Calibration of MIMO systems with radio distribution networks

Information

  • Patent Grant
  • 8885757
  • Patent Number
    8,885,757
  • Date Filed
    Wednesday, December 11, 2013
    11 years ago
  • Date Issued
    Tuesday, November 11, 2014
    10 years ago
Abstract
A system and method of maintaining performance of an RF Distribution Network that combines signals (phases and amplitudes) passing through components that are subjected to parameters variations due to aging and temperature is disclosed; resultant distortion is reduced or eliminated via a real time calibration.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of radio frequency (RF) multiple-input-multiple-output (MIMO) systems and in particular to systems and methods for enhanced performance of RF MIMO systems using RF beamforming and/or digital signal processing.


BACKGROUND OF THE INVENTION

Prior to setting forth a short discussion of the related art, it may be helpful to set forth definitions of certain terms that will be used hereinafter.


The term “MIMO” as used herein, is defined as the use of multiple antennas at both the transmitter and receiver to improve communication performance. MIMO offers significant increases in data throughput and link range without additional bandwidth or increased transmit power. It achieves this goal by spreading the transmit power over the antennas to achieve spatial multiplexing that improves the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.


The term “beamforming” sometimes referred to as “spatial filtering” as used herein, is a signal processing technique used in antenna arrays for directional signal transmission or reception. This is achieved by combining elements in the array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity.


The term “beamformer” as used herein refers to RF circuitry that implements beamforming and usually includes a combiner and may further include switches, controllable phase shifters, and in some cases amplifiers and/or attenuators.


The term “Receiving Radio Distribution Network” or “Rx RDN” or simply “RDN” as used herein is defined as a group of beamformers as set forth above.


The term “hybrid MIMO RDN” as used herein is defined as a MIMO system that employs two or more antennas per channel (N is the number of channels and K is the total number of antennas and K>N). This architecture employs a beamformer for each channel so that two or more antennas are combined for each radio circuit that is connected to each one of the channels.


In hybrid MIMO RDN receiving systems, when the phases of the received signals from each antenna are properly adjusted or tuned with respect to one another, the individual signals may be combined and result in an improved SNR for the receiving system.


SUMMARY


FIG. 2 shows an implementation whereby each antenna of an antenna array 201 as shown in FIG. 1 is enhanced by adding a means to adjust the weight of its signal (amplitude and phase) 202 prior to applying it to a passive RF combiner 203. In one embodiment the phase and amplitude of each antenna's signal is measured by the radio and baseband 204, which performs a “channel estimation” function of the received signal.


The measurements allow the system to determine in advance the phase and optionally the amplitude of each signal prior to applying it to 203 in order to accomplish constructive signal combining To accomplish this effectively, it is important the system predicts the consequences of each setting. For this reason a calibration of phase and amplitude for all operational settings and for all operating conditions such as frequency and temperature is required. This invention describes the design and methods to provide a unit calibration to provide values to be used during operation to adjust the settings.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention and in order to show how it may be implemented, references are made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections. In the accompanying drawings:



FIG. 1 is a high level illustration of a simple MIMO receiving system with antenna array and RDN according to some embodiments of the invention;



FIG. 2 is an implementation for one embodiment of the system allowing setting of the weight of the signal from each antenna and channel estimation according to some embodiments of the invention;



FIG. 3 is a high level illustration of one embodiment allowing calibration of the gain from each antenna using a test generator and channel estimation. It also presents an alternative approach that replaces the test signal generator and channel estimator with a network analyzer according to some embodiments of the invention;



FIG. 4 is diagram of circuitry allowing calibration of the gain from each antenna separately according to some embodiments of the invention;



FIG. 5 is an implementation for one embodiment of the system allowing setting of the weight of the signal from each antenna and providing operational bypass of the RF combiner for channel estimation according to some embodiments of the invention;



FIG. 6 is a flowchart showing a method for calibration using the embodiment of FIG. 2 according to some embodiments of the invention;



FIG. 7 is a flowchart showing a method for calibration using the embodiment of FIG. 5 according to some embodiments of the invention; and



FIG. 8 is an implementation for one embodiment of the system allowing setting of the weight of the signal from each antenna and providing operational bypass of the RF combiner for channel estimation employing an RF signal combiner with a reconfigurable combining ratio according to some embodiments of the invention.





DETAILED DESCRIPTION

With specific reference now to the drawings in detail, it is stressed that the particulars shown are for the purpose of example and solely for discussing the preferred embodiments of the present invention, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The description taken with the drawings makes apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


Before explaining the embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following descriptions or illustrated in the drawings. The invention is applicable to other embodiments and may be practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.



FIG. 1 is a high level block diagram illustrating a system according to embodiments of the present invention. A MIMO receiving system set in a hybrid MIMO RDN configuration is shown. In the hybrid MIMO RDN configuration, baseband module 110 receives N branches and is configured to operate, on the baseband level, in accordance with any known or legacy MIMO receiving scheme. The system includes a radio distribution network 130 (RDN) connected to baseband module 110 via radio circuits 20-1 to 20-N. RDN 130 includes at least one beamformer such as 120-1 and 120-N, being fed by two or more antennas such as 50-1-1 to 50-N-KN, so that a total number of antennas in the system is greater than the number of the channels. Baseband module 110 further includes digital signal processing (DSP) modems 112 and an RF signal processing and control module 114 and a memory 116, wherein control module 114 is configured to tune RDN 130 and also to calibrate the beamformers as will be explained in detail below.



FIG. 2 shows an implementation whereby each antenna of an antenna array 201 of the RDN beamformer system of FIG. 1 (only one beamformer is shown in FIG. 2) is enhanced by adding the ability to adjust the weight of its signal (amplitude and phase) 202 prior to applying it to a passive RF combiner 203. In one embodiment the phase and amplitude of each antenna's signal is measured by the radio and baseband 204, which performs a “channel estimation” function of the received signal.


The measurements allow the system to determine in advance the phase and optionally the amplitude of each signal prior to applying it to 203 in order to accomplish constructive signal combining To accomplish this effectively, it is important the system predicts the consequences of each setting. For this reason a calibration of phase and amplitude for all operational settings and for all operating conditions such as frequency and temperature is required. This invention describes the design and methods to provide a unit calibration to provide values to be used during operation to adjust the settings.


The system, as illustrated in FIGS. 2, 5 and 8 that are explained in detail below, comprises a multiple-input-multiple-output (MIMO) receiving system comprising a MIMO baseband module having N branches (only one branch shown in FIGS. 2, 5 and 8) or inputs associated with radio channels (20-1 to 20-N as shown in FIG. 1) and a radio distribution network (RDN) connected to the MIMO receiving system.


The RDN which includes a beamformer may be fed by two or more antennas, so that a total number of antennas in the system is K, wherein K is greater than N.


The beamformer may include at least a combiner configured to combine signals coming from the antennas into a combined signal.


The diagram of FIG. 2 shows the elements of an RDN beamforming system. In operation the phases and (optionally) amplitudes of the signals from the antennas in array 201 are adjusted to ensure optimum alignment using the weighting adjustments provided by circuits 202. Factors that affect the ability to achieve the alignments may include:

    • Accuracy of the phase and amplitude adjustment settings of the weighting circuits 202
    • Variation of the phase and amplitude versus operational conditions of frequency and temperature
    • Variation of phase when adjusting amplitude and variation of signal amplitude when adjusting phase
    • Phase shift and loss differences through RF combiner 203 experienced by the antenna signals. This can be incidental due to combiner tolerances or difference in trace lengths or intentional by design (e.g., quadrature combiners introduce a 90 degree phase shift for some paths.)


      Inspection of FIG. 2 shows we can measure the end-to-end gain by applying a signal to each input separately (Input1 through Inputk) and measure and record its change in phase and amplitude. The equipment to do this is shown in FIG. 3. The RF test signal from the Signal Generator 301 is routed through the Test RF Circuits 400. As shown in the embodiment of FIG. 4, the signal can be applied individually to each input (Input1 through Inputk). The flow chart of FIG. 6 outlines the steps to employ the embodiment shown in FIG. 3 using the internal channel estimation circuits to measure the voltage (amplitude and phase) for each signal path.


Often, during operation, it is desirable to bypass the combiner when performing channel estimation of the signals received by each antenna. This is because the combiner 203 introduces a combining loss of 1/k to each input signal when the others are not present. For this reason the circuit of FIG. 5 or similar have been proposed. Single pole switches 508 and multi-throw switch 509 are added to route each signal in order to bypass the combiner 503. When the signals are bypassed (switch position B), the measured phase and amplitude by the channel estimation will be different than when the signals are routed through the combiner. For this reason the calibration tables generated must take these differences into account in order for “bypass” measurements to be applicable to setting the weights when operating in the “non-bypassed” configuration.


The flowchart of FIG. 6 describes for one embodiment the steps to be followed to generate the calibration tables when using a test configuration as shown in FIG. 3. In this figure we see a baseline is established with the weight settings of 202 at maximum gain and the “zero” phase setting. Since the gain for each of the k antenna paths is measured under these conditions, a comparison of these measurements shows what offsets must be applied in order to align the signals to add constructively in the combiner 203. Subsequent measurements determine the accuracy of the gain and amplitude weight settings and the interaction between the settings (i.e., the phase shift variation for different gain settings and the amplitude (gain) variations when adjusting the phase).


According to the flowchart of FIG. 6, the method may include operations such as configuring equipment as shown in FIG. 3 and setting frequency and level of Test Generator (or alternatively the Network Analyzer as required and Test RF Circuits for Output to Input 610; setting the gain of the RDN to maximum and Phase to zero degrees 620; measuring and recording the voltage and phase at the Output port using the Internal Channel Estimator or alternatively the Network Analyzer 630; adjusting the gain of the RDN from maximum to minimum with Phase at zero degrees and measuring and recording for each gain setting (or a selected subset) the voltage and phase at the Output port as before 640; adjusting the gain of the RDN to maximum and for each possible phase setting measuring and recording the voltage and phase at the Output port as before 650; exercising all switches and measuring amplitude and phase of each antenna at each state 660; repeating for other measurement conditions of frequency and temperature 670; and loading calibration data in UE 680.


The flowchart of FIG. 7 describes the same factors for the circuit of FIG. 5 that FIG. 6 does for the circuit of FIG. 2 with the addition of a measurement with the combiner 503 bypassed. This allows the system to perform channel estimation on received signals with the advantage of bypassing the combiner and to apply the proper settings operationally without the combiner bypassed.



FIG. 8 describes an embodiment of the invention for which the calibration procedure described in FIG. 7 is also applicable. The structure of RDN 800 may include antennas 801 which are fed into variable gain amplifiers and phase shifters 802 and then to splitters 808 from which some of the signals are combined by combiner 803 to be later combined with other outputs of splitters 808 in a combiner 809, exhibiting a total gain 807, and into a channel estimator 804. In operation the combiner coupling is adjusted to accommodate a different number of antennas to be combined to avoid combiner losses such as 805 and 806 as described in U.S. patent application Ser. No. 13/776,068.


In general each combiner configuration introduces a different coupling ratio and phase shift to its input signals. This means the calibration procedure described in FIG. 7 must be repeated for each combiner configuration to be employed during unit operation.


According to some embodiments, the RDN circuits of 500 in FIGS. 5 and 800 in FIG. 8 may be contained within a module such as an integrated circuit (IC). In this case the calibration configuration as shown in FIG. 3 and the processes outlined in FIG. 6 and FIG. 7 may be employed during module manufacture.


In one embodiment the calibration values may be stored within module in nonvolatile memory 116 to be retrieved when the RDN module is installed in user equipment (UE). A UE may be referred herein in a non-limiting manner as any device used directly by an end-user to communicate. A UE can be a hand-held telephone, a laptop computer equipped with a mobile broadband adapter, or any other suitable device. It is obvious the size of memory needed will depend on the RDN configuration and precision required.


In one embodiment the RDN of FIG. 5 will provide five phase shifters each with four phase shifts of ninety degree increments. It would be possible to measure the phase shift provided by each phase setting with a resolution of thirty degrees. In this case the calibration would be required to measure twenty values of four bits each plus one word for the combiner bypass routing for each phase shifter and twice that total for two RDN's supporting MRC or 2×2 MIMO. In general the size of the memory required will depend on the module configuration and precision required as well as sufficient memory to store coefficients as necessary to characterize the module performance over operational conditions such as frequency and temperature.


In another embodiment calibration is performed in real time over the air during normal system operation using channel estimation. The need for such a procedure stems out of manufacturing limitations as well as of human operational mode:

    • (a) RF circuitry calibration procedures of many Wireless devices are based on plugging probes between the radios ports and the antennas, in many cases leaving the antennas themselves un-calibrated; that lack of full calibration is sometimes due to the cost of radiated test.
    • (b) Human handling of a wireless device is often involving touching the area where an antenna is located, inadvertently modifying both amplitude and phase. Proximity sensor or other sensing means like VSWR monitoring may be used in order to trigger real time field calibration procedure.


      Real time calibration can offer remedy in both of the above cases.


During normal operation the transmitter (e.g. base station) transmits reference signals that allow the channel to be estimated. The estimated channel is the overall channel from the transmit antenna to the beamformer output. During calibration only one of the beamformer antennas is activated. Therefore, the overall channel comprises an external channel from the transmit antenna to the single active beamformer antenna, and an internal channel which is the signal path from the active beamformer antenna to the beamformer output. The internal signal path varies depending on the selected weights (amplitude and phase) and configuration (bypass or non-bypass).


Let Ri, i=1 . . . k, be the number of internal paths to be calibrated from beamformer input i to its output, and p(i,j), i=1 . . . k, j=1 . . . Ri, be the internal paths from input i to the output. Internal path p(i,j) can be expressed as AINT(i,j)eINT(i,j), wherein AINT(i,j) and φINT(i,j) are respectively amplitude and phase of internal path p(i,j). Similarly, the external channel from the transmit antenna to beamformer input i is expressed as AEXT(i)eEXT(i). Therefore, the overall channel comprising the external channel and an internal path p(i,j) is given by AEXT(i)eEXT(i)AINT(i,j)eINT(i,j).


A channel ratio Ratio (i, j1, j 2) between two channels, both including the same external channel from the transmit antenna to same input i, but having distinct internal paths p(i, j1) and p(i, j2), j1=1 . . . Ri, j2=1 . . . Ri, j1≠j2, is defined as:







Ratio
(

i
,

j





1

,

j

2


)

=




A

EXT


(
i
)









EXT


(
i
)






A

INT


(

i
,

j





1


)









INT


(

i
,

j





1


)







A

EXT


(
i
)









EXT


(
i
)






A

INT


(

i
,

j





2


)









INT


(

i
,

j





2


)






=




A

INT


(

i
,

j





1


)









INT


(

i
,

j





1


)







A

INT


(

i
,

j





2


)









INT


(

i
,

j





2


)






=



A

INT


(

i
,

j





1


)




A

INT


(

i
,

j





2


)








j


(


φ

INT


(

i
,

j





1


)



-

φ

INT
(

i
,

j





2





)










Since in general the external channel is time varying, for measurements done at instants n and m the channel ratio may be expressed showing the time dependencies as:







Ratio


(

i
,

j





1

,

j

2


)


=





A

EXT


(
i
)





(
n
)









EXT


(
i
)




(
n
)






A

INT


(

i
,

j





1


)









INT


(

i
,

j





1


)








A

EXT


(
i
)





(
m
)









EXT


(
i
)




(
m
)






A

INT


(

i
,

j





2


)









INT


(

i
,

j





2


)








=
~






A

INT


(

i
,

j





1


)









INT


(

i
,

j





1


)







A

INT


(

i
,

j





2


)









INT


(

i
,

j





2


)






=



A

INT


(

i
,

j





1


)




A

INT


(

i
,

j





2


)












INT


(

i
,

j





1


)



-

φ

INT
(

i
,

j





2





)









According to some embodiments, the calibration procedure may include the following stages:

    • 1. Define the calibration time slots. During the calibration time slots only a single beamformer antenna is activated and the system performs momentarily calibration function in addition to regular receiver functions. Since Ratio(i, j1, j2) is a ratio between two different channels, two separate channel estimations are required for estimating Ratio(i, j1, j2); therefore, in order to minimize variations in the external channel the time slots may be grouped in pairs for back to back channel estimation and more accurate estimation of Ratio(i, j1, j2).
    • 2. Set i=1.
    • 3. Select a path p(i, j1) from beamformer input i to its output as anchor.
    • 4. Using channel estimation compute Ratio(i, j1, j2) for fixed j1 (selected in step 3 as anchor) and j2=1 . . . Ri, j2≠j1, and store the computed values in the calibration table.
    • 5. Repeat steps 3 and 4 for i=2 . . . k.
    • 6. Repeat steps 2 to 5 periodically and average the measurements.


If an indication of channel mobility is available, it may be optionally used to add weights in the average: low mobility measurements may receive higher weights than high mobility measurements. If an indication of SINR is available, it may be optionally used to add weights in the average: high SINR measurements may receive higher weights than low SINR measurements. The temperature and frequency may be added to the calibration table, in which case the measurements may be averaged separately for different temperatures and frequencies. In some embodiments, the calibration table may be stored in non-volatile memory.


In some embodiments the real time calibration is performed only when slow fading is identified by a channel mobility detection procedure.


During regular RDN operation, the calibration table is used to correct channel estimation values before they are used for RDN weight settings.


In the above description, an embodiment is an example or implementation of the invention. The various appearances of “one embodiment”, “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.


Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.


Embodiments of the invention may include features from different embodiments disclosed above, and embodiments may incorporate elements from other embodiments disclosed above. The disclosure of elements of the invention in the context of a specific embodiment is not to be taken as limiting their used in the specific embodiment alone.


Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.


The invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.


Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.


While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.

Claims
  • 1. A system comprising: a multiple-input-multiple-output (MIMO) receiving system comprising a MIMO baseband module having N branches;a radio distribution network (RDN) connected to the MIMO receiving system with an antenna array of K antennas, the RDN comprising at least one beamformer with k weighting circuits and one radio frequency (RF) signal combiner configured to combine signals coming from the antennas feeding the respective beamformer into a combined signal, wherein k, K and N are positive integers and wherein k is greater than 1 and K is greater than N, wherein the RDN is tuned for optimal performance using channel estimation of individual contributing antennas of the RDN;a signal processing control module configured to: tune the K antennas, wherein the tuning is carried out based on RDN calibration data; and generate said RDN calibration data, based on at least one of: offline and real time procedures for eliminating or reducing systematic errors and unpredictable errors,wherein the calibration is carried out as follows:using a given beamformer antenna for receiving, while disconnecting other antennas in the same beamformer;channel estimating the signals received from a serving transmitting station: for each possible phase and gain setting, for each possible switch setting, and for each possible combiner;selecting as an anchor or reference point one of said settings, and comparing the channel estimations for all other selected settings to the anchor's channel estimation;creating a calibration table using a deviation between the anchor setting and other settings; andrepeating the calibration process for all antennas and for all beamformers in the RDN.
  • 2. The system according to claim 1, wherein the calibration table is calculated in the following manner: dividing each of the various possible routing's channel estimation measurements by the channel estimation value measured for the anchor setting, resulting in a plurality of complex numbers expressing the power ratio and phase difference between each possible routing setup and the anchor setup.
  • 3. The system according to claim 2, wherein said calibration is carried out several times or periodically and the results are averaged.
  • 4. The system according to claim 3, wherein mobility indication is used for applying weights to said calibration measurements average calculation, and wherein higher mobility values are assigned lower weights to said average process.
  • 5. The system according to claim 3, wherein signal to interference plus noise ratio (SINR) measurements are used for applying weights to said calibration measurements average calculation, and wherein higher SINR values are assigned higher weights to said average process.
  • 6. A system comprising: a multiple-input-multiple-output (MIMO) receiving system comprising a MIMO baseband module having N branches;a radio distribution network (RDN) connected to the MIMO receiving system with an antenna array of K antennas, the RDN comprising at least one beamformer with k weighting circuits and one radio frequency (RF) signal combiner configured to combine signals coming from the antennas feeding the respective beamformer into a combined signal, wherein k, K and N are positive integers and wherein k is greater than 1 and K is greater than N, wherein the RDN is tuned for optimal performance using channel estimation of individual contributing antennas of the RDN;a signal processing control module configured to: tune the K antennas, wherein the tuning is carried out based on RDN calibration data; and generate said RDN calibration data, based on at least one of: offline and real time procedures for eliminating or reducing systematic errors and unpredictable errors,wherein a real time calibration is performed by using the base station transmission as a calibration reference signal, as follows:(a) upon activation of a user equipment (UE), a mobility detection is performed, until slow fading is identified;(b) the RDN is then reduced to first antenna only, via toggling of various switches incorporated inside the RDN, and the measurement of amplitudes and phases at different positions is performed;(c) next, a second antenna only is activated and the procedure is repeated, and then the next one till all participating RDN antennas are tested;(d) the real-time calibration procedure of both amplitudes ratios and phases differences is performed a number of times that is sufficient to reduce via averaging, the impact of the external channel fluctuation between time slots; and the procedure is repeated periodically.
  • 7. A method comprising: receiving radio frequency (RF) signals via a radio distribution network (RDN) having an antenna array of K antennas, the RDN comprising at least one beamformer with k weighting circuits and one RF signal combiner configured to combine signals coming from the antennas feeding the respective beamformer into a combined signal, wherein k is greater than 1 and K is greater than N;conveying the combined signal to a multiple-input-multiple-output (MIMO) receiving system comprising a MIMO baseband module having N branches;generating RDN calibration data, based on both offline and/or real time procedures that eliminate or significantly reduce systematic errors and unpredictable errors introduced during normal operation,wherein the calibration is carried out by:using a given beamformer antenna for receiving, while disconnecting other antennas in the same beamformer;channel estimating the signals received from a serving transmitting station: for each possible phase and gain setting, for each possible switch setting, and for each possible combiner;selecting as an anchor or reference point one of said settings, and comparing the channel estimations for all other selected settings to the anchor's channel estimation;creating a calibration table using a deviation between the anchor setting and other settings; andrepeating the calibration process for all antennas and for all beamformers in the RDN.
  • 8. The method according to claim 7, wherein the calibration table is calculated by: dividing each of the various possible routing's channel estimation measurements by the channel estimation value measured for the anchor setting, resulting in a plurality of complex numbers expressing the power ratio and phase difference between each possible routing setup and the anchor setup.
  • 9. The method according to claim 8, wherein said calibration is carried out several times or periodically and the results are averaged.
  • 10. The method according to claim 9, wherein mobility indication is used for applying weights to said calibration measurements average calculation, and wherein higher mobility values are assigned lower weights to said average process.
  • 11. The method according to claim 9 wherein signal to interference plus noise ratio (SINR) measurements are used for applying weights to said calibration measurements average calculation, and wherein higher SINR values are assigned higher weights to said average process.
  • 12. A method comprising: receiving radio frequency (RF) signals via a radio distribution network (RDN) having an antenna array of K antennas, the RDN comprising at least one beamformer with k weighting circuits and one RF signal combiner configured to combine signals coming from the antennas feeding the respective beamformer into a combined signal, wherein k is greater than 1 and K is greater than N;conveying the combined signal to a multiple-input-multiple-output (MIMO) receiving system comprising a MIMO baseband module having N branches;generating RDN calibration data, based on both offline and/or real time procedures that eliminate or significantly reduce systematic errors and unpredictable errors introduced during normal operation,wherein calibration tables are created by measurement with external test equipment to account for a variation of the phase and gain for each signal as settings of gain and phase are changed when the combiner is bypassed and not bypassed.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part application of U.S. patent application Ser. No. 13/630,146 filed on Sep. 28, 2012, which in turn claims the benefit of U.S. Provisional Patent Application No. 61/652,743, filed on May 29, 2012, U.S. Provisional Patent Application No. 61/657,999, filed on Jun. 11, 2012 and U.S. Provisional Patent Application No. 61/665,592, filed on Jun. 28, 2012; this application is a continuation-in-part application of U.S. patent application Ser. No. 13/776,068 filed on Feb. 25, 2013, which is a continuation-in-part application of U.S. patent application Ser. No. 13/630,146 filed on Sep. 28, 2012, which in turn claims the benefit of U.S. Provisional Patent Application No. 61/652,743, filed on May 29, 2012, U.S. Provisional Patent Application No. 61/657,999, filed on Jun. 11, 2012 and U.S. Provisional Patent Application No. 61/665,592, filed on Jun. 28, 2012; U.S. patent application Ser. No. 13/776,068 further claims benefit from U.S. Provisional Patent Application No. 61/658,015 filed on Jun. 11, 2012, U.S. Provisional Patent Application No. 61/658,009 filed on Jun. 11, 2012, U.S. Provisional Patent Application No. 61/665,600 filed on Jun. 28, 2012 and U.S. Provisional Patent Application No. 61/671,417 filed on Jul. 13, 2012, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (148)
Number Name Date Kind
5732075 Tangemann et al. Mar 1998 A
5915215 Williams et al. Jun 1999 A
5936577 Shoki et al. Aug 1999 A
6046655 Cipolla Apr 2000 A
6101399 Raleigh et al. Aug 2000 A
6163695 Takemura Dec 2000 A
6167286 Ward et al. Dec 2000 A
6215812 Young et al. Apr 2001 B1
6226507 Ramesh et al. May 2001 B1
6259683 Sekine et al. Jul 2001 B1
6321077 Saitoh et al. Nov 2001 B1
6335953 Sanderford et al. Jan 2002 B1
6370378 Yahagi Apr 2002 B1
6377783 Lo et al. Apr 2002 B1
6393282 Iimori May 2002 B1
6697622 Ishikawa et al. Feb 2004 B1
6842460 Olkkonen et al. Jan 2005 B1
6927646 Niemi Aug 2005 B2
6975582 Karabinis et al. Dec 2005 B1
6987958 Lo et al. Jan 2006 B1
7190964 Damnjanovic et al. Mar 2007 B2
7257425 Wang et al. Aug 2007 B2
7299072 Ninomiya Nov 2007 B2
7474676 Tao et al. Jan 2009 B2
7499109 Kim et al. Mar 2009 B2
7742000 Mohamadi Jun 2010 B2
7769107 Sandhu et al. Aug 2010 B2
7898478 Niu et al. Mar 2011 B2
8155613 Kent et al. Apr 2012 B2
8280443 Tao et al. Oct 2012 B2
8294625 Kittinger et al. Oct 2012 B2
8306012 Lindoff et al. Nov 2012 B2
8369436 Stirling-Gallacher Feb 2013 B2
8509190 Rofougaran Aug 2013 B2
8520657 Rofougaran Aug 2013 B2
8588844 Shpak Nov 2013 B2
8666319 Kloper et al. Mar 2014 B2
8744511 Jones et al. Jun 2014 B2
20020024975 Hendler Feb 2002 A1
20020107013 Fitzgerald Aug 2002 A1
20020181426 Sherman Dec 2002 A1
20020181437 Ohkubo et al. Dec 2002 A1
20030153360 Burke et al. Aug 2003 A1
20030186653 Mohebbi et al. Oct 2003 A1
20040063455 Eran et al. Apr 2004 A1
20040081144 Martin et al. Apr 2004 A1
20040125900 Liu et al. Jul 2004 A1
20040142696 Saunders et al. Jul 2004 A1
20040147266 Hwang et al. Jul 2004 A1
20040156399 Eran Aug 2004 A1
20040198292 Smith et al. Oct 2004 A1
20040264504 Jin Dec 2004 A1
20050068230 Munoz et al. Mar 2005 A1
20050075140 Famolari Apr 2005 A1
20050129155 Hoshino Jun 2005 A1
20050147023 Stephens et al. Jul 2005 A1
20050163097 Do et al. Jul 2005 A1
20050245224 Kurioka Nov 2005 A1
20050287962 Mehta et al. Dec 2005 A1
20060092889 Lyons et al. May 2006 A1
20060094372 Ahn et al. May 2006 A1
20060111149 Chitrapu et al. May 2006 A1
20060135097 Wang et al. Jun 2006 A1
20060183503 Jeffrey Goldberg Aug 2006 A1
20060203850 Johnson et al. Sep 2006 A1
20060264184 Li et al. Nov 2006 A1
20060270343 Cha et al. Nov 2006 A1
20060285507 Kinder et al. Dec 2006 A1
20070041398 Benveniste Feb 2007 A1
20070058581 Benveniste Mar 2007 A1
20070097918 Cai et al. May 2007 A1
20070115914 Ohkubo et al. May 2007 A1
20070223380 Gilbert et al. Sep 2007 A1
20080051037 Molnar et al. Feb 2008 A1
20080144737 Naguib Jun 2008 A1
20080238808 Arita et al. Oct 2008 A1
20080240314 Gaal et al. Oct 2008 A1
20080280571 Rofougaran et al. Nov 2008 A1
20090003299 Cave et al. Jan 2009 A1
20090028225 Runyon et al. Jan 2009 A1
20090046638 Rappaport et al. Feb 2009 A1
20090058724 Xia et al. Mar 2009 A1
20090121935 Xia et al. May 2009 A1
20090137206 Sherman et al. May 2009 A1
20090190541 Abedi Jul 2009 A1
20090227255 Thakare Sep 2009 A1
20090239486 Sugar et al. Sep 2009 A1
20090268616 Hosomi Oct 2009 A1
20090285331 Sugar et al. Nov 2009 A1
20090322610 Hants et al. Dec 2009 A1
20090322613 Bala et al. Dec 2009 A1
20100040369 Zhao et al. Feb 2010 A1
20100067473 Cave et al. Mar 2010 A1
20100111039 Kim et al. May 2010 A1
20100172429 Nagahama et al. Jul 2010 A1
20100195560 Nozaki et al. Aug 2010 A1
20100222011 Behzad Sep 2010 A1
20100234071 Shabtay et al. Sep 2010 A1
20100285752 Lakshmanan et al. Nov 2010 A1
20100291931 Suemitsu et al. Nov 2010 A1
20100316043 Doi et al. Dec 2010 A1
20110019639 Karaoguz et al. Jan 2011 A1
20110032849 Yeung et al. Feb 2011 A1
20110032972 Wang et al. Feb 2011 A1
20110085532 Scherzer et al. Apr 2011 A1
20110116489 Grandhi May 2011 A1
20110134816 Liu et al. Jun 2011 A1
20110150050 Trigui et al. Jun 2011 A1
20110151826 Miller et al. Jun 2011 A1
20110205883 Mihota Aug 2011 A1
20110205998 Hart et al. Aug 2011 A1
20110249576 Chrisikos et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110281541 Borremans Nov 2011 A1
20110299437 Mikhemar et al. Dec 2011 A1
20120014377 Joergensen et al. Jan 2012 A1
20120020396 Hohne et al. Jan 2012 A1
20120028671 Niu et al. Feb 2012 A1
20120033761 Guo et al. Feb 2012 A1
20120034952 Lo et al. Feb 2012 A1
20120064838 Miao et al. Mar 2012 A1
20120076229 Brobston et al. Mar 2012 A1
20120115523 Shpak May 2012 A1
20120230380 Keusgen et al. Sep 2012 A1
20120270531 Wright et al. Oct 2012 A1
20120321015 Hansen et al. Dec 2012 A1
20130017794 Kloper et al. Jan 2013 A1
20130079048 Cai et al. Mar 2013 A1
20130094437 Bhattacharya Apr 2013 A1
20130095780 Prazan et al. Apr 2013 A1
20130156120 Josiam et al. Jun 2013 A1
20130170388 Ito et al. Jul 2013 A1
20130208587 Bala et al. Aug 2013 A1
20130208619 Kudo et al. Aug 2013 A1
20130223400 Seo et al. Aug 2013 A1
20130229996 Wang et al. Sep 2013 A1
20130235720 Wang et al. Sep 2013 A1
20130242899 Lysejko et al. Sep 2013 A1
20130242976 Katayama et al. Sep 2013 A1
20130301551 Ghosh et al. Nov 2013 A1
20130343369 Yamaura Dec 2013 A1
20140010089 Cai et al. Jan 2014 A1
20140071873 Wang et al. Mar 2014 A1
20140086077 Safavi Mar 2014 A1
20140086081 Mack et al. Mar 2014 A1
20140098681 Stager et al. Apr 2014 A1
20140185535 Park et al. Jul 2014 A1
20140192820 Azizi et al. Jul 2014 A1
Foreign Referenced Citations (6)
Number Date Country
1 867 177 May 2010 EP
2 234 355 Sep 2010 EP
WO 03047033 Jun 2003 WO
WO 03073645 Sep 2003 WO
WO 2010085854 Aug 2010 WO
WO 2011060058 May 2011 WO
Non-Patent Literature Citations (45)
Entry
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013.
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013.
Office Action issued for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014.
Office Action issued for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014.
Notice of Allowance issued for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014.
Office Action issued for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014.
Office Action issued for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014.
Office Action issued for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014.
Office Action issued for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014.
Office Action issued for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014.
Office Action issued for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014.
Office Action issued for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014.
Office Action issued for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014.
Related Publications (1)
Number Date Country
20140098902 A1 Apr 2014 US
Provisional Applications (7)
Number Date Country
61652743 May 2012 US
61657999 Jun 2012 US
61665592 Jun 2012 US
61658015 Jun 2012 US
61658009 Jun 2012 US
61665600 Jun 2012 US
61671417 Jul 2012 US
Continuation in Parts (3)
Number Date Country
Parent 13630146 Sep 2012 US
Child 14102539 US
Parent 13776068 Feb 2013 US
Child 13630146 US
Parent 13630146 Sep 2012 US
Child 13776068 US