A better understanding of the invention may be derived by reading the following detailed description with reference to the accompanying drawing wherein:
The calibration method of the present invention is applicable to a board range of image-capture apparatus and various objective articles. While the invention is described in terms of a single preferred embodiment, those skilled in the art will recognize that many steps described below can be altered without departing from the spirit and scope of the invention.
Furthermore, shown is a representative portion of the calibration of the present invention. The drawings are not necessarily to scale for clarity of illustration and should not be interpreted in a limiting sense. Accordingly, these articles may have dimensions, including length, width and depth, when scanned in an actual apparatus.
In the present invention, a calibration method of improving an output performance of an article captured by a scanner comprises providing a calibration chart wherein consists of a portion of pixels aligned in a direction and another portion of the pixels aligned orthogonal to the direction. The calibration chart is scanned for capturing information of all the pixels and then the information of all the pixels is subjected to a correction means whereby corrects aberration of the partial pixels.
Furthermore, different from any conventional calibration chart built in a general scanner and restricted on linear one-dimensional chart for the linear sensor array, the non-built-in calibration chart can have no restriction on the dimensions. That is, the non-built-in calibration chart may have pixels in the two dimensions (parallel to the length of the linear sensor array and orthogonal thereto), even as well as the size of a whole scanned zone. One of advantages of using a two-dimensional calibration chart is to prevent from dark lines resulted from misreading or any aberrant condition during capturing the information of the calibration chart.
Furthermore, the non-built-in calibration chart may be white, black, or have a homogeneous gray hue thereon. Users can select or change the non-built-in calibration charts with various homogenous gray hues to fit in with various objective articles. Such a calibration chart can prevent the scanned image of an objective article from forming saturated pixels thereon. The saturated pixels on the scanned image result from multitudes of signal values corresponding the objective article beyond the value range of conventional calibration chart. The quality of the scanned image may be deteriorated because of the existence of saturated pixels. One of advantages of the present invention provides users selecting suitable calibration chart prior to scanning the objective article, and further improves the quality of the scanned image.
Next, the information of the non-built-in calibration chart is captured by the scanner (step 12). After analog/digital transformation, the signal values corresponding to the non-built-in calibration chart are primarily subjected to a low-pass filter (step 13). When the size of the calibration chart is enlarged, the probability of aberrant pixels on the calibration chart increases. In the present invention, the low-pass filter can normalize the signal values corresponding to the aberrant pixels of the calibration chart and further reduce the influence of the aberrant pixels.
Next, users can check the output values of the calibration chart with a host computer. In the present invention, users can not only view the output values of the calibration chart, but also assign the desired output values of the calibration chart by themselves (step 14). In the present invention, the assignable output values corresponding to the calibration chart provides flexibly operable capability on scanning the objective article. Furthermore, users can save the assigned output values corresponding to the calibration chart (step 15).
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
Number | Date | Country | |
---|---|---|---|
Parent | 09883195 | Jun 2001 | US |
Child | 11469050 | US |