1. Field of the Invention
The present invention is related to power measurement systems, and more specifically to calibration of a non-contact sensor that includes a magnetic field sensor for detecting the current in a wire of a power distribution system.
2. Description of Related Art
A need to measure power consumption in AC line powered systems is increasing due to a focus on energy efficiency for both commercial and residential locations. In order to provide accurate measurements, the characteristics of the load must be taken into account along with the current drawn by the load.
In order to determine current delivered to loads in an AC power distribution system, and in particular in installations already in place, current sensors are needed that provide for easy coupling to the high voltage wiring used to supply the loads, and proper isolation is needed between the power distribution circuits/loads and the measurement circuitry.
Non-contact current sensors provide for easy installation, circuit isolation and other advantages in power measurement systems. However, such sensors may vary in fabrication, installation and application and the relationship between the measured current and the output of the sensor may not be well established.
Therefore, it would be desirable to provide techniques for calibrating non-contact current sensors and systems including such calibration.
The invention is embodied in a calibration method and sensors and systems including calibration circuits and other calibration features that implement the techniques of the present invention.
The method and system select between a calibration mode and a measurement mode in a circuit connected to a non-contact current sensor. In the calibration mode, the system conducts a predetermined DC current in a conductor included in the current sensor and measures the magnitude of a magnetic field generated by the predetermined current using the output of a sensing element within the current sensor. In the measurement mode, the system measures a magnitude of the magnetic field generated by current conducted in a wire passing through the non-contact current sensor using an output of the sensing element and corrects the result in conformity with a result of the measurement made in the calibration mode.
The foregoing and other objectives, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives, and advantages thereof, will best be understood by reference to the following detailed description of the invention when read in conjunction with the accompanying Figures, wherein like reference numerals indicate like components, and:
The present invention encompasses current sensing systems and methods, as well as sensor devices that perform or are adapted for, calibration of a non-contact current sensor by using a voltage sensing conductor to inject a predetermined current in a calibration mode and using the current sensor to obtain a current sensor calibration value. The current may be an AC current or a DC current. In measurement mode, the voltage sensing conductor is used to measure the magnitude and/or the phase of the voltage on a wire inserted in the non-contact current sensor by measuring the electrostatic field generated by the wire. During subsequent measurements of current through a wire inserted in the non-contact current sensor, the output of the current sensor is corrected using the current sensor calibration value. Further, failure to detect an output from the current sensor at a threshold level in response to injection the predetermined current can be used as a sensor failure indication. In other operating modes, an adjustable current can be injected using the voltage sensing conductor and the linearity (current step to sensor output voltage/current step) determined or mapped for the sensor, and also a saturation current level can be determined as a current level at which the output of the current sensor starts to lose linear relationship with the injected current.
Referring now to
Referring now to
The voltage sensor wires 15A from each end of sensor 10A are provided to a selector S1 that is controlled by a control signal measure provided from CPU 100. When control signal measure is asserted, the circuit is in measurement mode, and the voltage sensor wires 15A from each end of sensor 10A are coupled together and provided to an input of voltage measurement circuit 108B, which is an analog circuit that appropriately scales and filters the voltage channel output of the sensor. A zero-crossing detector 109 may be used to provide phase-only information to a central processing unit 100 that performs power calculations, alternatively or in combination with providing an output of voltage measurement circuit to an input of ADC 106. Alternatively, voltage measurement circuit 108B may be omitted and the corresponding output of selector S1 connected directly to ADC 106. When control signal measure is de-asserted, the circuit is in calibration mode, and voltage sensor wires 15A from each end of sensor 10A are coupled to a current source 101 that generates a predetermined calibration current through voltage sensor wire 15A. Also in calibration mode, a current measurement is made to determine an indication of the magnetic field generated by the current passing through voltage sensor wire 15A as indicated by the output of current measurement circuit 108A, which receives the output of the current sensor. Since the predetermined current level generated by current source 101 is known, the output of current measurement circuit 108A provides a scale factor that can be used to correct subsequent measurements of current by current sensor 10A, e.g., the current passing through wire 3. Current source 101 may be a DC current source, so that CPU 100 can use a low-pass filter or integrator algorithm to remove AC noise from the calibration measurement, or alternatively, current source 101 may be an AC current source and a bandpass filter or algorithm can be used to remove other noise and offset from the measurement. The DC calibration measurement may be performed while the current is being passed through wire 3.
An exemplary set of measurements provide illustration of a calibration technique in accordance with the above-described embodiment of the invention. In calibration mode, if the predetermined current level generated by current source 101 is given by ICAL and the output voltage of voltage measurement circuit 108B is given by VCAL, then, as long as sensor 10A is linear and all of the circuits in
VMEAS=IUNK(VCAL/ICAL)
Therefore, unknown current level IUNK can be determined from:
IUNK=K·VMEAS,
where calibration value K=ICAL/VCAL. Further, if in calibration mode VCAL does not exceed a predetermined threshold, the system can indicate a sensor failure, which may be a connection failure in one of wires 15 or voltage sensing conductor 15A, or may be a failure of sensor 17 or the measurement circuit. Further, while the above equations assume linear behavior, current source 101 may be an adjustable current source that in a linearity measuring mode is adjusted according to a control value Adjust, which controls the magnitude of the current injected in voltage sensing conductor 15A when control signal measure is de-asserted. A table of calibration values may be stored and/or coefficients may be determined to form a piecewise linear or other approximation that permits non-linear computation of IUNK from VMEAS. A saturation level may be detected for sensor 10A when increases in the adjustable current level commanded by control value Adjust no longer lead to expected increases in measured voltage level VMEAS. For example, operation of the sensing system may be restricted to current levels that have less than a predetermined error due to non-linearity in the sensor, or the measurement range may extend to levels at which correction has high error due to the measured voltage level VMEAS changing by small fractions of the value expected if sensor 10A were linear.
Once the system is calibrated, when power factor is not taken into account, the instantaneous power used by each branch circuit in a power distribution can be computed as:
PBRANCH=Vrms*Imeas
where Vrms is a constant value, e.g. 115V, and Imeas is a measured rms current value, such as an rms current value computed by the circuit of
PBRANCH=Vrms*Imeas*cos(Φ)
where Φ is a difference in phase angle between the voltage and current waveforms. The output of zero-crossing detector 109 may be compared with the position of the zero crossings in the current waveform generated by current measurement circuit 108A and the time ΔT between the zero crossings in the current and voltage used to generate phase difference Φ from the line frequency (assuming the line frequency is 60 Hz):
Φ=2Π*60*ΔT
In general, the current waveform is not truly sinusoidal and the above approximation may not yield sufficiently accurate results. A more accurate method is to multiply current and voltage samples measured at a sampling rate much higher than the line frequency. The sampled values thus approximate instantaneous values of the current and voltage waveforms and the energy may be computed as:
Σ(Vn*In)
A variety of arithmetic methods may be used to determine power, energy and phase relationships from the sampled current and voltage measurements.
Referring now to
Referring now to
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.
This U.S. patent application is a Continuation of U.S. patent application Ser. No. 13/159,536, filed on Jun. 14, 2012, and claims priority thereto under 35 U.S.C.§120.
Number | Name | Date | Kind |
---|---|---|---|
4005380 | Heilmann et al. | Jan 1977 | A |
4378525 | Burdick | Mar 1983 | A |
4558276 | Comeau et al. | Dec 1985 | A |
5473244 | Libove et al. | Dec 1995 | A |
5867020 | Moore et al. | Feb 1999 | A |
6008634 | Murofushi et al. | Dec 1999 | A |
6522509 | Engel et al. | Feb 2003 | B1 |
6654219 | Romano et al. | Nov 2003 | B1 |
6661239 | Ozick | Dec 2003 | B1 |
6703842 | Itimura et al. | Mar 2004 | B2 |
6708126 | Culler et al. | Mar 2004 | B2 |
6825649 | Nakano | Nov 2004 | B2 |
6940291 | Ozick | Sep 2005 | B1 |
7068045 | Zuercher et al. | Jun 2006 | B2 |
7098644 | Denison | Aug 2006 | B1 |
7148675 | Itoh | Dec 2006 | B2 |
7227348 | Sorenson | Jun 2007 | B2 |
7230413 | Zhang et al. | Jun 2007 | B2 |
7265533 | Lightbody et al. | Sep 2007 | B2 |
7315161 | Zribi et al. | Jan 2008 | B2 |
7330022 | Bowman et al. | Feb 2008 | B2 |
7474088 | Bowman et al. | Jan 2009 | B2 |
7493222 | Bruno | Feb 2009 | B2 |
7546214 | Rivers, Jr. et al. | Jun 2009 | B2 |
7622912 | Adams et al. | Nov 2009 | B1 |
7714594 | Ibuki et al. | May 2010 | B2 |
7719257 | Robarge et al. | May 2010 | B2 |
7719258 | Chen et al. | May 2010 | B2 |
7847543 | Grno | Dec 2010 | B2 |
7990133 | Dockweiler | Aug 2011 | B2 |
20040227503 | Bowman | Nov 2004 | A1 |
20050156587 | Yakymyshyn et al. | Jul 2005 | A1 |
20060087777 | Bruno | Apr 2006 | A1 |
20070058304 | Parker et al. | Mar 2007 | A1 |
20080077336 | Fernandes | Mar 2008 | A1 |
20080079437 | Robarge et al. | Apr 2008 | A1 |
20090105973 | Choi et al. | Apr 2009 | A1 |
20100001715 | Doogue et al. | Jan 2010 | A1 |
20100264944 | Rupert | Oct 2010 | A1 |
20100271037 | Blakely | Oct 2010 | A1 |
20120200285 | Carpenter et al. | Aug 2012 | A1 |
20120200293 | Carpenter et al. | Aug 2012 | A1 |
20120319674 | El-Essawy et al. | Dec 2012 | A1 |
20120319676 | El-Essawy et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
201654106 | Nov 2010 | CN |
WO2009042414 | Apr 2009 | WO |
Entry |
---|
U.S. Appl. No. 13/682,112, filed Nov. 20, 2012, Carpenter, et al. |
U.S. Appl. No. 13/596,658, filed Aug. 28, 2012, El-Essawy, et al. |
U.S. Appl. No. 13/024,199, filed Feb. 9, 2011, Carpenter, et al. |
U.S. Appl. No. 13/024,181, filed Feb. 9, 2011, Carpenter, et al. |
“AC Current sensor with Interface” downloaded from: http://www.electronicspoint.com/ac-current-sensor-interface-t221239.html on Jun. 10, 2011. |
“Smart Current Signature Sensor” downloaded from http://technology.ksc.nasa.gov/successes/SS-Smart-Current-Signal-Snsr.htm on Jun. 10, 2011. |
Dwyer, “A Self-Calibrating Miniature Hall Effect Solution to Gear Tooth Speed Sensing”, downloaded from: http://saba.kntu.ac.ir/eecd/ecourses/instrumentation/projects/reports/speed/toothed%20rotor/toothrotor—files/main.htm on May 24, 2011. |
Valuetesters.com on-line catalog: “non-contact voltage probes”, downloaded from http://valuetesters.com/Voltage-Probe-Non-contact.php on May 24, 2011. |
McKenzie, et al. “Non-contact Voltage Measurement using Electronically Varying Capacitance”, Electronics Letters, Feb. 4, 2010, vol. 46, No. 3, UK. |
Silicon Chip, “Current Clamp Meter Adapter for DMMs”, issue 180, published Sep. 12, 2003. |
Silicon Chip, “Compact 0-80A Automotive Ammeter”, issue 165, pp. 1-12, downloaded from www.siliconchip.com.au/cms/A 03551/article.html Nov. 4, 2010, published Jun. 30, 2002. |
Ziegler, et al., “Current Sensing Techniques: A Review”, IEEE Sensors Journal, Apr. 2009, pp. 354-376 vol. 9, No. 4. Piscataway, NJ. |
Notice of Allowance in U.S. Appl. No. 13/159,536 mailed on Apr. 8, 2013. |
Number | Date | Country | |
---|---|---|---|
20130241529 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13159536 | Jun 2011 | US |
Child | 13890838 | US |