2015 A1
20150023509 Devantier et al. Jan 2015 A1
20150031287 Pang et al. Jan 2015 A1
20150032844 Tarr et al. Jan 2015 A1
20150036847 Donaldson Feb 2015 A1
20150036848 Donaldson Feb 2015 A1
20150043736 Olsen et al. Feb 2015 A1
20150063610 Mossner Mar 2015 A1
20150078586 Ang et al. Mar 2015 A1
20150078596 Sprogis et al. Mar 2015 A1
20150100991 Risberg et al. Apr 2015 A1
20150146886 Baumgarte May 2015 A1
20150149943 Nguyen et al. May 2015 A1
20150161360 Paruchuri et al. Jun 2015 A1
20150195666 Massey et al. Jul 2015 A1
20150201274 Ellner et al. Jul 2015 A1
20150208184 Tan et al. Jul 2015 A1
20150220558 Snibbe et al. Aug 2015 A1
20150223002 Mehta et al. Aug 2015 A1
20150223004 Deprez et al. Aug 2015 A1
20150229699 Liu Aug 2015 A1
20150260754 Perotti et al. Sep 2015 A1
20150263692 Bush Sep 2015 A1
20150264023 Reno Sep 2015 A1
20150271616 Kechichian et al. Sep 2015 A1
20150271620 Lando et al. Sep 2015 A1
20150281866 Williams et al. Oct 2015 A1
20150286360 Wachter Oct 2015 A1
20150289064 Jensen et al. Oct 2015 A1
20150358756 Harma et al. Dec 2015 A1
20150382128 Ridihalgh et al. Dec 2015 A1
20160007116 Holman Jan 2016 A1
20160011846 Sheen Jan 2016 A1
20160011850 Sheen et al. Jan 2016 A1
20160014509 Hansson et al. Jan 2016 A1
20160014510 Sheen Jan 2016 A1
20160014511 Sheen et al. Jan 2016 A1
20160014534 Sheen Jan 2016 A1
20160014536 Sheen Jan 2016 A1
20160021458 Johnson et al. Jan 2016 A1
20160021473 Riggi et al. Jan 2016 A1
20160021481 Johnson et al. Jan 2016 A1
20160027467 Proud Jan 2016 A1
20160029142 Isaac et al. Jan 2016 A1
20160035337 Aggarwal et al. Feb 2016 A1
20160036881 Tembey et al. Feb 2016 A1
20160037277 Matsumoto et al. Feb 2016 A1
20160061597 De et al. Mar 2016 A1
20160070525 Sheen et al. Mar 2016 A1
20160070526 Sheen Mar 2016 A1
20160073210 Sheen Mar 2016 A1
20160088438 O'Keeffe Mar 2016 A1
20160119730 Virtanen Apr 2016 A1
20160140969 Srinivasan et al. May 2016 A1
20160142849 Satheesh et al. May 2016 A1
20160165297 Jamal-Syed et al. Jun 2016 A1
20160192098 Oishi et al. Jun 2016 A1
20160192099 Oishi et al. Jun 2016 A1
20160212535 Le Nerriec et al. Jul 2016 A1
20160239255 Chavez et al. Aug 2016 A1
20160246449 Jarske Aug 2016 A1
20160254696 Plumb et al. Sep 2016 A1
20160260140 Shirley et al. Sep 2016 A1
20160309276 Ridihalgh et al. Oct 2016 A1
20160330562 Crockett Nov 2016 A1
20160342201 Jehan Nov 2016 A1
20160353018 Anderson Dec 2016 A1
20160366517 Chandran et al. Dec 2016 A1
20160373860 Leschka et al. Dec 2016 A1
20170026769 Patel Jan 2017 A1
20170041724 Master et al. Feb 2017 A1
20170069338 Elliot et al. Mar 2017 A1
20170083279 Sheen Mar 2017 A1
20170086003 Rabinowitz et al. Mar 2017 A1
20170105084 Holman Apr 2017 A1
20170133011 Chen et al. May 2017 A1
20170142532 Pan May 2017 A1
20170207762 Porter et al. Jul 2017 A1
20170215017 Hartung et al. Jul 2017 A1
20170223447 Johnson et al. Aug 2017 A1
20170230772 Johnson et al. Aug 2017 A1
20170257722 Kerdranvat et al. Sep 2017 A1
20170280265 Po Sep 2017 A1
20170286052 Hartung et al. Oct 2017 A1
20170303039 Iyer et al. Oct 2017 A1
20170311108 Patel Oct 2017 A1
20170374482 McPherson et al. Dec 2017 A1
20180122378 Mixter et al. May 2018 A1
20180376268 Kerdranvat et al. Dec 2018 A1
20190037328 McPherson et al. Jan 2019 A1
20190058942 Garner et al. Feb 2019 A1
20190320278 McPherson et al. Oct 2019 A1
20200005830 Wasada et al. Jan 2020 A1
20200249346 Lim et al. Aug 2020 A1
20200382888 McPherson et al. Dec 2020 A1
20210141050 Janssen et al. May 2021 A1
Foreign Referenced Citations (105)
Number Date Country
1369188 Sep 2002 CN
1447624 Oct 2003 CN
1622694 Jun 2005 CN
1984507 Jun 2007 CN
101032187 Sep 2007 CN
101047777 Oct 2007 CN
101366177 Feb 2009 CN
101478296 Jul 2009 CN
101491116 Jul 2009 CN
101681219 Mar 2010 CN
101754087 Jun 2010 CN
101800051 Aug 2010 CN
102004823 Apr 2011 CN
102318325 Jan 2012 CN
102823277 Dec 2012 CN
102893633 Jan 2013 CN
103491397 Jan 2014 CN
103811010 May 2014 CN
103988523 Aug 2014 CN
104219604 Dec 2014 CN
104247461 Dec 2014 CN
104284291 Jan 2015 CN
104584061 Apr 2015 CN
104967953 Oct 2015 CN
105163221 Dec 2015 CN
102007032281 Jan 2009 DE
0505949 Sep 1992 EP
0772374 May 1997 EP
1133896 Aug 2002 EP
1349427 Oct 2003 EP
1389853 Feb 2004 EP
2043381 Apr 2009 EP
1349427 Dec 2009 EP
2161950 Mar 2010 EP
2194471 Jun 2010 EP
2197220 Jun 2010 EP
2288178 Feb 2011 EP
2429155 Mar 2012 EP
1825713 Oct 2012 EP
2613573 Jul 2013 EP
2591617 Jun 2014 EP
2747081 Jun 2014 EP
2835989 Feb 2015 EP
2860992 Apr 2015 EP
2874413 May 2015 EP
3128767 Feb 2017 EP
2974382 Apr 2017 EP
2986034 May 2017 EP
3285502 Feb 2018 EP
H02280199 Nov 1990 JP
H05199593 Aug 1993 JP
H05211700 Aug 1993 JP
H06327089 Nov 1994 JP
H0723490 Jan 1995 JP
H1069280 Mar 1998 JP
H10307592 Nov 1998 JP
2002502193 Jan 2002 JP
2002101500 Apr 2002 JP
2003143252 May 2003 JP
2003304590 Oct 2003 JP
2005086686 Mar 2005 JP
2005538633 Dec 2005 JP
2006017893 Jan 2006 JP
2006180039 Jul 2006 JP
2006191562 Jul 2006 JP
2006340285 Dec 2006 JP
2007068125 Mar 2007 JP
2007271802 Oct 2007 JP
2007325073 Dec 2007 JP
2008035254 Feb 2008 JP
2008228133 Sep 2008 JP
2009188474 Aug 2009 JP
2010056970 Mar 2010 JP
2010081124 Apr 2010 JP
2010141892 Jun 2010 JP
2011123376 Jun 2011 JP
2011130212 Jun 2011 JP
2011164166 Aug 2011 JP
2011215378 Oct 2011 JP
2011217068 Oct 2011 JP
2013247456 Dec 2013 JP
2013253884 Dec 2013 JP
6356331 Jul 2018 JP
6567735 Aug 2019 JP
1020060116383 Nov 2006 KR
1020080011831 Feb 2008 KR
200153994 Jul 2001 WO
0182650 Nov 2001 WO
200182650 Nov 2001 WO
2003093950 Nov 2003 WO
2004066673 Aug 2004 WO
2007016465 Feb 2007 WO
2011139502 Nov 2011 WO
2013006323 Jan 2013 WO
2013016500 Jan 2013 WO
2013126603 Aug 2013 WO
2014032709 Mar 2014 WO
2014032709 Mar 2014 WO
2014036121 Mar 2014 WO
2015024881 Feb 2015 WO
2015108794 Jul 2015 WO
2015178950 Nov 2015 WO
2016040324 Mar 2016 WO
2016054090 Apr 2016 WO
2017049169 Mar 2017 WO
Non-Patent Literature Citations (463)
Entry
Notice of Allowance dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages.
Notice of Allowance dated Nov. 9, 2016, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 13 pages.
Notice of Allowance dated Feb. 1, 2018, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages.
Notice of Allowance dated Apr. 10, 2015, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 8 pages.
Notice of Allowance dated Aug. 10, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 6 pages.
Notice of Allowance dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 2 pages.
Notice of Allowance dated Jun. 10, 2020, issued in connection with U.S. Appl. No. 16/713,858, filed Dec. 13, 2019, 8 pages.
Notice of Allowance dated Dec. 11, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 10 pages.
Notice of Allowance dated Feb. 11, 2019, issued in connection with U.S. Appl. No. 15/588,186, filed May 5, 2017, 5 pages.
Notice of Allowance dated Jul. 11, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 11 pages.
Notice of Allowance dated Mar. 11, 2015, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 7 pages.
Notice of Allowance dated Apr. 12, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 13 pages.
Notice of Allowance dated Aug. 12, 2019, issued in connection with U.S. Appl. No. 16/416,648, filed May 20, 2019, 7 pages.
Notice of Allowance dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 24 pages.
Notice of Allowance dated Dec. 12, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages.
Notice of Allowance dated Nov. 12, 2019, issued in connection with U.S. Appl. No. 15/955,545, filed Apr. 17, 2018, 9 pages.
Notice of Allowance dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 7 pages.
Notice of Allowance dated Sep. 12, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 8 pages.
Notice of Allowance dated Apr. 13, 2020, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 10 pages.
Notice of Allowance dated Feb. 13, 2017, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 8 pages.
Notice of Allowance dated Nov. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 8 pages.
Notice of Allowance dated Jul. 14, 2020, issued in connection with U.S. Appl. No. 16/556,297, filed Aug. 30, 2019, 11 pages.
Notice of Allowance dated Mar. 14, 2019, issued in connection with U.S. Appl. No. 15/343,996, filed Nov. 4, 2016, 8 pages.
Notice of Allowance dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 8 pages.
Notice of Allowance dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 5 pages.
Notice of Allowance dated Mar. 15, 2017, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 7 pages.
Notice of Allowance dated May 15, 2019, issued in connection with U.S. Appl. No. 16/113,032, filed Aug. 27, 2018, 9 pages.
Notice of Allowance dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 10 pages.
Notice of Allowance dated Jul. 16, 2020, issued in connection with U.S. Appl. No. 16/530,324, filed Aug. 2, 2019, 9 pages.
Notice of Allowance dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Notice of Allowance dated May 16, 2019, issued in connection with U.S. Appl. No. 16/181,213, filed Nov. 5, 2018, 10 pages.
Notice of Allowance dated Oct. 16, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 10 pages.
Notice of Allowance dated Oct. 16, 2019, issued in connection with U.S. Appl. No. 16/401,981, filed May 2, 2019, 8 pages.
Notice of Allowance dated Sep. 16, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 7 pages.
Notice of Allowance dated Dec. 17, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 5 pages.
Notice of Allowance dated May 17, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 7 pages.
Notice of Allowance dated Oct. 17, 2019, issued in connection with U.S. Appl. No. 16/542,433, filed Aug. 16, 2019, 9 pages.
Notice of Allowance dated Mar. 18, 2019, issued in connection with U.S. Appl. No. 16/056,862, filed Aug. 7, 2018, 12 pages.
Notice of Allowance dated Aug. 19, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages.
Notice of Allowance dated Jun. 19, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 2, 2015, 5 pages.
Notice of Allowance dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 16 pages.
Notice of Allowance dated Sep. 19, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 10 pages.
Notice of Allowance dated Mar. 2, 2020, issued in connection with U.S. Appl. No. 16/213,552, filed Dec. 7, 2018, 9 pages.
Notice of Allowance dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 11 pages.
Notice of Allowance dated Nov. 20, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 10 pages.
Notice of Allowance dated Sep. 20, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
Notice of Allowance dated Dec. 21, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages.
Notice of Allowance dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages.
Notice of Allowance dated Jul. 21, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 10 pages.
Notice of Allowance dated Jun. 21, 2019, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 11 pages.
“AuEQforthe iPhone,” Mar. 25, 2015, retrieved from the internet: URL:https://web.archive.org/web20150325152629/http://www.hotto.de/mobileapps/iphoneaueq.html [retrieved on Jun. 24, 2016], 6 pages.
Lei et al. An Audio Frequency Acquision and Release System Based on TMS320VC5509, Instrumentation Technology, Editorial Department Email, Issue 02, 2007, 4 pages.
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages.
Microsoft Corporation, “Using Microsoft Outlook 2003,” Cambridge College, 2003.
Motorola, “Simplefi, Wireless Digital Audio Receiver, Installation and User Guide,” Dec. 31, 2001, 111 pages.
Mulcahy, John, “Room EQ Wizard: Room Acoustics Software,” REW, 2014, retrieved Oct. 10, 2014, 4 pages.
Non-Final Action dated Jan. 29, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages.
Non-Final Office Action dated Mar. 1, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 20 pages.
Non-Final Office Action dated Nov. 1, 2017, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 15 pages.
Non-Final Office Action dated Jun. 2, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 14 pages.
Non-Final Office Action dated Jun. 2, 2017, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 18 pages.
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 12 pages.
Non-Final Office Action dated Oct. 2, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages.
Non-Final Office Action dated Feb. 3, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 12 pages.
Non-Final Office Action dated Jul. 3, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 30 pages.
Non-Final Office Action dated Jan. 4, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 6 pages.
Non-Final Office Action dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 10 pages.
Non-Final Office Action dated Sep. 4, 2019, issued in connection with U.S. Appl. No. 16/213,552, filed Dec. 7, 2018, 16 pages.
Non-Final Office Action dated Jul. 5, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 8 pages.
Non-Final Office Action dated Jul. 6, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 6 pages.
Non-Final Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 30 pages.
Non-Final Office Action dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages.
Non-Final Office Action dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 5 pages.
Non-Final Office Action dated Jul. 7, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 6 pages.
Non-Final Office Action dated Mar. 7, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 24 pages.
Non-Final Office Action dated Sep. 7, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 12 pages.
Non-Final Office Action dated Jul. 8, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 6 pages.
Non-Final Office Action dated Dec. 9, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Non-Final Office Action dated Apr. 10, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages.
Non-Final Office Action dated Mar. 10, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 10 pages.
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 8 pages.
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 13 pages.
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 9 pages.
Non-Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/556,297, filed Aug. 30, 2019, 9 pages.
Non-Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/658,896, filed Oct. 21, 2019, 14 pages.
Non-Final Office Action dated Feb. 11, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 39 pages.
Non-Final Office Action dated Oct. 11, 2017, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages.
Non-Final Office Action dated Oct. 11, 2018, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 13 pages.
Non-Final Office Action dated Mar. 12, 2020, issued in connection with U.S. Appl. No. 16/796,496, filed Feb. 20, 2020, 13 pages.
Non-Final Office Action dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 24 pages.
Non-Final Office Action dated Jul. 13, 2016, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 16 pages.
Non-Final Office Action dated Mar. 13, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 20 pages.
Non-Final Office Action dated Dec. 14, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 19 pages.
Non-Final Office Action dated Mar. 14, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 12 pages.
Non-Final Office Action dated May 14, 2019, issued in connection with U.S. Appl. No. 15/955,545, filed Apr. 17, 2018, 15 pages.
Non-Final Office Action dated Oct. 14, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages.
Non-Final Office Action dated May 15, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 17 pages.
Non-Final Office Action dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages.
Non-Final Office Action dated Nov. 16, 2018, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages.
Non-Final Office Action dated Sep. 16, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 11 pages.
Advisory Action dated Jul. 1, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 2 pages.
Advisory Action dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 3 pages.
Advisory Action dated Dec. 11, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 3 pages.
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 3 pages.
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 3 pages.
Advisory Action dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 3 pages.
Advisory Action dated Jun. 19, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 3 pages.
Advisory Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 3 pages.
Advisory Action dated Jun. 3, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 3 pages.
Advisory Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 3 pages.
Advisory Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 3 pages.
An Overview of IEEE 1451.4 Transducer Electronic Data Sheets (TEDS) National Instruments, 19 pages.
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages.
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages.
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages.
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages.
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages.
Burger, Dennis, “Automated Room Correction Explained,” hometheaterreview.com, Nov. 18, 2013, http://hometheaterreview.com/automated-room-correction-explained/ Retrieved Oct. 10, 2014, 3 pages.
Chen, Trista P. et al. VRAPS: Visual Rhythm-Based Audio Playback System. IEEE, Gracenote, Inc., 2010, pp. 721-722.
Chinese Patent Office, First Office Action and Translation dated Jun. 19, 2019, issued in connection with Chinese Application No. 201680054189.X, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Jun. 29, 2020, issued in connection with Chinese Application No. 201780057093.3, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Feb. 3, 2021, issued in connection with Chinese Application No. 202010095178.4, 15 pages.
Chinese Patent Office, First Office Action and Translation dated Aug. 4, 2020, issued in connection with Chinese Application No. 201910395715.4, 22 pages.
Chinese Patent Office, First Office Action dated Aug. 11, 2017, issued in connection with Chinese Patent Application No. 201580013837.2, 8 pages.
Chinese Patent Office, First Office Action dated Nov. 20, 2018, issued in connection with Chinese Application No. 201580047998.3, 21 pages.
Chinese Patent Office, First Office Action dated Sep. 25, 2017, issued in connection with Chinese Patent Application No. 201580013894.0, 9 pages.
Chinese Patent Office, First Office Action dated Jan. 28, 2021, issued in connection with Chinese Application No. 201680054164.X, 9 pages.
Chinese Patent Office, First Office Action dated Nov. 5, 2018, issued in connection with Chinese Application No. 201680044080.8, 5 pages.
Chinese Patent Office, Office Action dated Nov. 14, 2019, issued in connection with Chinese Application No. 201680040086.8, 9 pages.
Chinese Patent Office, Office Action dated Dec. 24, 2020, issued in connection with Chinese Application No. 201910978233.1, 8 pages.
Chinese Patent Office, Second Office Action and Translation dated Aug. 26, 2019, issued in connection with Chinese Application No. 201580047998.3, 25 pages.
Chinese Patent Office, Second Office Action dated Jan. 11, 2019, issued in connection with Chinese Application No. 201680044080.8, 4 pages.
Chinese Patent Office, Second Office Action dated Feb. 3, 2019, issued in connection with Chinese Application No. 201580048594.6, 11 pages.
Chinese Patent Office, Second Office Action dated May 6, 2020, issued in connection with Chinese Application No. 201680040086.8, 3 pages.
Chinese Patent Office, Second Office Action with Translation dated Jan. 9, 2018, issued in connection with Chinese Patent Application No. 201580013837.2, 10 pages.
Chinese Patent Office, Third Office Action dated Apr. 11, 2019, issued in connection with Chinese Application No. 201580048594.6, 4 pages.
“Constellation Acoustic System: a revolutionary breakthrough in acoustical design,” Meyer Sound Laboratories, Inc. 2012, 32 pages.
“Constellation Microphones,” Meyer Sound Laboratories, Inc. 2013, 2 pages.
Corrected Notice of Allowability dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 11 pages.
Daddy, B., “Calibrating Your Audio with a Sound Pressure Level (SPL) Meter,” Blue-ray.com, Feb. 22, 2008 Retrieved Oct. 10, 2014, 15 pages.
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages.
Dell, Inc. “Start Here,” Jun. 2000, 2 pages.
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages.
European Patent Office, European Examination Report dated May 11, 2018, issued in connection with European Application No. 16748186.0, 6 pages.
European Patent Office, European Extended Search Report dated Dec. 11, 2020, issued in connection with European Application No. 20196286.7, 6 pages.
European Patent Office, European Extended Search Report dated Mar. 16, 2020, issued in connection with European Application No. 19209551.1, 7 pages.
European Patent Office, European Extended Search Report dated Oct. 16, 2018, issued in connection with European Application No. 17185193.4, 6 pages.
European Patent Office, European Extended Search Report dated Jul. 17, 2019, issued in connection with European Application No. 19167365.6, 7 pages.
European Patent Office, European Extended Search Report dated Mar. 25, 2020, issued in connection with European Application No. 19215348.4, 10 pages.
European Patent Office, European Extended Search Report dated Jun. 26, 2018, issued in connection with European Application No. 18171206.8, 9 pages.
European Patent Office, European Extended Search Report dated Sep. 8, 2017, issued in connection with European Application No. 17000460.0, 8 pages.
European Patent Office, European Office Action dated Nov. 10, 2020, issued in connection with European Application No. 19168800.1, 5 pages.
European Patent Office, European Office Action dated Dec. 11, 2018, issued in connection with European Application No. 15778787.0, 6 pages.
European Patent Office, European Office Action dated Jul. 11, 2019, issued in connection with European Application No. 15778787.0, 10 pages.
European Patent Office, European Office Action dated Sep. 16, 2020, issued in connection with European Application No. 15778787.0, 7 pages.
European Patent Office, European Office Action dated Aug. 19, 2020, issued in connection with European Application No. 17754501.9, 6 pages.
European Patent Office, European Office Action dated Nov. 2, 2018, issued in connection with European Application No. 18171206.8, 6 pages.
European Patent Office, European Office Action dated Jan. 3, 2020, issued in connection with European Application No. 17703876.7, 8 pages.
European Patent Office, European Office Action dated Feb. 4, 2019, issued in connection with European Application No. 17703876.7, 9 pages.
European Patent Office, European Office Action dated Sep. 7, 2020, issued in connection with European Application No. 19161826.3, 6 pages.
European Patent Office, European Office Action dated Jul. 9, 2020, issued in connection with European Application No. 19167365.6, 4 pages.
European Patent Office, European Office Action dated May 9, 2019, issued in connection with European Application No. 18171206.8, 7 pages.
European Patent Office, European Partial Search Report dated Jun. 7, 2019, issued in connection with European Application No. 19161826.3, 17 pages.
European Patent Office, European Search Report dated Jun. 13, 2019, issued in connection with European Application No. 18204450.3, 11 pages.
European Patent Office, European Search Report dated Sep. 13, 2019, issued in connection with European Application No. 19161826.3, 13 pages.
European Patent Office, European Search Report dated Jan. 18, 2018, issued in connection with European Patent Application No. 17185193.4, 9 pages.
European Patent Office, European Search Report dated Jul. 9, 2019, issued in connection with European Application No. 19168800.1, 12 pages.
European Patent Office, Extended European Search Report dated Jan. 5, 2017, issued in connection with European Patent Application No. 15765555.6, 8 pages.
European Patent Office, Extended Search Report dated Jan. 25, 2017, issued in connection with European Application No. 15765548.1, 7 pages.
European Patent Office, Extended Search Report dated Apr. 26, 2017, issued in connection with European Application No. 15765548.1, 10 pages.
European Patent Office, Office Action dated Nov. 12, 2018, issued in connection with European Application No. 17000460.0, 6 pages.
European Patent Office, Office Action dated Jun. 13, 2017, issued in connection with European patent application No. 17000484.0, 10 pages.
European Patent Office, Office Action dated Dec. 15, 2016, issued in connection with European Application No. 15766998.7, 7 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Nov. 15, 2018, issued in connection with European Application No. 16748186.0, 57 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Sep. 24, 2019, issued in connection with European Application No. 17000460.0, 5 pages.
Ex Parte Quayle Office Action dated Apr. 15, 2019, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 7 pages.
Ex Parte Quayle Office Action dated Dec. 26, 2019, issued in connection with U.S. Appl. No. 16/542,418, filed Aug. 16, 2019, 7 pages.
Final Office Action dated Dec. 2, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 19 pages.
Final Office Action dated Apr. 3, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Final Office Action dated Jul. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 10 pages.
Final Office Action dated Jun. 13, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 22 pages.
Final Office Action dated Dec. 14, 2020, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 17 pages.
Final Office Action dated Feb. 14, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages.
Final Office Action dated Feb. 14, 2019, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 37 pages.
Final Office Action dated Oct. 14, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 16 pages.
Final Office Action dated Oct. 17, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Final Office Action dated Apr. 18, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 16 pages.
Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 8 pages.
Final Office Action dated Dec. 18, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 12 pages.
Final Office Action dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 15 pages.
Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 14 pages.
Final Office Action dated Oct. 21, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages.
Final Office Action dated Sep. 22, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages.
Final Office Action dated Jan. 25, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages.
Final Office Action dated Mar. 25, 2019, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 11 pages.
Final Office Action dated Oct. 28, 2019, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 17 pages.
Final Office Action dated Apr. 3, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 12 pages.
Final Office Action dated Mar. 3, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 13 pages.
Final Office Action dated Feb. 5, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 21 pages.
Final Office Action dated Mar. 5, 2019, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 9 pages.
Notice of Allowance dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 16/182,886, filed Nov. 7, 2018, 10 pages.
Notice of Allowance dated Jun. 22, 2017, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages.
Notice of Allowance dated Aug. 23, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages.
Notice of Allowance dated Jun. 23, 2016, issued in connection with U.S. Appl. No. 14/921,781, filed Oct. 23, 2015, 8 pages.
Notice of Allowance dated Mar. 23, 2020, issued in connection with U.S. Appl. No. 16/542,418, filed Aug. 16, 2019, 5 pages.
Notice of Allowance dated May 23, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 8 pages.
Notice of Allowance dated Nov. 23, 2020, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages.
Notice of Allowance dated Oct. 23, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 16 pages.
Notice of Allowance dated Oct. 23, 2020, issued in connection with U.S. Appl. No. 16/555,846, filed Aug. 29, 2019, 5 pages.
Notice of Allowance dated Sep. 23, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 7 pages.
Notice of Allowance dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 13 pages.
Notice of Allowance dated Jul. 24, 2020, issued in connection with U.S. Appl. No. 16/665,415, filed Oct. 28, 2019, 12 pages.
Notice of Allowance dated May 24, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 5 pages.
Notice of Allowance dated Nov. 24, 2017, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages.
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 7 pages.
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 7 pages.
Notice of Allowance dated Apr. 25, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 8 pages.
Notice of Allowance dated Jan. 25, 2021, issued in connection with U.S. Appl. No. 17/129,670, filed Dec. 21, 2020, 10 pages.
Notice of Allowance dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages.
Notice of Allowance dated Feb. 26, 2016, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 7 pages.
Notice of Allowance dated Jul. 26, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 12 pages.
Notice of Allowance dated Oct. 26, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 11 pages.
Notice of Allowance dated Feb. 27, 2017, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 9 pages.
Notice of Allowance dated Jul. 27, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages.
Notice of Allowance dated Jun. 27, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 8 pages.
Notice of Allowance dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/555,832, filed Aug. 29, 2019, 5 pages.
Notice of Allowance dated Aug. 28, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 5 pages.
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 10 pages.
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 15/211,822, filed Jul. 15, 2016, 9 pages.
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 5 pages.
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 11 pages.
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 8 pages.
Notice of Allowance dated Aug. 29, 2019, issued in connection with U.S. Appl. No. 16/185,906, filed Nov. 9, 2018, 8 pages.
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages.
Notice of Allowance dated Jul. 29, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 11 pages.
Notice of Allowance dated Oct. 29, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 9 pages.
Notice of Allowance dated May 3, 2019, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 7 pages.
Notice of Allowance dated May 3, 2019, issued in connection with U.S. Appl. No. 16/181,583, filed Nov. 6, 2018, 7 pages.
Notice of Allowance dated Aug. 30, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 10 pages.
Notice of Allowance dated Dec. 30, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages.
Notice of Allowance dated Jan. 30, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 8 pages.
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 7 pages.
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 8 pages.
Notice of Allowance dated Mar. 31, 2020, issued in connection with U.S. Appl. No. 16/538,629, filed Aug. 12, 2019, 9 pages.
Notice of Allowance dated Apr. 4, 2017, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages.
Notice of Allowance dated Feb. 4, 2019, issued in connection with U.S. Appl. No. 15/166,241, filed Aug. 26, 2016, 8 pages.
Notice of Allowance dated Feb. 4, 2019, issued in connection with U.S. Appl. No. 16/181,583, filed Nov. 6, 2018, 9 pages.
Notice of Allowance dated Feb. 4, 2020, issued in connection with U.S. Appl. No. 16/416,619, filed May 20, 2019, 7 pages.
Notice of Allowance dated Oct. 4, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 7 pages.
Notice of Allowance dated Apr. 5, 2018, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages.
Notice of Allowance dated Feb. 5, 2021, issued in connection with U.S. Appl. No. 16/827,143, filed Mar. 23, 2020, 9 pages.
Notice of Allowance dated Jun. 5, 2019, issued in connection with U.S. Appl. No. 15/859,311, filed Dec. 29, 2017, 8 pages.
Notice of Allowance dated Jun. 5, 2019, issued in connection with U.S. Appl. No. 15/865,221, filed Jan. 3, 2018, 8 pages.
Notice of Allowance dated Mar. 5, 2019, issued in connection with U.S. Appl. No. 16/102,499, filed Aug. 13, 2018, 8 pages.
Notice of Allowance dated May 5, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages.
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 10 pages.
Notice of Allowance dated Aug. 6, 2020, issued in connection with U.S. Appl. No. 16/564,684, filed Sep. 9, 2019, 8 pages.
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages.
Notice of Allowance dated Apr. 8, 2019, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 8 pages.
Notice of Allowance dated Jul. 8, 2019, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 5 pages.
Notice of Allowance dated Jun. 8, 2020, issued in connection with U.S. Appl. No. 16/658,896, filed Oct. 21, 2019, 8 pages.
Notice of Allowance dated May 8, 2018, issued in connection with U.S. Appl. No. 15/650,386, filed Jul. 14, 2017, 13 pages.
Notice of Allowance dated Apr. 9, 2020, issued in connection with U.S. Appl. No. 16/416,593, filed May 20, 2019, 9 pages.
Notice of Allowance dated Jun. 9, 2020, issued in connection with U.S. Appl. No. 15/966,534, filed Apr. 30, 2018, 16 pages.
Notice of Allowance dated May 9, 2019, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 7 pages.
Notice of Allowance dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages.
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages.
Papp Istvan et al. “Adaptive Microphone Array for Unknown Desired Speaker's Transfer Function”, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY vol. 122, No. 2, Jul. 19, 2007, pp. 44-49.
Pre-Brief Appeal Conference Decision mailed on Mar. 19, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 2 pages.
Preinterview First Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 6 pages.
Preinterview First Office Action dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages.
Preinterview First Office Action dated May 17, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 7 pages.
Preinterview First Office Action dated May 25, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 7 pages.
Presentations at WinHEC 2000, May 2000, 138 pages.
PRISMIQ, Inc., “PRISMIQ Media Player User Guide,” 2003, 44 pages.
Ross, Alex, “Wizards of Sound: Retouching acoustics, from the restaurant to the concert hall,” The New Yorker, Feb. 23, 2015. Web. Feb. 26, 2015, 9 pages.
Supplemental Notice of Allowability dated Oct. 27, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 6 pages.
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages.
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages.
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54.
Wikipedia, Server(Computing) https://web.archive.org/web/20160703173710/https://en.wikipedia.org/wiki/Server_(computing), published Jul. 3, 2016, 7 pages.
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages.
Yamaha DME Designer 3.0 Owner's Manual; Copyright 2008, 501 pages.
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages.
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages.
Final Office Action dated Dec. 6, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 18 pages.
Final Office Action dated Apr. 9, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 33 pages.
First Action Interview Office Action dated Mar. 3, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 9 pages.
First Action Interview Office Action dated Jul. 12, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
First Action Interview Office Action dated Jun. 30, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Apr. 5, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 4 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Oct. 7, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 5 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Feb. 16, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 5 pages.
Gonzalez et al., “Simultaneous Measurement of Multichannel Acoustic Systems,” J. Audio Eng. Soc., 2004, pp. 26-42, vol. 52, No. 1/2.
International Bureau, International Preliminary Report on Patentability, dated Sep. 24, 2015, issued in connection with International Application No. PCT/US2014/030560, filed on Mar. 17, 2014, 7 pages.
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 8 pages.
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 9 pages.
International Bureau, International Preliminary Report on Patentability, dated Aug. 9, 2018, issued in connection with International Application No. PCT/US2017/014596, filed on Jan. 23, 2017, 11 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 15, 2020, issued in connection with International Application No. PCT/US2020/045746, filed on Aug. 11, 2020, 23 pages.
International Searching Authority, International Preliminary Report on Patentability dated Mar. 23, 2017, issued in connection with International Patent Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 8 pages.
International Searching Authority, International Preliminary Report on Patentability dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028994 filed on Apr. 22, 2016, 7 pages.
International Searching Authority, International Search Report and Written Opinion dated Jul. 4, 2016, issued in connection with International Application No. PCT/US2016/028994, filed on Apr. 22, 2016, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Jul. 5, 2016, issued in connection with International Application No. PCT/US2016/028997, filed on Apr. 22, 2016, 13 pages.
International Searching Authority, International Search Report and Written Opinion dated Jun. 5, 2015, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 12, 2016, issued in connection with International Application No. PCT/US2016/041179 filed on Jul. 6, 2016, 9 pages.
International Searching Authority, International Search Report and Written Opinion dated Jun. 16, 2015, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 18, 2015, issued in connection with International Application No. PCT/US2015/048954, filed on Sep. 8, 2015, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043116, filed on Jul. 20, 2016, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043840, filed on Jul. 25, 2016, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048942, filed on Sep. 8, 2015, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2016, issued in connection with International Patent Application No. PCT/US2016/052266, filed on Sep. 16, 2016, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Jan. 24, 2017, issued in connection with International Application No. PCT/US2016/052264, filed on Sep. 16, 2016, 17 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 25, 2016, issued in connection with International Application No. PCT/US2016/043109, filed on Jul. 20, 2016, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Sep. 25, 2017, issued in connection with International Application No. PCT/US2017/042191, filed on Jul. 14, 2017, 16 pages.
International Searching Authority, International Search Report and Written Opinion dated Aug. 3, 2017, in connection with International Application No. PCT/US2017014596, 20 pages.
Japanese Patent Office, English Translation of Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 4 pages.
Japanese Patent Office, Japanese Office Action dated Oct. 3, 2017, issued in connection with Japanese Application No. 2017-501082, 7 pages.
Japanese Patent Office, Non-Final Office Action and Translation dated Dec. 10, 2019, issued in connection with Japanese Patent Application No. 2018-213477, 8 pages.
Japanese Patent Office, Non-Final Office Action with Translation dated Apr. 25, 2017, issued in connection with Japanese Patent Application No. 2016-568888, 7 pages.
Japanese Patent Office, Non-Final Office Action with Translation dated Oct. 3, 2017, issued in connection with Japanese Patent Application No. 2017-501082, 3 pages.
Japanese Patent Office, Office Action and Translation dated Jun. 12, 2020, issued in connection with Japanese Patent Application No. 2019-056360, 6 pages.
Japanese Patent Office, Office Action and Translation dated Nov. 4, 2020, issued in connection with Japanese Patent Application No. 2019-141349, 6 pages.
Japanese Patent Office, Office Action dated Jun. 12, 2018, issued in connection with Japanese Application No. 2018-502729, 4 pages.
Japanese Patent Office, Office Action dated May 14, 2019, issued in connection with Japanese Patent Application No. 2018-500529, 8 pages.
Japanese Patent Office, Office Action dated Aug. 21, 2018, issued in connection with Japanese Application No. 2018-514418, 7 pages.
Japanese Patent Office, Office Action dated Jul. 24, 2018, issued in connection with Japanese Application No. 2018-514419, 5 pages.
Japanese Patent Office, Office Action dated Feb. 4, 2020, issued in connection with Japanese Patent Application No. 2018-500529, 6 pages.
Japanese Patent Office, Office Action dated Jun. 4, 2019, issued in connection with Japanese Patent Application No. 2018-112810, 4 pages.
Japanese Patent Office, Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 8 pages.
Japanese Patent Office, Office Action with English Summary dated Jul. 18, 2017, issued in connection with Japanese Patent Application No. 2017-513171, 4 pages.
Japanese Patent Office, Translation of Office Action dated May 14, 2019, issued in connection with Japanese Patent Application No. 2018-500529, 5 pages.
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861.
John Mark and Paul Hufnagel “What is 1451.4, what are its uses and how does it work?” IEEE Standards Association, The IEEE 1451 4 Standard for Smart Transducers, 14pages.
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages.
Non-Final Office Action dated Aug. 18, 2020, issued in connection with U.S. Appl. No. 16/827,143, filed Mar. 23, 2020, 8 pages.
Non-Final Office Action dated Dec. 18, 2018, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 10 pages.
Non-Final Office Action dated Feb. 18, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 10 pages.
Non-Final Office Action dated Jun. 18, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages.
Non-Final Office Action dated Feb. 19, 2020, issued in connection with U.S. Appl. No. 16/665,415, filed Oct. 28, 2019, 53 pages.
Non-Final Office Action dated Jun. 19, 2020, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages.
Non-Final Office Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 7 pages.
Non-Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 6 pages.
Non-Final Office Action dated Aug. 2, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 22 pages.
Non-Final Office Action dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages.
Non-Final Office Action dated Jul. 20, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 13 pages.
Non-Final Office Action dated Jun. 20, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 17 pages.
Non-Final Office Action dated Dec. 21, 2018, issued in connection with U.S. Appl. No. 16/181,213, filed Nov. 5, 2018, 13 pages.
Non-Final Office Action dated Jun. 21, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 10 pages.
Non-Final Office Action dated Jun. 21, 2019, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 12 pages.
Non-Final Office Action dated Nov. 21, 2014, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 20 pages.
Non-Final Office Action dated Jun. 22, 2018, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 33 pages.
Non-Final Office Action dated Jun. 22, 2020, issued in connection with U.S. Appl. No. 16/555,832, filed Aug. 29, 2019, 15 pages.
Non-Final Office Action dated Oct. 22, 2019, issued in connection with U.S. Appl. No. 16/416,619, filed May 20, 2019, 12 pages.
Non-Final Office Action dated Jan. 23, 2019, issued in connection with U.S. Appl. No. 16/113,032, filed Aug. 27, 2018, 8 pages.
Non-Final Office Action dated May 24, 2019, issued in connection with U.S. Appl. No. 16/401,981, filed May 2, 2019, 14 pages.
Non-Final Office Action dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 9 pages.
Non-Final Office Action dated Sep. 26, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 25 pages.
Non-Final Office Action dated Dec. 27, 2017, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 28 pages.
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 19 pages.
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 19 pages.
Non-Final Office Action dated Jul. 27, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 11 pages.
Non-Final Office Action dated Mar. 27, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 30 pages.
Non-Final Office Action dated Mar. 27, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 11 pages.
Non-Final Office Action dated Jul. 28, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Non-Final Office Action dated Nov. 28, 2017, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 7 pages.
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/588,186, filed May 5, 2017, 12 pages.
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/595,519, filed May 15, 2017, 12 pages.
Non-Final Office Action dated Mar. 29, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 16 pages.
Non-Final Office Action dated Aug. 30, 2019, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 13 pages.
Non-Final Office Action dated May 30, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 9 pages.
Non-Final Office Action dated May 31, 2019, issued in connection with U.S. Appl. No. 16/185,906, filed Nov. 9, 2018, 7 pages.
Non-Final Office Action dated Mar. 4, 2020, issued in connection with U.S. Appl. No. 15/966,534, filed Apr. 30, 2018, 11 pages.
Non-Final Office Action dated Jan. 5, 2021, issued in connection with U.S. Appl. No. 17/078,382, filed Oct. 23, 2020, 11 pages.
Non-Final Office Action dated Jul. 6, 2020, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 15 pages.
Non-Final Office Action dated Nov. 6, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 13 pages.
Non-Final Office Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/859,311, filed Dec. 29, 2017, 9 pages.
Non-Final Office Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/865,221, filed Jan. 8, 2018, 10 pages.
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 18 pages.
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 8 pages.
Notice of Allowance dated May 1, 2017, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 13 pages.
Notice of Allowance dated Nov. 2, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Notice of Allowance dated Jun. 3, 2016, issued in connection with U.S. Appl. No. 14/921,799, filed Oct. 23, 2015, 8 pages.
Notice of Allowance dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
Notice of Allowance dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 5 pages.
BeoLab5 User Manual. Bang & Olufsen. Version 1.0, 20 pages [produced by Google in WDTX Case No. 6:20-cv-00881 Answer on Jan. 8, 2021].
Chinese Patent Office, First Office Action and Translation dated Feb. 22, 2021, issued in connection with Chinese Application No. 202010187024.8, 11 pages.
Excerpts from Andrew Tanenbaum, Computer Networks. 4th Edition Copyright 2003, 87 pages [produced by Google in IPR of U.S. Pat. No. 9,219,460, IPR2021-00475 on Feb. 5, 2021].
Excerpts from Morfey, Christopher L., Dictionary of Acoustics. Copyright 2001, 4 pages [produced by Google in IPR of U.S. Pat. No. 9,219,460, IPR2021-00475 on Feb. 5, 2021].
Google LLC v. Sonos, Inc., Declaration of Jeffery S. Vipperman, PHD. In Support of Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Feb. 2, 2021, 92 pages.
Google LLC v. Sonos, Inc., Petition for IPR of U.S. Pat. No. 9,219,460, IPR2021-00475, Feb. 5, 2021, 88 pages.
Notice of Allowance dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 9 pages.
Notice of Allowance dated Feb. 23, 2021, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 8 pages.
Notice of Allowance dated Mar. 3, 2021, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages.
Notice of Allowance dated Mar. 3, 2021, issued in connection with U.S. Appl. No. 17/078,382, filed Oct. 23, 2020, 9 pages.
Sonos, Inc. v. Google LLC, WDTX Case No. 6:20-cv-00881, Google's Answer and Counterclaims; dated Jan. 8, 2021, 39 pages.
Notice of Allowance dated Jan. 12, 2022, issued in connection with U.S. Appl. No. 16/994,627, filed Aug. 16, 2020, 7 pages.
Notice of Allowance dated Oct. 14, 2021, issued in connection with U.S. Appl. No. 16/115,525, filer Aug. 28, 2018, 5 pages.
Notice of Allowance dated Nov. 15, 2021, issued in connection with U.S. Appl. No. 16/994,874, filed Aug. 17, 2020, 9 pages.
Notice of Allowance dated Feb. 16, 2022, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 9 pages.
Notice of Allowance dated Mar. 18, 2021, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 8 pages.
Notice of Allowance dated Oct. 18, 2021, issued in connection with U.S. Appl. No. 16/570,679, filed Sep. 13, 2019, 9 pages.
Notice of Allowance dated Jan. 19, 2022, issued in connection with U.S. Appl. No. 17/399,294, filed Aug. 11, 2021, 11 pages.
Notice of Allowance dated Feb. 2, 2022, issued in connection with U.S. Appl. No. 16/949,951, filed Nov. 20, 2020, 8 pages.
Notice of Allowance dated Sep. 2, 2021, issued in connection with U.S. Appl. No. 17/357,302, filed Jun. 24, 2021, 10 pages.
Notice of Allowance dated Apr. 20, 2022, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 5 pages.
Notice of Allowance dated Apr. 22, 2021, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 12 pages.
Notice of Allowance dated Oct. 27, 2021, issued in connection with U.S. Appl. No. 17/135,293, filed Dec. 28, 2020, 11 pages.
Notice of Allowance dated Sep. 29, 2021, issued in connection with U.S. Appl. No. 17/207,640, filed Mar. 20, 2021, 13 pages.
Notice of Allowance dated Mar. 3, 2022, issued in connection with U.S. Appl. No. 17/135,308, filed Dec. 28, 2020, 7 pages.
Notice of Allowance dated Aug. 31, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 8 pages.
Notice of Allowance dated May 5, 2022, issued in connection with U.S. Appl. No. 17/316,371, filed May 10, 2021, 10 pages.
Notice of Allowance dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 8 pages.
Advisory Action dated Nov. 22, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 4 pages.
“AV Amplifier DSP-Z7”, Yamaha, 2008 [retrieved on Jan. 3, 2022]. Retrieved from the Internet: URL: https://de.yamaha.com/files/download/other_assets/6/318616/DSP-Z7_en.pdf, pp. 1-154.
Chinese Patent Office, Chinese Office Action and Translation dated Apr. 1, 2021, issued in connection with Chinese Application No. 201910395715.4, 8 pages.
Chinese Patent Office, First Office Action and Translation dated Nov. 3, 2021, issued in connection with Chinese Application No. 202011278502.2, 10 pages.
Co-Pending U.S. Application No. 201916530324, inventor Wilberding; Dayn, filed on Aug. 2, 2019.
European Patent Office, European EPC Article 94.3 dated Aug. 16, 2021, issued in connection with European Application No. 19765920.4, 5 pages.
European Patent Office, European EPC Article 94.3 dated Oct. 29, 2021, issued in connection with European Application No. 20196286.7, 5 pages.
European Patent Office, European EPC Article 94.3 dated Apr. 30, 2021, issued in connection with European Application No. 20196286.7, 5 pages.
European Patent Office, European Extended Search Report dated Jun. 10, 2022, issued in connection with European Application No. 22155834.9, 8 pages.
European Patent Office, European Extended Search Report dated Jan. 14, 2022, issued in connection vith European Application No. 21171959.6, 12 pages.
European Patent Office, Examination Report dated Jul. 12, 2021, issued in connection with European Patent Application No. 17754501.9 6 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Apr. 22, 2022, issued in connection with European Application No. 15778787.0, 6 pages.
Final Office Action dated Sep. 17, 2021, issued in connection with U.S. Appl. No. 16/564,766, filed Sep. 9, 2019, 8 pages.
Final Office Action dated Aug. 20, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 22 pages.
Google LLC v. Sonos, Inc., Declaration of Michael T. Johnson, Ph.D. Exhibit 2016 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 117 pages.
Google LLC v. Sonos, Inc., Deposition of Jeffrey S. Vipperman, Ph.D. Exhibit 2017 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 183 pages.
Google LLC v. Sonos, Inc., File History of U.S. Appl. No. 61/601,529 Maher. Exhibit 2018 in Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 14 pages.
Google LLC v. Sonos, Inc., Patent Owner Response to Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, Jun. 13, 2022, 49 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 15, 2019, issued in connection with International Application No. PCT/US2017/042191, filed on Jul. 14, 2017, 10 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 20, 2018, issued in connection with International Application No. PCT/US2016/052264, filed on Sep. 16, 2016, 10 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 20, 2018, issued in connection with International Application No. PCT/US2016/052266, filed on Sep. 16, 2016, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2016/043109, filed on Jul. 20, 2016, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2016/043116, filed on Jul. 20, 2016, 8 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028997, filed on Apr. 22, 2016, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 9, 2018, issued in connection with International Application No. PCT/US2016/041179, filed on Jul. 6, 2016, 6 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048366, filed on Aug. 27, 2019, 7 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048569, filed on Aug. 28, 2019, 11 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 25, 2019, issued in connection with International Application No. PCT/US2019/048569, filed on Aug. 28, 2019, 13 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 7, 2019, issued in connection with International Application No. PCT/US2019/048366, filed on Aug. 27, 2019, 9 pages.
Japanese Patent Office, Office Action dated Dec. 7, 2021, issued in connection with Japanese Patent Application No. 2020-185230, 8 pages.
Japanese Patent Office, Examination Report and Translation dated Dec. 7, 2021, issued in connection with Japanese Patent Application No. 2020-185230, 10 pages.
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Oct. 5, 2021, issued in connection with Japanese Patent Application No. 2020-134012, 10 pages.
Japanese Patent Office, Office Action and Translation dated Apr. 13, 2021, issued in connection with Japanese Patent Application No. 2020-048867, 4 pages.
Non-Final Office Action dated Sep. 16, 2021, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 10 pages.
Non-Final Office Action dated Jul. 21, 2021, issued in connection with U.S. Appl. No. 16/570,679, filed Sep. 13, 2019, 18 pages.
Non-Final Office Action dated Sep. 7, 2021, issued in connection with U.S. Appl. No. 16/994,627, filed Aug. 16, 2020, 11 pages.
Non-Final Office Action dated Aug. 13, 2021, issued in connection with U.S. Appl. No. 16/994,874, filed Aug. 17, 2020, 10 pages.
Non-Final Office Action dated Nov. 15, 2021, issued in connection with U.S. Appl. No. 17/135,308, filed Dec. 28, 2020, 19 pages.
Non-Final Office Action dated Mar. 18, 2022, issued in connection with U.S. Appl. No. 17/033,818, filed Sep. 27, 2020, 12 pages.
Non-Final Office Action dated Aug. 19, 2021, issued in connection with U.S. Appl. No. 17/357,302, filed Jun. 24, 2021, 16 pages.
Non-Final Office Action dated Oct. 22, 2021, issued in connection with U.S. Appl. No. 16/949,951, filed Nov. 20, 2020, 10 pages.
Non-Final Office Action dated Jun. 24, 2022, issued in connection with U.S. Appl. No. 17/373,179, filed Jul. 12, 2021, 8 pages.
Non-Final Office Action dated Feb. 25, 2022, issued in connection with U.S. Appl. No. 17/107,157, filed Nov. 30, 2020, 30 pages.
Non-Final Office Action dated May 28, 2021, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 14 pages.
Non-Final Office Action dated May 3, 2021, issued in connection with U.S. Appl. No. 16/564,766, filed Sep. 9, 2019, 16 pages.
Non-Final Office Action dated Mar. 31, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 10 pages.
Non-Final Office Action dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 17/207,640, filed Mar. 20, 2021, 17 pages.
Notice of Allowance dated Jul. 21, 2021, issued in connection with U.S. Appl. No. 16/944,884, filed Jul. 31, 2020, 8 pages.
Notice of Allowance dated Aug. 4, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 9 pages.
Notice of Allowance dated Nov. 1, 2021, issued in connection with U.S. Appl. No. 17/103,556, filed Nov. 24, 2020, 5 pages.
Related Publications (1)
Number Date Country
20210099819 A1 Apr 2021 US
Continuations (2)
Number Date Country
Parent 15966534 Apr 2018 US
Child 17033821 US
Parent 14793205 Jul 2015 US
Child 15966534 US