This application claims the benefit of PCT International Application Serial No. PCT/CN2012/085336 filed on Nov. 27, 2012 and entitled a “Method for Calibration of Parameters Assessing Brittle Fracture of Material Based on Beremin Model”, which claims the benefit of CN 201110415419.X filed on Dec. 13, 2011, the entire disclosures of which are hereby incorporated by reference.
1. Field of the Invention
The invention belongs to the field of pressure vessel and safety engineering, in particular to a calibration method for the brittle fracture assessment parameters for materials, which is a calibration method for the brittle fracture assessment parameters for pressure vessel materials based on the Beremin cleavage fracture model.
2. Related Art
Nuclear power has become an important part of the world's energy structure. Currently, there are 11 reactors in use in our country. In accordance with China's medium and long-term development plan of “Developing Nuclear Power Actively”, there will be more than 40 new reactors which are the third generation million-kilowatt advanced pressurized water reactor nuclear power plants as the representative of AP1000 in 15 years. Our country will develop the nuclear power most rapidly in the world. As the key component of the nuclear power plant, reactor pressure vessel is made of ferritic steel, which demonstrates a strong transition phenomenon from ductile to brittle. During service, the steel in the reactor pressure vessel beltline region is subject to neutron irradiation, which results in an upward shift in the transition temperature. In other words, the fracture toughness of the steels decreases within the specified operating temperature. It is very necessary to ensure the structural integrity assessment of the pressure vessels, especially the reactor pressure vessels, under the different possible conditions in the design, operation and maintenance stages to prevent any possible brittle fracture. The fracture toughness of materials (including the base, weld and heat-affected zone materials) is essential to the structural integrity assessment.
Local approach to cleavage fracture is a primary method for predicting brittle failure probability for ferritic pressure vessel steel. Among them, the most widely applied model is the Beremin model which has been included in the famous R6 Procedure “Assessment of the Integrity of Structures Containing Defects”. The Beremin model was originally proposed by the research group F.M Beremin for studying cleavage fracture of pressure vessel steels. The Beremin model is very applicable to the analysis of the effect of constraint on cleavage fracture toughness and to the prediction of cleavage fracture of steels subjected to complex loading conditions such as multi-axial loading and high strain rate loading.
The Beremin model uses only two parameters, the Weibull slope m and Weibull scale parameter σu, to describe the complex cleavage fracture events. Therefore, the applicability of the Beremin model to predict cleavage fracture in structures relies heavily on the model's parameters. The calibration method for Beremin model's parameters is a key technology for the brittle fracture assessment procedure for pressure vessel materials.
Several calibration methods have been reported in the literatures. For example, in 1992, Minami et al published “Estimation procedure for the Weibull stress parameters used in the local approach” in the journal “International Journal of Fracture”, in which a calibration method using a maximum likelihood analysis of a single set of fracture toughness values for high constraint specimens was proposed; in 1998, a paper entitled “Calibration of Weibull stress parameters using fracture toughness data” published by Gao et al in the journal “Engineering fracture mechanics” first describes a calibration method (GRD method) based on the analysis of two sets of fracture toughness values exhibiting different constraint levels at fracture; in 2000, Ruggieri et al's (RGD) paper “Transferability of elastic-plastic fracture toughness using the Weibull stress approach: significance of parameter calibration” published in the journal “Engineering Fracture Mechanics” simplifies the GRD method.
However, the existing methods require a lot of complex calculations and sometimes a specialized computer program. In particular, the calibration method proposed by Minami et al must need a specialized computer program that employs an iterative process to obtain m and σu. When the RGD method is utilized, the maximum principal stress and volume of every element first need to be extracted from the fracture process region of each model at different loading levels, assume several trial values of m and do a lot of calculations to build the σw vs. KJ relationships for each type of specimens using the exported data, and finally construct the toughness scaling diagrams between the two different specimens based on equal σw values. The method is computationally expensive.
In addition, the calibration method proposed by Minami et al is based on the analysis of a single set of fracture toughness data for high constraint specimen, which results in large uncertainty in the calibrated Beremin model's parameters and poor transferability of the calibrated parameters across structures of different constraints. The RGD calibration and the GRD calibration method determine parameters (m, σu) using two sets of fracture toughness data obtained for high constraint and low constraint specimens, but can't tune (m, σu) by using more than two types of specimens simultaneously. Moreover, when there are equivalent solutions for the model's parameters, the GRD calibration method and the RGD calibration method only give the most accurate solution for the parameters (m, σu), but neglect the other solutions.
Aiming at the problems and shortcomings of the calibration method of Beremin model parameters in prior art, the invention provides a simplified calibration method for the parameters based on the intersection of m˜σu curves for the specimens of different constraints. The method can easily determine Beremin model's parameters by using simultaneously several types of specimens of different constraints without affecting the calibration precision. And both the accurate solution and the equivalent solutions for the Beremin model's parameters can be obtained.
A calibration method for the brittle fracture assessment parameters for materials based on the Beremin model according to the present invention comprises the following steps:
(1) Selecting at least two types of specimens made of a same material but with different constraints, and calculating the fracture toughness value K0 corresponding to 63.2% failure probability for each type of specimens at a same calibration temperature by using the respective fracture toughness data;
(2) Constructing finite element models for each type of specimens using the stress-strain curve of the material measured at the same calibration temperature, and calculating the maximum principal stress σ1,i and element volume Vi of each element in each model at K=K0, where K is a stress intensity factor that describes the intensity of far field loading on the crack front, and i is an order number of elements;
(3) Assuming a series of values of the Weibull slope m and calculating a set of values of the Weibull scale parameter σu for each type of specimens according to the following equation, and plotting the Beremin's parameter characteristic curves for each type of specimens, i.e. the curves representing the relationship between m and σu for each type of specimens;
wherein, n represents the number of elements in the fracture process region, V0 represents a reference volume;
(4) Determining the brittle fracture assessment parameters for the material according to the coordinates of the intersection of the Beremin's parameters characteristic curves.
Comparing with the GRD calibration method and the RGD calibration method, the calibration method proposed in the invention eliminates the redundant calculations of the σw and the toughness scaling based on equal σw values in the case of KJ≠K0, but only need to compute the values of σu at K=K0 using the assumed m values. The calibration procedure does not affect the calibration precision of Beremin model's parameters, and the values of m and σu can be obtained simultaneously. The calibration method provided by the present invention visually displays the convergence process of calibration. The solutions for (m, σu) can be determined through the different cases of intersection of m˜σu curves: if there is only one point of intersection, it indicates that a single solution for Beremin model's parameters can be obtained; if the curves do not intersect in the normal range of 5<m<40, it indicates that there is no solution for the Beremin model's parameters; if the curves are overlapped in a range of m (usually a range of 5<m<40), it indicates that there are equivalent solutions for m and σu. The calibration method in the invention can determine the Beremin model's parameters simultaneously from different types of specimens (≧two types of specimens) in one calibration diagram, and can be readily applied to the study of the transferability of the calibrated parameters across structures of different constraints.
These and other features and advantages of the present invention will become more readily appreciated when considered in connection with the following detailed description and appended drawings, wherein:
The flow diagram of the calibration method for the brittle fracture assessment parameters for materials based on the Beremin model is shown in
(1) Select at least two types of specimens made of a same material but with different constraints such as high constraint specimen A and low constraint specimen B. Perform fracture toughness test using specimen A and specimen B in the ductile-to-brittle transition region to obtain two sets of fracture toughness data, KJc(k),A and KJc(j),B wherein k and j are the testing order numbers. Generally speaking, the more data in each set, the greater the accuracy of the brittle fracture assessment parameters, m and σu, from the calibration method. Therefore, each set preferably has at least 6 fracture toughness data and more preferably has at least 15 fracture toughness data. The fracture toughness values K0(A) and K0(B) corresponding to 63.2% failure probability can be determined respectively for specimens A and B at a same calibration temperature T by using the fracture toughness data.
(1.1) If the fracture toughness data KJc(k),A and KJc(j),B for specimens A and B are measured at the calibration temperature T=TA=TB, the fracture toughness values K0(A) and K0(B) corresponding to 63.2% failure probability at the calibration temperature can be calculated directly.
(1.2) If specimens A and B are tested at different temperatures TA≢TB to generate fracture toughness data KJc(k),A and KJc(j),B, master curve for the material can be determined in accordance with ASTM E1921 proposed by the American Society for Testing and Materials, which can make the estimates of K0 corresponding to 63.2% failure probability for the specimens at the calibration temperature T.
It should be noted that the estimation of fracture toughness of the two types of specimens using master curve is conducted under the assumption that brittle fracture occurs. Low constraint specimen B should be generally tested at lower temperature TB, while fracture toughness test on high constraint specimen A can be performed at higher temperature TA at which specimen B may exhibit significant ductile tearing prior to cleavage fracture. Therefore, it is suggested that the fracture toughness data for high constraint specimen A should be converted to those tested at temperature TB as specimen B. According to the requirements in ASTM E1921, it is also suggested that fracture toughness test on high constraint specimen A should be performed to establish the master curve for the material such that the estimated value of K0(A) can be obtained at the calibration temperature T=TB.
(2) Uniaxial tensile testing is carried out at the same calibration temperature T mentioned above to obtain the tensile property of the material. Perform finite element analyses for high constraint specimen A and low constraint specimen B, and then export the maximum principal stress σ1,i and element volume Vi of each element at K=K0 in each model, where K is a stress intensity factor that describes the intensity of far field loading on the crack front, and i is an order number of elements.
(3) Beremin model adopts a two-parameter Weibull distribution to predict the cumulative failure probability of cleavage fracture, Pf, for structures, as follows:
named Weibull stress, is a driving force for cleavage fracture; the Weibull slope, m, describes the scatter in the microcracks distribution and its value quantifies the degree of scatter of experimental failure data; the scale parameter of the Weibull distribution, σu, is related to the microscale material toughness and corresponds to the σw value at Pf=63.2%.
Therefore, at the level of loading K=K0 corresponding to Pf=63.2%, the Equation (2) is obtained:
Where Vpl represents the fracture process region; n denotes the number of elements in the fracture process region; σ1,i and Vi represent the maximum principal stress and element volume of each element in the fracture process region; V0 represents a reference volume; Vpl is defined as the region where the maximum principal stress exceeds the yield strength: σ1,i≧λσys, where λ is a constant factor and is generally taken equal to 1 or 2; σys is the yield strength of the material at the calibration temperature T.
Assuming a series of values of the Weibull slope m=m1, m2, m3 . . . etc. (The values of m are usually taken equal to integers larger than 5 and less than 40) and calculate the σw for specimens A and B at KJ=K0(A) and K0(B) respectively, based on the Equation (2) using the values of σ1,i and Vi obtained in step (2). Since the value of σu is the value of σw at KJ=K0, two m˜σu curves are obtained as illustrated in
(4) Find the intersection of the two m˜σu curves marked with “O” as illustrated in
The following is the details of the present invention in specific embodiments. The attention must be paid that the examples are only used for the purpose of illustration, not to limit the scope of the invention.
The material is a homemade C—Mn steel 16MnR which is widely used for manufacturing pressure vessels in China. Select three-point bend specimen with thickness of 0.5 inches (0.5T-SE(B) specimen) as the high constraint specimen. For 0.5T-SE(B) specimen, the width to thickness ratio W/B is equal to 2. Select the pre-crack Charpy size specimen (PCVN specimen) as the low constraint specimen, which has the width to thickness ratio W/B equal to 1. Both the 0.5T-SE(B) and PCVN specimens have the span to width ratio S/W=4 and the nominal crack depth ratio a0/W=0.5.
The calibration method for the brittle fracture assessment parameters for materials based on the Beremin model comprises the following steps:
(1) Test the 0.5T-SE(B) and PCVN specimens at T=−100° C. to generate two sets of fracture toughness data which are listed in Tables 1 and 2. The K0 values for the 0.5T-SE(B) and PCVN specimens at T=−100° C. are calculated as K0(0.5T)=126.9 MPa√{square root over (m)} and K0(PCVN)=208.4 MPA√{square root over (m)} respectively, based on the fracture toughness data KJc(0.5T) and KJc(PCVN) in Tables 1 and 2.
(2) Uniaxial tensile testing is carried out at −100° C. to obtain the stress-strain curve for 16MnR steel. Perform finite element analyses for the 0.5T-SE(B) and the PCVN specimens and then export the maximum principal stress, σ1,i and element volume Vi of each element in each model at K=K0. The fracture toughness region is defined as the region where σ1,i≧λσys with λ=1.
(3) The reference volume V0 is taken as (50 μm)3 in the example. Assume m=6, 7, 8 . . . , 10 and calculate the σw using the data extracted from the fracture process region. Since the value of σu is the value of σw at K=K0, two m˜σu curves are obtained as illustrated in
(4) Find the intersection of the two m˜σu curves in
RGD calibration method is applied to determine the Weibull slope m. As shown in
The material is a A508-3 forging for the construction of nuclear pressure vessels. Select three-point bend specimen with thickness of 0.5 inches (0.5T-SE (B) specimen) as the high constraint specimen. For 0.5T-SE(B) specimen, the width to thickness ratio W/B is equal to 2. Select the pre-crack Charpy size specimen (PCVN specimen) as the low constraint specimen, which has the width to thickness ratio W/B is equal to 1. Both the 0.5T-SE (B) and PCVN specimens have the span to width ratio S/W=4 and the nominal crack depth ratio a0/W=0.5.
The calibration method for the brittle fracture assessment parameters for materials based on the Beremin model comprises the following steps:
(1) Test the 0.5T-SE(B) specimens at three different temperatures −81° C., −60° C. and −40° C., and test the PCVN specimens at −100° C. The fracture toughness data KJc(0.5T) and KJc(PCVN) are showed in Tables 3 and 4 respectively. The K0 values for the PCVN specimens at T=−100° C. is calculated as K0(PCVN)=117.8 MPa√{square root over (m)} by using the fracture toughness data KJc(PCVN) in Table 4. The reference temperature T0 of master curve is determined to be −61° C. using ASTM E1921 multi-temperature analysis procedure for the fracture toughness data for 0.5T-SE(B) specimen in Table 3. The K0 value for 0.5T-SE(B) specimen at T=−100° C. is estimated to be 76.5 MPa√{square root over (m)} by master curve.
(2) Uniaxial tensile testing is carried out at −100° C. to obtain the stress-strain curve for A508-3 forging. Perform finite element analyses for the 0.5T-SE(B) and the PCVN specimens and then export the maximum principal stress σ1,i and element volume Vi of each element in each model at K=K0. The fracture toughness region is defined as the region where σ1,i≧λσys with λ=1.
(3) The reference volume V0 is taken as (50 μm)3 in the example. Assume m=10, 11, . . . , 12 and calculate the σw using the data extracted from the fracture process region. Since the value of σu is the value of σw at K=K0, two m˜σu curves are obtained as illustrated in
(4) Find the intersection of the two m˜σu curves in
RGD calibration method is applied to determine the Weibull slope m. As shown in
The calibration method proposed in the invention eliminates the redundant calculations of the σw and the toughness scaling based on equal σw values in the case of KJ≢K0. With a series of assumed m values, the σw values are calculate only at K=K0 in the corresponding specimen to construct m˜σu curves for the specimens of different constraints. The calibrated values of m and σu are simultaneously obtained through the intersection of the m˜σu curves. It can be observed from the above examples that the calibration method in the present invention has much lower computational cost compared with the RGD calibration method and the same calibration accuracy as the RGD calibration method.
Compared with the RGD calibration method (
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0415419 | Dec 2011 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2012/085336 | 11/27/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/086933 | 6/20/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7016825 | Tryon, III | Mar 2006 | B1 |
7992449 | Mahmoud | Aug 2011 | B1 |
20070060465 | Varshneya et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
102494940 | Jun 2012 | CN |
Entry |
---|
International Search Report, 5 Pages dated Mar. 7, 2013. |
Number | Date | Country | |
---|---|---|---|
20140372060 A1 | Dec 2014 | US |