The disclosure is related to consumer goods and, more particularly, to systems, products, features, services, and other items directed to media playback or some aspect thereof.
Technological advancements have increased the accessibility of music content, as well as other types of media, such as television content, movies, and interactive content. For example, a user can access audio, video, or both audio and video content over the internet through an online store, an internet radio station, a music service, a movie service, and so on, in addition to the more traditional avenues of accessing audio and video content. Beyond the increased accessibility of music content, demand for high quality rendering of music content for the user to enjoy anytime, everywhere has also increased.
Features, aspects, and advantages of the presently disclosed technology are better understood with regard to the following description, appended claims, and accompanying drawings where:
In addition, the drawings are for the purpose of illustrating example embodiments, but it is understood that the present disclosure is not limited to the arrangements and instrumentality shown in the drawings.
I. Overview
Listening to audio content (e.g., music, talk radio, books, the audio from television, etc.) out loud may be a social activity that involves family, friends, or both. For example, in a household, people may play music out loud at parties and other social gatherings. In such an environment, people may wish to play the music in multiple listening zones simultaneously, such that the music in each listening zone may be synchronized, without audible echoes or glitches. Such an experience may be further enriched when people may browse audio sources, add a music track to a playback queue, learn more about a music track (such as track title or track artists), or view what music track is next in the playback queue. Listening to audio content out loud may also be an individual experience. For example, an individual may play music out loud for themselves in the morning before work, in the evening during dinner, or at other times throughout the day at home, work, or on the road. For these individual experiences, the individual may choose to either use headphones, or limit the out loud playback of audio content to a single zone or area.
In the case the user is listening to audio content out loud, the performance of an audio system may noticeably depend on an acoustic behavior of a room or area. As such, within each listening zone, the listening experience of the user may be further enriched by adjusting playback volumes and equalizations such that the listening experience is optimized at certain locations within the listening zone. For instance, in a home theater listening zone, the audio playback may be optimized specifically for people sitting on couch in front of a television and enjoying a movie. In another instance, in a porch or backyard listening zone, the audio playback may be optimized such that everyone in the vicinity may enjoy a comparable listening experience.
In one case, such a system may include audio players, often referred to as zone players or players, and controllers, which may also be a player. The controllers may be used to control the system, and may include capabilities for browsing and selecting audio content for playback, viewing and editing audio content in one or more playback queues, or grouping and ungrouping zone players into one or more listening zones, etc. In a sense, the system may operate as a distributed system such that each controller has full control over the entire system, and each player has the ability to play audio content from the either a same audio source or a different audio source as another player. The controllers may further be configured to operate as a calibration device for the system.
In an example embodiment of the present application, a system is provided. The system includes at least one playback device rendering audio content, a microphone configured to detect the rendered audio content from a first location relative to the at least one playback device, a signal processor configured to modulate the detected audio content with a modulation signal having a modulation frequency, and a processing unit in communication with the at least one playback device and signal processor. The processing unit is configured to receive the modulated audio content, demodulate the modulated audio content, and determine an equalization setting for the at least one playback device to render audio content based on an analysis of the demodulated audio content.
In another example embodiment of the present application, a device for playback calibration of at least one playback device is provided. The device includes a microphone configured to detect audio content rendered by the at least one playback device, and a signal processor configured to modulate the detected audio content for transmission to a processing unit configured to determine an equalization setting for the at least one playback device.
In yet another example embodiment of the present application, a method is provided for determining a first distance and direction of a playback device, causing the playback device to render audio content, receiving a first modulated version of the rendered audio content, and determining an equalization setting of the playback device based on the first modulated version of the rendered audio content, and the first distance and direction of the playback device.
With device playback calibration implemented on the system, as described above, the system may provide optimized playback of audio content by playback devices, thereby enriching the listening experience of users.
II. An Example Operating Environment
Referring now to the drawings, in which like numerals can refer to like parts throughout the figures,
By way of illustration, system environment 100 represents a home presently configured with multiple zones, though the home could have been configured with only one zone. Each zone in the home, for example, may represent a different room or space, such as an office, bathroom, bedroom, kitchen, dining room, family room, home theater room, utility or laundry room, and patio. A single zone might also include multiple rooms if so configured. One or more of zone players 102-124 are shown in each respective zone of the home. A zone player 102-124, also referred to as a playback device, multimedia unit, speaker, player, and so on, provides audio, video, and/or audiovisual output. Controller 130 provides control to system environment 100. Controller 130 may be fixed to a zone, or alternatively, mobile such that it can be moved about the zones. System environment 100 may also include more than one controller 130. System environment 100 illustrates an example whole house audio system, though it is understood that the technology described herein is not limited to its particular place of application or to an expansive system like a whole house audio system environment 100 of
A. Example Zone Players
Referring back to
By way of illustration, SONOS, Inc. of Santa Barbara, Calif. presently offers for sale zone players referred to as a “PLAY:5,” “PLAY:3,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future zone players can additionally or alternatively be used to implement the zone players of example embodiments disclosed herein. Additionally, it is understood that a zone player is not limited to the particular examples illustrated in
B. Example Controllers
In some embodiments, if more than one controller is used in system environment 100, then each controller may be coordinated to display common content, and may all be dynamically updated to indicate changes made from a single controller. Coordination might happen, for instance, by a controller periodically requesting a state variable directly or indirectly from one or more zone players; the state variable may provide information about system 100, such as current zone group configuration, what is playing in one or more zones, volume levels, and other items of interest. The state variable may be passed around on data network 128 between zone players (and controllers, if so desired) as needed or as often as programmed.
In addition, an application running on any network-enabled portable device, such as an iPhone™, iPad™, Android™ powered phone, or any other smart phone or network-enabled device can be used as controller 130. An application running on a laptop or desktop PC or Mac can also be used as controller 130. Such controllers may connect to system environment 100 through an interface with data network 128, a zone player, a wireless router, or using some other configured connection path. Example controllers offered by SONOS, Inc. of Santa Barbara, Calif. include a “Controller 200,” “Sonos CONTROL,” “Sonos® Controller for iPhone,” “Sonos® Controller for iPad,” Sonos® Controller for Android, “Sonos® Controller for Mac or PC.”
C. Example Data Connection
Zone players 102-124, and 152-156 of
In some embodiments, connecting any of the zone players 102-124, and 152-156 or some other connecting device, to a broadband router, can create data network 128. Other zone players 102-124, and 152-156 can then be added wired or wirelessly to the data network 128. For example, a zone player (e.g., any of zone players 102-124, and 152-156) can be added to the system environment 100 or home theater environment 150 by simply pressing a button on the zone player itself (or perform some other action), which enables a connection to be made to data network 128. The broadband router can be connected to an Internet Service Provider (ISP), for example. The broadband router can be used to form another data network within the system configuration 100, which can be used in other applications (e.g., web surfing). Data network 128 can also be used in other applications, if so programmed. An example, second network may implement SonosNet protocol, developed by SONOS, Inc. of Santa Barbara. SonosNet represents a secure, AES-encrypted, peer-to-peer wireless mesh network. Alternatively, in certain embodiments, the data network 128 is the same network, such as a traditional wired or wireless network, used for other applications in the household.
D. Example Zone Configurations
A particular zone can contain one or more zone players. For example, the family room of
In some embodiments, if a zone contains two or more zone players, such as the two zone players 106 and 108 in the family room, then the two zone players 106 and 108 can be configured to play the same audio source in synchrony, or the two zone players 106 and 108 can be paired to play two separate sounds in left and right channels, for example. In other words, the stereo effects of a sound can be reproduced or enhanced through the two zone players 106 and 108, one for the left sound and the other for the right sound. In certain embodiments, paired zone players (also referred to as “bonded zone players”) can play audio in synchrony with other zone players in the same or different zones.
In some embodiments, two or more zone players can be sonically consolidated to form a single, consolidated zone player. A consolidated zone player (though made up of multiple, separate devices) can be configured to process and reproduce sound differently than an unconsolidated zone player or zone players that are paired, because a consolidated zone player will have additional speaker drivers from which sound can be passed. The consolidated zone player can further be paired with a single zone player or yet another consolidated zone player. Each playback device of a consolidated playback device is preferably set in a consolidated mode.
According to some embodiments, one can continue to do any of: group, consolidate, and pair zone players, for example, until a desired configuration is complete. The actions of grouping, consolidation, and pairing are preferably performed through a control interface, such as using controller 130, and not by physically connecting and re-connecting speaker wire, for example, to individual, discrete speakers to create different configurations. As such, certain embodiments described herein provide a more flexible and dynamic platform through which sound reproduction can be offered to the end-user.
E. Example Audio Sources
In some embodiments, each zone can play from the same audio source as another zone or each zone can play from a different audio source. For example, someone can be grilling on the patio and listening to jazz music via zone player 124, while someone is preparing food in the kitchen and listening to classical music via zone player 102. Further, someone can be in the office listening to the same jazz music via zone player 110 that is playing on the patio via zone player 124. In some embodiments, the jazz music played via zone players 110 and 124 is played in synchrony. Synchronizing playback amongst zones allows for someone to pass through zones while seamlessly (or substantially seamlessly) listening to the audio. Further, zones can be put into a “party mode” such that all associated zones will play audio in synchrony.
Sources of audio content to be played by zone players 102-124, and 152-156 are numerous. In some embodiments, music on a zone player itself may be accessed and a played. In some embodiments, music from a personal library stored on a computer or networked-attached storage (NAS) may be accessed via the data network 128 and played. In some embodiments, internet radio stations, shows, and podcasts can be accessed via the data network 128. Music or cloud services that let a user stream and/or download music and audio content can be accessed via the data network 128. Further, music can be obtained from traditional sources, such as a microphone, a turntable or CD player, via a line-in connection to a zone player, for example. Audio content can also be accessed using a different protocol, such as AirPlay™ which is a wireless technology by Apple, Inc., for example. Audio content received from one or more sources can be shared amongst the zone players 102-124, and 152-156 via data network 128 and/or controller 130. The above-disclosed sources of audio content are referred to herein as network-based audio information sources. However, network-based audio information sources are not limited thereto.
In some embodiments, the example home theater zone players 116, 118, 120 are coupled to an audio information source such as a television 132. In some examples, the television 132 is used as a source of audio for the home theater zone players 116, 118, 120, while in other examples audio information from the television 132 can be shared with any of the zone players 102-124 in the audio system 100.
III. Zone Players
Referring now to
In some embodiments, network interface 402 facilitates a data flow between zone player 400 and other devices on a data network 128. In some embodiments, in addition to getting audio from another zone player or device on data network 128, zone player 400 may access audio directly from the audio source, such as over a wide area network or on the local network. In some embodiments, the network interface 402 can further handle the address part of each packet so that it gets to the right destination or intercepts packets destined for the zone player 400. Accordingly, in certain embodiments, each of the packets includes an Internet Protocol (IP)-based source address as well as an IP-based destination address.
In some embodiments, network interface 402 can include one or both of a wireless interface 404 and a wired interface 406. The wireless interface 404, also referred to as an RF interface, provides network interface functions for the zone player 400 to wirelessly communicate with other devices (e.g., other zone player(s), speaker(s), receiver(s), component(s) associated with the data network 128, and so on) in accordance with a communication protocol (e.g., any of the wireless standards IEEE 802.11a, 802.11b, 802.11g, 802.11n, or 802.15). Wireless interface 404 may include one or more radios. To receive wireless signals and to provide the wireless signals to the wireless interface 404 and to transmit wireless signals, the zone player 400 includes one or more antennas 420. The wired interface 406 provides network interface functions for the zone player 400 to communicate over a wire with other devices in accordance with a communication protocol (e.g., IEEE 802.3). In some embodiments, a zone player includes both of the interfaces 404 and 406. In some embodiments, a zone player 400 includes only the wireless interface 404 or the wired interface 406.
In some embodiments, the processor 408 is a clock-driven electronic device that is configured to process input data according to instructions stored in memory 410. The memory 410 is data storage that can be loaded with one or more software module(s) 414, which can be executed by the processor 408 to achieve certain tasks. In the illustrated embodiment, the memory 410 is a tangible machine-readable medium storing instructions that can be executed by the processor 408. In some embodiments, a task might be for the zone player 400 to retrieve audio data from another zone player or a device on a network (e.g., using a URL or some other identifier). In some embodiments, a task might be for the zone player 400 to send audio data to another zone player or device on a network. In some embodiments, a task might be for the zone player 400 to synchronize playback of audio with one or more additional zone players. In some embodiments, a task might be to pair the zone player 400 with one or more zone players to create a multi-channel audio environment. Additional or alternative tasks can be achieved via the one or more software module(s) 414 and the processor 408.
The audio processing component 412 can include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor, and so on. In some embodiments, the audio processing component 412 may be part of processor 408. In some embodiments, the audio that is retrieved via the network interface 402 or the microphone 422 is processed and/or intentionally altered by the audio processing component 412. Further, the audio processing component 412 can produce analog audio signals. The processed analog audio signals are then provided to the audio amplifier 416 for play back through speakers 418. In addition, the audio processing component 412 can include necessary circuitry to process analog or digital signals as inputs to play from zone player 400, send to another zone player on a network, or both play and send to another zone player on the network. An example input includes a line-in connection (e.g., an auto-detecting 3.5 mm audio line-in connection).
The audio amplifier 416 is a device(s) that amplifies audio signals to a level for driving one or more speakers 418. The one or more speakers 418 can include an individual transducer (e.g., a “driver”) or a complete speaker system that includes an enclosure including one or more drivers. A particular driver can be a subwoofer (for low frequencies), a mid-range driver (middle frequencies), and a tweeter (high frequencies), for example. An enclosure can be sealed or ported, for example. Each transducer may be driven by its own individual amplifier.
A commercial example, presently known as the PLAY:5, is a zone player with a built-in amplifier and speakers that is capable of retrieving audio directly from the source, such as on the internet or on the local network, for example. In particular, the PLAY:5 is a five-amp, five-driver speaker system that includes two tweeters, two mid-range drivers, and one woofer. When playing audio content via the PLAY:5, the left audio data of a track is sent out of the left tweeter and left mid-range driver, the right audio data of a track is sent out of the right tweeter and the right mid-range driver, and mono bass is sent out of the subwoofer. Further, both mid-range drivers and both tweeters have the same equalization (or substantially the same equalization). That is, they are both sent the same frequencies, just from different channels of audio. Audio from internet radio stations, online music and video services, downloaded music, analog audio inputs, television, DVD, and so on, can be played from the PLAY:5.
IV. Controller
Referring now to
Controller 500 is provided with a screen 502 and an input interface 514 that allows a user to interact with the controller 500, for example, to navigate a playlist of many multimedia items and to control operations of one or more zone players. The input interface 514 may be coupled to a microphone 516 for capturing audio signals, such as audio content or voice commands as control inputs. The screen 502 on the controller 500 can be an LCD screen, for example. The screen 500 communicates with and is commanded by a screen driver 504 that is controlled by a microcontroller (e.g., a processor) 506. The memory 510 can be loaded with one or more application modules 512 that can be executed by the microcontroller 506 with or without a user input via the user interface 514 to achieve certain tasks. In some embodiments, an application module 512 is configured to facilitate grouping a number of selected zone players into a zone group and synchronizing the zone players for audio play back. In some embodiments, an application module 512 is configured to control the audio sounds (e.g., volume) of the zone players in a zone group. In operation, when the microcontroller 506 executes one or more of the application modules 512, the screen driver 504 generates control signals to drive the screen 502 to display an application specific user interface accordingly.
The controller 500 includes a network interface 508 that facilitates wired or wireless communication with a zone player. In some embodiments, the commands such as volume control and audio playback synchronization are sent via the network interface 508. In some embodiments, a saved zone group configuration is transmitted between a zone player and a controller via the network interface 508. The controller 500 can control one or more zone players, such as 102-124 of
It should be noted that other network-enabled devices such as an iPhone®, iPad® or any other smart phone or network-enabled device (e.g., a networked computer such as a PC or Mac®) can also be used as a controller to interact or control zone players in a particular environment. In some embodiments, a software application or upgrade can be downloaded onto a network-enabled device to perform the functions described herein.
In certain embodiments, a user can create a zone group (also referred to as a bonded zone) including at least two zone players from the controller 500. The zone players in the zone group can play audio in a synchronized fashion, such that all of the zone players in the zone group play back an identical audio source or a list of identical audio sources in a synchronized manner such that no (or substantially no) audible delays or hiccups could be heard. Similarly, in some embodiments, when a user increases the audio volume of the group from the controller 500, the signals or data of increasing the audio volume for the group are sent to one of the zone players and causes other zone players in the group to be increased together in volume.
A user via the controller 500 can group zone players into a zone group by activating a “Link Zones” or “Add Zone” soft button, or de-grouping a zone group by activating an “Unlink Zones” or “Drop Zone” button. For example, one mechanism for ‘joining’ zone players together for audio play back is to link a number of zone players together to form a group. To link a number of zone players together, a user can manually link each zone player or room one after the other. For example, assume that there is a multi-zone system that includes the following zones: Bathroom, Bedroom, Den, Dining Room, Family Room, and Foyer.
In certain embodiments, a user can link any number of the six zone players, for example, by starting with a single zone and then manually linking each zone to that zone.
In certain embodiments, a set of zones can be dynamically linked together using a command to create a zone scene or theme (subsequent to first creating the zone scene). For instance, a “Morning” zone scene command can link the Bedroom, Office, and Kitchen zones together in one action. Without this single command, the user would need to manually and individually link each zone. The single command might include a mouse click, a double mouse click, a button press, a gesture, or some other programmed action. Other kinds of zone scenes can be programmed.
In certain embodiments, a zone scene can be triggered based on time (e.g., an alarm clock function). For instance, a zone scene can be set to apply at 8:00 am. The system can link appropriate zones automatically, set specific music to play, and then stop the music after a defined duration. Although any particular zone can be triggered to an “On” or “Off” state based on time, for example, a zone scene enables any zone(s) linked to the scene to play a predefined audio (e.g., a favorable song, a predefined playlist) at a specific time and/or for a specific duration. If, for any reason, the scheduled music failed to be played (e.g., an empty playlist, no connection to a share, failed Universal Plug and Play (UPnP), no internet connection for an internet Radio station, and so on), a backup buzzer can be programmed to sound. The buzzer can include a sound file that is stored in a zone player, for example.
V. Playback Device Calibration
As mentioned above, the performance of an audio system may depend on the acoustic behaviors of a room or area in which the audio system is operating, and accordingly, the listening experience of a user may be further enriched by adjusting playback volumes and equalizations such that the listening experience is optimized at certain locations within the listening environment. In some audio systems, the user may be provided with varying degrees of control over the equalization (such as bass, treble, mid controls or subwoofer sub level controls) to achieve a desired equalization of the audio playback in the particular listening environment. As audio systems become more complex with more specialized speakers, the user may benefit from automatic or guided calibrations, after which the user may further adjust the settings to individual taste.
In one example, a calibration device with a microphone may be utilized for the automatic or guided calibrations of the audio system. In this case, the user may position the calibration device at different locations within a playback environment. At each of the positions, the audio system may render audio content for detection by the calibration device microphone at the location, and a computing device may be configured to then process the detected audio content and generate an optimized equalization setting for audio playback by the audio system playback in the playback environment. The calibration process using the calibration device with the microphone is discussed in further detail below in connection to
In addition, for the method 600 and other processes and methods disclosed herein, the flowchart shows functionality and operation of one possible implementation of present embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as computer-readable media that stores data for short periods of time like register memory, processor cache and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the method 600 and other processes and methods disclosed herein, each block in
At action block 602, the method 600 involves initiating calibration for a playback device or playback system. For purposes of illustration, a scenario may involve a user calibrating the audio system in the playback environment 150 shown in
In one example, the user may initiate playback calibration via a controller, such as the controllers 130, 300, or 500 previously discussed. As mentioned above, the controller may be a smart phone, such as an iPhone™ or Android™ powered phone, or any other or network-enabled device, such as an iPad™. In another example, the controller may also be the calibration device with microphone discussed above. Further, due to a readily available user interface and processing capabilities, the smart phone or network-enabled device may also be configured to guide the user through the calibration process. For instance, a software application operating on a smart phone may provide a comprehensive calibration process, including prompting the user for necessary actions on the part of the user and providing audio content as test signals for detection. The smart phone may further be configured to perform the data processing and/or signal analysis on the detected audio content for playback calibration.
In one example, the device may prompt the user to initiate device calibration after each time the device or system has been disconnected, which may indicate that the device or system has relocated. In yet another example, the device may prompt the user to initiate device calibration after the user requests a change in preset equalization. For instance, the user may have previously selected a preset equalization for “Classical Music,” and has selected to change the preset equalization to “Jazz.” In this case, the user may be offered a choice between creating a new calibration setting for “Jazz” in the playback environment or having the system automatically adjust the equalization for “Jazz,” based on a previous calibration performed for “Classical Music.”
At action block 604, the method 600 involves locating or relocating the calibration device in the playback environment. In one example, the device calibration may be a guided process such that the user may be prompted to move the calibration device to a specific location within the playback environment. For example, referring to
In another example, the user may be seated on the couch 158 at location C when initiating the calibration process. In one instance, the user may wish to calibrate the system to optimize the audio experience for someone sitting exactly where he/she is. In this instance, the calibration device may be configured to store the location of location C in the playback environment before proceeding with the playback calibration of the playback device or system.
At action block 606, the method 600 involves detecting audio content rendered by the playback device or system. In one example, the audio content rendered for playback calibration may be a favorite track selected by the user. In another example, the audio content may be a series of incremental frequencies spanning the audible frequency range. In one case, the audio content may be provided to the playback device by the calibration device.
In one case in which calibration was initiated for the entire audio system or a subgroup of playback devices in the system, each of the playback devices being calibrated may render audio content all at the same time for the calibration device microphone to detect from a predetermined location. In one example, calibration for a subgroup of playback devices 116, 120, and 118 may involve each playback device rendering audio content at the same time. In another case in which calibration was initiated for the entire audio system or a subgroup of playback devices in the system, audio content may be rendered sequentially by each playback device being calibrated, such that the calibration microphone may detect individually audio content rendered by each individual playback device from the predetermined location. In one example, calibration for the subgroup of playback device 116, 120, and 118 may involve playback device 116 rendering audio content first, followed by playback device 120 rendering audio content upon completion of the rendering of audio content by playback device 116, and further followed by playback device 118 rendering audio content upon completion of the rendering of audio content by playback device 120. In one instance, each of the playback devices 116, 120, and 118 may render the same audio content to provide a consistent frequency response spectrum for analysis.
At action block 608, the method 600 involves determining equalization adjustments based on an analysis of the detected audio content. In one example, the analysis of the detected audio content may involve evaluating the frequency response spectrum of the detected audio content. The evaluation of the frequency response spectrum of the detected audio content may include consideration for the capabilities and specializations of the playback device rendering the detected audio content. For example, the frequency response spectrum of detected audio content rendered by the subwoofer 152 may include stronger low-frequency responses and weaker high-frequency responses.
In addition to the capabilities and specializations of the playback device rendering the detected audio content, the evaluation of the frequency response spectrum of the detected audio content may also include considerations for a distance and direction of the playback device from the calibration device. For example, if the calibration device is located at location A, the calibration may anticipate stronger signal strength represented in the frequency response spectrum of detected audio content rendered by playback device 116 than that of the frequency spectrum of detected audio content rendered by playback device 118 by virtue of playback device 116 being closer to the calibration device at location A than playback device 118.
Based on the analyses of the frequency responses of the detected audio content, corresponding equalization adjustments for each playback device being calibrated may be determined. The equalization adjustments may indicate specific frequencies that are to be amplified or attenuated when being rendered by the corresponding playback device, such that the audio content rendered by the corresponding playback device after the adjustments will have a frequency response spectrum substantially matching a desired frequency response spectrum. In one case, the desired frequency response spectrum may be representative of a preset equalization setting, such as “Jazz” or “Classical Music,” as previously mentioned.
At decision block 610, the method 600 involves determining whether equalization adjustments should be made. As discussed above, the equalization adjustments may indicate frequency amplifications or attenuations by a corresponding playback device such that the frequency response spectrum of audio content rendered by the corresponding playback device will substantially match that of the desired frequency response spectrum. In one example, the determined equalization adjustments may indicate a number of frequencies or frequency ranges that are to be amplified, and another number of frequencies or frequency ranges that are to be attenuated. In this case, the method 600 may determine at decision block 610 that equalization adjustments are to be made, and may proceed to action block 612.
At action block 612, the method 600 involves adjusting the equalization settings of the one or more playback devices being calibrated. As previously discussed, a system or subgroup of playback device may be calibrated as a whole, or as individual playback devices. Accordingly, the adjustment of the equalization settings may be performed every time a playback device has rendered audio content for detection and analysis by the calibration device, or only after each playback device in the system or subgroup being calibrated has rendered audio content for detection and analysis.
In a further case, the equalization settings may be adjusted first individually, and then as a complete system or subgroup of playback devices. In other words, each playback device may first be calibrated independently, before fine-tuning of equalization settings for the playback devices in the system or subgroup as a whole, to account for potential acoustic interferences between the different playback devices in the system or subgroup.
Once the determined equalization adjustments have been made at the corresponding playback devices, the playback devices may render audio content for further detection and analysis as described before in reference to blocks 606, 608, and 610. The loop of blocks 606, 608, 610, and 612 may be continued until, at decision block 610, the method 600 determines that the frequency response spectrum of audio content rendered by the corresponding playback device substantially matches that of the desired frequency response, and accordingly that no further equalization adjustments are necessary. In this case, the method 600 may proceed to decision block 614.
At decision block 614, the method 600 involves determining whether the calibration device should be relocated to another location for further calibration. As discussed above, the calibration process may have been initiated to optimize the movie audio experience of viewers seated on the couch 158 of
At action block 616, the method 600 involves completing the calibration process for the system, subgroup of playback devices, or individual playback device. In one case, the determined calibration settings for each calibrated playback device may be stored on the calibration device. In another case, the determined calibration settings for each calibrated playback device may be transmitted to each corresponding playback device for local storage. In one instance, the determined calibration settings may be transmitted to the playback device or system wirelessly according to a wireless communication protocol previously discussed.
In a real world application, the calibration process may take no longer than a few minutes and would not need to be repeated unless significant changes are made to the room arrangement. Further, as discussed previously, the calibration process is intended to provide the user with a good system equalization starting point, from which the user can make further manual adjustment according to personal preferences.
VI. Microphone Device for Playback Device Calibration
As discussed previously, a smart phone, such as an iPhone™ or Android™ powered phone, or any other or network-enabled device, such as an iPad™ may be utilized as a calibration device due to the available user interface and data processing capabilities. In many cases, the smart phone or network-enabled device may also include a built-in microphone which may be configured to detect audio content rendered for the purpose of playback calibrations. Further, as applied towards a SONOS system as previously discussed, smart phones may already be utilized as controllers, and as such may further be configured to be used as a calibration device with minimal hassle or inconvenience to a user. In the following discussion, the term “smart phone” will be used to represent any network-enabled device capable of being utilized as a controller for an audio system.
In one case, the performance of the playback calibration method discussed above may depend on the consistency of a frequency responses and frequency sensitivities of a microphone used to detect audio content for calibration purposes. In one case, consistency of frequency responses and sensitivities may allow the playback calibration process to accommodate for particular audio content detection characteristics of the microphone. For instance, for optimal playback calibration of low-mid frequency audio rendering by a playback device, consistent frequency responses within the range of around 30 Hz to 1 kHz may be beneficial. In another instance, a consistent frequency response within the range of around 30 Hz to beyond 10 kHz may benefit playback calibration of the full audible frequency range rendering by a playback device. In some cases, however, built-in microphones on smart phones do not have consistent frequency responses and sensitivities for optimal playback calibration.
In one example, a calibration microphone having consistent frequency response and sensitivities within the desires frequency range may be provided for playback calibration. In one example, the calibration microphone may be coupled to the smart phone via the audio input jack of the smart phone. Smart phones, however, may be generally optimized for speech, and may accordingly be configured to filter out frequencies below 200 Hz, thereby filtering out a portion of the low-frequency audio content which may constitute an important component of popular music, and for which playback calibration may be applicable. On the other hand, the frequency response range of the smart phone audio input jack may extend up to around 10 kHz. In the application of low-mid audio frequency calibration, this leaves the frequency range of around 1 kHz to around 10 kHz unused and available. In one case, one or more frequencies within this available range may be suitably utilized, as will be discussed below.
In one example, the microphone 702 may be required to have a certain degree of frequency response and sensitivity consistency. In one case, as discussed above, the microphone 702 may be required to have a consistent frequency response within a range of 30 Hz to 1 kHz, such that audio content within the range of frequencies may be detected consistently.
At block 752, the method 750 involves detecting audio content rendered by the playback device being calibrated. Continuing with the example above relating to calibration of low-mid frequency range playback, the microphone 702 of the microphone device 700 may have a consistent, or at least predictable, frequency response within the frequency range of 30 Hz to 1 kHz. As such, the frequency components of the rendered audio content within the low-mid frequency range may be sufficiently detected by the microphone 702.
At block 754, the method 750 involves processing the detected audio content. Referring back to
Also shown in
After the audio content has been detected by the microphone 702 and processed by the signal processor 704, the modulator 710 may be configured to modulate the audio content for output. As discussed previously, frequency response ranges for the audio input jacks of smart phones may be in the 200 Hz to 10 kHz range. Continuing with the low-mid frequency playback calibration example, the available frequency range of the audio input jack may be in the range of around 1 kHz to around 10 kHz. In this case, the detected and preprocessed mid-low audio frequency may then be modulated up into a frequency range within the available 1 kHz to 10 kHz range for transmission to the smart phone via the audio input jack. For instance, the 30 Hz to 1 kHz audio content may be modulated up into the 3 kHz to 5 kHz range, and provided to the smart phone via the audio input jack.
In one instance, the modulation may be performed by multiplying the preprocessed audio content by a modulation signal in the time-domain. In one case, the modulation frequency of the modulation signal may be 4 kHz, such that content in the pre-modulated 30 Hz to 1 kHz frequency spectrum may now exist within a pair of sidebands centered on 4 kHz. In other words, the audio content may now exist between 4 kHz and 5 kHz, as well as between 4 kHz and 3 kHz. The presence of both sidebands may be beneficial by way of providing signal duplicity, such that frequency response variation may be adequately corrected if necessary.
In one example, the modulation signal used for time-domain multiplication may be provided by a circuit of analog switches and operational amplifiers included on the microphone device 700. In another example, the modulation signal may be provided by the smart phone. As discussed above, the microphone device may be connected to the smart phone via the audio input jack on the smart phone. In many smart phones, the audio input jack may also be configured to be an audio output jack of the smart phone. As such, the smart phone may be configured to provide the modulation signal to the calibration microphone device via the same audio input/output jack.
In addition, depending on the playback frequency range being calibrated, different modulation frequencies may be appropriate. In such a case, the smart phone being utilized as the calibration device may further be configured to determine the proper modulation frequency for playback calibration for a certain frequency range, and accordingly provide the modulation signal having the determined modulation frequency for multiplying the audio content by. Along similar lines, different smart phones may have different input frequency response ranges. As such, the modulation frequency may further be determined based on the input frequency range of the smart phone. After the preprocessed audio content has been modulated, the modulated audio content may then be provided to the smart phone
At block 758, the method 700 may involve providing the modulated audio content for calibration. As indicated above, the modulated audio content may be provided to the smart phone via the audio input jack of the smart phone. The smart phone may be configured to, upon receiving the modulated audio content, further modulate the audio content to effectively demodulate the audio content, thereby effectively generating the originally detected audio content. In the mid-low audio frequency example above, the smart phone may be configured to receive the detected audio content, which has been modulated up to the 3 kHz to 5 kHz range from the 30 Hz to 1 kHz range, and further modulate the received audio content back down to the 30 Hz to 1 kHz range. In one case, modulating the received audio content back down to the 30 Hz to 1 kHz range may be performed by multiplying the received audio content by the same 4 kHz modulation signal used to modulate the audio content previously. The smart phone may then proceed to execute the relevant playback calibration algorithms and processes discussed in the previous section.
VII. Example Signal Processing for Bass Playback Calibration
To further illustrate the application of a calibration microphone device such as the microphone device 700 of
In a further example, the power supply 812 may be configured to power the signal processor 806 and modulator 808. In one case, the calibration microphone device 800 may be powered by the smart phone via the audio plug 810. In this case, if the modulation signal is provided by the smart phone, as previously discussed, the power signal may be a rectified version of the modulation signal, and the power supply 812 may not be necessary.
Also shown in
Signal path 811 represents the transmission of the various signals from the smart phone to the calibration microphone device 800 via the audio plug 810. In one example, if the modulation signal is provided by the smart phone, signal path 811 may provide the transmission of the modulation signal to the modulator 808. In another example, as discussed above, the modulation signal from the smart phone may be rectified and used to power components. Further, signal path 811 may provide the transmission of any control inputs from the smart phone to control the calibration microphone device.
The second in the series of example audio content signals 830 is an illustrative modulation signal 831 received from the smart phone via signal path 811. As shown, the modulation signal 831 may be in the form of square waves having a higher frequency than the audio signal 837. The third in the series of example audio content signals 830 is an illustrated modulated audio signal 839 produced by the multiplication of the audio signal 837 by the modulation signal 831. The modulation audio signal 839 may then be provided by the modulator 808 to the audio plug 810 via the signal path 809. As shown, the modulated audio signal 839 may be in the form of a square wave enveloped within a bipolar sine wave. A zoomed-in view 832 of the modulated audio signal 839 provides an illustration of the enveloped square wave.
As previously discussed, the modulated audio signal 839 may be the audio signal received by the smart phone via the input jack of the smart phone, and may further be demodulated and processed for playback calibration of the device rendering the audio signal 837 detected by the microphone 802.
As shown, the audio signal 837 may have a wavelength of 25 milliseconds, and therefore has a frequency of 40 Hz. The audio signal 837 may then be represented in the frequency domain as audio signal 867. Similarly, the modulation signal 831 may have a wavelength of 0.25 milliseconds, and therefore has a frequency of 4 kHz. The modulation signal 831 may then be represented in the frequency domain as modulation signal 861.
Further, the modulated audio signal 839 may be represented in the frequency domain as modulated audio signal 869. As shown, the, the resulting frequency domain modulated audio signal by convolving the audio signal 867 and modulation signal 861 results in the two side bands of 4.96 kHz and 4.04 kHz, centered on the modulation signal frequency of 4 kHz as previously discussed.
VIII. Conclusion
As discussed above, systems and methods are provided for device playback calibration such that the system may provide optimized playback of audio content by playback devices, thereby enriching the listening experience of users.
In an example embodiment of the present application, a system is provided. The system includes at least one playback device rendering audio content, a microphone configured to detect the rendered audio content from a first location relative to the at least one playback device, a signal processor configured to modulate the detected audio content with a modulation signal having a modulation frequency, and a processing unit in communication with the at least one playback device and signal processor. The processing unit is configured to receive the modulated audio content, demodulate the modulated audio content, and determine an equalization setting for the at least one playback device to render audio content based on an analysis of the demodulated audio content.
In another example embodiment of the present application, a device for playback calibration of at least one playback device is provided. The device includes a microphone configured to detect audio content rendered by the at least one playback device, and a signal processor configured to modulate the detected audio content for transmission to a processing unit configured to determine an equalization setting for the at least one playback device.
In yet another example embodiment of the present application, a method is provided for determining a first distance and direction of a playback device, causing the playback device to render audio content, receiving a first modulated version of the rendered audio content, and determining an equalization setting of the playback device based on the first modulated version of the rendered audio content, and the first distance and direction of the playback device.
The description discloses various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. However, such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of these firmware, hardware, and/or software components could be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, while the following describes example systems, methods, apparatus, and/or articles of manufacture, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, reference herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of the invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application is a continuation of U.S. non-provisional patent application Ser. No. 14/678,248, filed on Apr. 3, 2015, entitled “Playback Calibration,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 14/678,248 is a continuation of U.S. non-provisional patent application Ser. No. 13/536,493, entitled “System and Method for Device Playback Calibration” filed on Jun. 28, 2012 and issued on Aug. 11, 2015 as U.S. Pat. No. 9,106,192, which is also incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4306113 | Morton | Dec 1981 | A |
4342104 | Jack | Jul 1982 | A |
4504704 | Ohyaba et al. | Mar 1985 | A |
4592088 | Shimada | May 1986 | A |
4631749 | Rapaich | Dec 1986 | A |
4694484 | Atkinson et al. | Sep 1987 | A |
4773094 | Dolby | Sep 1988 | A |
4995778 | Brussel | Feb 1991 | A |
5218710 | Yamaki et al. | Jun 1993 | A |
5255326 | Stevenson | Oct 1993 | A |
5323257 | Abe et al. | Jun 1994 | A |
5386478 | Plunkett | Jan 1995 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5553147 | Pineau | Sep 1996 | A |
5581621 | Koyama et al. | Dec 1996 | A |
5757927 | Gerzon et al. | May 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5910991 | Farrar | Jun 1999 | A |
5923902 | Inagaki | Jul 1999 | A |
5939656 | Suda | Aug 1999 | A |
6018376 | Nakatani | Jan 2000 | A |
6032202 | Lea et al. | Feb 2000 | A |
6072879 | Ouchi et al. | Jun 2000 | A |
6111957 | Thomasson | Aug 2000 | A |
6256554 | Dilorenzo | Jul 2001 | B1 |
6363155 | Horbach | Mar 2002 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6469633 | Wachter | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6573067 | Dib-Hajj et al. | Jun 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6639989 | Zacharov et al. | Oct 2003 | B1 |
6643744 | Cheng | Nov 2003 | B1 |
6704421 | Kitamura | Mar 2004 | B1 |
6721428 | Allred et al. | Apr 2004 | B1 |
6757517 | Chang | Jun 2004 | B2 |
6766025 | Levy et al. | Jul 2004 | B1 |
6778869 | Champion | Aug 2004 | B2 |
6798889 | Dicker et al. | Sep 2004 | B1 |
6862440 | Sampath | Mar 2005 | B2 |
6916980 | Ishida et al. | Jul 2005 | B2 |
6931134 | Waller, Jr. et al. | Aug 2005 | B1 |
6985694 | De Bonet et al. | Jan 2006 | B1 |
6990211 | Parker | Jan 2006 | B2 |
7039212 | Poling et al. | May 2006 | B2 |
7058186 | Tanaka | Jun 2006 | B2 |
7072477 | Kincaid | Jul 2006 | B1 |
7103187 | Neuman | Sep 2006 | B1 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7187947 | White et al. | Mar 2007 | B1 |
7236773 | Thomas | Jun 2007 | B2 |
7289637 | Montag et al. | Oct 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7312785 | Tsuk et al. | Dec 2007 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7477751 | Lyon et al. | Jan 2009 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7483540 | Rabinowitz et al. | Jan 2009 | B2 |
7489784 | Yoshino | Feb 2009 | B2 |
7490044 | Kulkarni | Feb 2009 | B2 |
7492909 | Carter et al. | Feb 2009 | B2 |
7519188 | Berardi et al. | Apr 2009 | B2 |
7529377 | Nackvi et al. | May 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7590772 | Marriott et al. | Sep 2009 | B2 |
7630500 | Beckman et al. | Dec 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7664276 | McKee | Feb 2010 | B2 |
7676044 | Sasaki et al. | Mar 2010 | B2 |
7689305 | Kreifeldt et al. | Mar 2010 | B2 |
7742740 | Goldberg et al. | Jun 2010 | B2 |
7769183 | Bharitkar et al. | Aug 2010 | B2 |
7796068 | Raz et al. | Sep 2010 | B2 |
7835689 | Goldberg et al. | Nov 2010 | B2 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7876903 | Sauk | Jan 2011 | B2 |
7925203 | Lane et al. | Apr 2011 | B2 |
7949140 | Kino | May 2011 | B2 |
7949707 | McDowall et al. | May 2011 | B2 |
7961893 | Kino | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8005228 | Bharitkar et al. | Aug 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8045721 | Burgan et al. | Oct 2011 | B2 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8050652 | Qureshey et al. | Nov 2011 | B2 |
8063698 | Howard | Nov 2011 | B2 |
8074253 | Nathan | Dec 2011 | B1 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8116476 | Inohara | Feb 2012 | B2 |
8126172 | Horbach et al. | Feb 2012 | B2 |
8131390 | Braithwaite et al. | Mar 2012 | B2 |
8139774 | Berardi et al. | Mar 2012 | B2 |
8144883 | Pdersen et al. | Mar 2012 | B2 |
8160276 | Liao et al. | Apr 2012 | B2 |
8160281 | Kim et al. | Apr 2012 | B2 |
8170260 | Reining et al. | May 2012 | B2 |
8175292 | Aylward et al. | May 2012 | B2 |
8175297 | Ho et al. | May 2012 | B1 |
8194874 | Starobin et al. | Jun 2012 | B2 |
8229125 | Short | Jul 2012 | B2 |
8233632 | MacDonald et al. | Jul 2012 | B1 |
8234395 | Millington et al. | Jul 2012 | B2 |
8238547 | Ohki et al. | Aug 2012 | B2 |
8238578 | Aylward | Aug 2012 | B2 |
8243961 | Morrill | Aug 2012 | B1 |
8265310 | Berardi et al. | Sep 2012 | B2 |
8270620 | Christensen | Sep 2012 | B2 |
8279709 | Choisel et al. | Oct 2012 | B2 |
8281001 | Busam et al. | Oct 2012 | B2 |
8290185 | Kim | Oct 2012 | B2 |
8291349 | Park et al. | Oct 2012 | B1 |
8300845 | Zurek et al. | Oct 2012 | B2 |
8306235 | Mahowald | Nov 2012 | B2 |
8325931 | Howard et al. | Dec 2012 | B2 |
8325935 | Rutschman | Dec 2012 | B2 |
8331585 | Hagen et al. | Dec 2012 | B2 |
8332414 | Nguyen et al. | Dec 2012 | B2 |
8379876 | Zhang | Feb 2013 | B2 |
8391501 | Khawand et al. | Mar 2013 | B2 |
8401202 | Brooking | Mar 2013 | B2 |
8433076 | Zurek et al. | Apr 2013 | B2 |
8452020 | Gregg et al. | May 2013 | B2 |
8463184 | Dua | Jun 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8488799 | Goldstein et al. | Jul 2013 | B2 |
8503669 | Mao | Aug 2013 | B2 |
8527876 | Wood et al. | Sep 2013 | B2 |
8577045 | Gibbs | Nov 2013 | B2 |
8577048 | Chaikin et al. | Nov 2013 | B2 |
8600075 | Lim | Dec 2013 | B2 |
8620006 | Berardi et al. | Dec 2013 | B2 |
8731206 | Park | May 2014 | B1 |
8755538 | Kwon | Jun 2014 | B2 |
8798280 | Goldberg et al. | Aug 2014 | B2 |
8819554 | Basso et al. | Aug 2014 | B2 |
8831244 | Apfel | Sep 2014 | B2 |
8855319 | Liu et al. | Oct 2014 | B2 |
8862273 | Karr | Oct 2014 | B2 |
8879761 | Johnson et al. | Nov 2014 | B2 |
8903526 | Beckhardt et al. | Dec 2014 | B2 |
8914559 | Kalayjian et al. | Dec 2014 | B2 |
8930005 | Reimann | Jan 2015 | B2 |
8934647 | Joyce et al. | Jan 2015 | B2 |
8934655 | Breen et al. | Jan 2015 | B2 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8965033 | Wiggins | Feb 2015 | B2 |
8965546 | Visser et al. | Feb 2015 | B2 |
8977974 | Kraut | Mar 2015 | B2 |
8984442 | Pirnack et al. | Mar 2015 | B2 |
8989406 | Wong et al. | Mar 2015 | B2 |
8995687 | Marino, Jr. et al. | Mar 2015 | B2 |
8996370 | Ansell | Mar 2015 | B2 |
9020153 | Britt, Jr. | Apr 2015 | B2 |
9065929 | Chen et al. | Jun 2015 | B2 |
9084058 | Reilly et al. | Jul 2015 | B2 |
9100766 | Soulodre | Aug 2015 | B2 |
9106192 | Sheen et al. | Aug 2015 | B2 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9219460 | Bush | Dec 2015 | B2 |
9231545 | Agustin et al. | Jan 2016 | B2 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9319816 | Narayanan | Apr 2016 | B1 |
9462399 | Bharitkar et al. | Oct 2016 | B2 |
9467779 | Iyengar et al. | Oct 2016 | B2 |
9472201 | Sleator | Oct 2016 | B1 |
9489948 | Chu et al. | Nov 2016 | B1 |
9524098 | Griffiths et al. | Dec 2016 | B2 |
9538305 | Lehnert et al. | Jan 2017 | B2 |
9538308 | Isaac et al. | Jan 2017 | B2 |
9560449 | Carlsson et al. | Jan 2017 | B2 |
9560460 | Chaikin et al. | Jan 2017 | B2 |
9609383 | Hirst | Mar 2017 | B1 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9674625 | Armstrong-Muntner et al. | Jun 2017 | B2 |
9689960 | Barton et al. | Jun 2017 | B1 |
9690271 | Sheen et al. | Jun 2017 | B2 |
9706323 | Sheen et al. | Jul 2017 | B2 |
9723420 | Family et al. | Aug 2017 | B2 |
9743207 | Hartung | Aug 2017 | B1 |
9743208 | Oishi et al. | Aug 2017 | B2 |
9763018 | McPherson et al. | Sep 2017 | B1 |
9788113 | Wilberding et al. | Oct 2017 | B2 |
20010038702 | Lavoie et al. | Nov 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20010043592 | Jimenez et al. | Nov 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020078161 | Cheng | Jun 2002 | A1 |
20020089529 | Robbin | Jul 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20020126852 | Kashani | Sep 2002 | A1 |
20020136414 | Jordan | Sep 2002 | A1 |
20030002689 | Folio | Jan 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20030161479 | Yang et al. | Aug 2003 | A1 |
20030161492 | Miller et al. | Aug 2003 | A1 |
20030179891 | Rabinowitz et al. | Sep 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040131338 | Asada et al. | Jul 2004 | A1 |
20040237750 | Smith et al. | Dec 2004 | A1 |
20050031143 | Devantier et al. | Feb 2005 | A1 |
20050063554 | Devantier et al. | Mar 2005 | A1 |
20050147261 | Yeh | Jul 2005 | A1 |
20050157885 | Olney et al. | Jul 2005 | A1 |
20060008256 | Khedouri et al. | Jan 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060032357 | Roovers et al. | Feb 2006 | A1 |
20060195480 | Spiegelman et al. | Aug 2006 | A1 |
20060225097 | Lawrence-Apfelbaum | Oct 2006 | A1 |
20070003067 | Gierl et al. | Jan 2007 | A1 |
20070025559 | Mihelich | Feb 2007 | A1 |
20070032895 | Nackvi et al. | Feb 2007 | A1 |
20070038999 | Millington et al. | Feb 2007 | A1 |
20070086597 | Kino | Apr 2007 | A1 |
20070116254 | Looney et al. | May 2007 | A1 |
20070121955 | Johnston et al. | May 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20080002839 | Eng | Jan 2008 | A1 |
20080065247 | Igoe | Mar 2008 | A1 |
20080069378 | Rabinowitz et al. | Mar 2008 | A1 |
20080098027 | Aarts | Apr 2008 | A1 |
20080136623 | Calvarese | Jun 2008 | A1 |
20080144864 | Huon | Jun 2008 | A1 |
20080175411 | Greve | Jul 2008 | A1 |
20080232603 | Soulodre | Sep 2008 | A1 |
20080266385 | Smith et al. | Oct 2008 | A1 |
20080281523 | Dahl et al. | Nov 2008 | A1 |
20090003613 | Christensen | Jan 2009 | A1 |
20090024662 | Park et al. | Jan 2009 | A1 |
20090047993 | Vasa | Feb 2009 | A1 |
20090063274 | Dublin, III et al. | Mar 2009 | A1 |
20090110218 | Swain | Apr 2009 | A1 |
20090138507 | Burckart et al. | May 2009 | A1 |
20090147134 | Iwamatsu | Jun 2009 | A1 |
20090180632 | Goldberg et al. | Jul 2009 | A1 |
20090196428 | Kim | Aug 2009 | A1 |
20090202082 | Bharitkar et al. | Aug 2009 | A1 |
20090252481 | Ekstrand | Oct 2009 | A1 |
20090304205 | Hardacker et al. | Dec 2009 | A1 |
20100128902 | Liu et al. | May 2010 | A1 |
20100135501 | Corbett et al. | Jun 2010 | A1 |
20100142735 | Yoon et al. | Jun 2010 | A1 |
20100146445 | Kraut | Jun 2010 | A1 |
20100162117 | Basso et al. | Jun 2010 | A1 |
20100189203 | Wilhelmsson et al. | Jul 2010 | A1 |
20100195846 | Yokoyama | Aug 2010 | A1 |
20100272270 | Chaikin | Oct 2010 | A1 |
20100296659 | Tanaka | Nov 2010 | A1 |
20100303248 | Tawada | Dec 2010 | A1 |
20100303250 | Goldberg et al. | Dec 2010 | A1 |
20100323793 | Andall | Dec 2010 | A1 |
20110007904 | Tomoda et al. | Jan 2011 | A1 |
20110007905 | Sato et al. | Jan 2011 | A1 |
20110087842 | Lu et al. | Apr 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110170710 | Son | Jul 2011 | A1 |
20110234480 | Fino et al. | Sep 2011 | A1 |
20110268281 | Florencio et al. | Nov 2011 | A1 |
20120032928 | Alberth et al. | Feb 2012 | A1 |
20120051558 | Kim et al. | Mar 2012 | A1 |
20120057724 | Rabinowitz et al. | Mar 2012 | A1 |
20120093320 | Flaks et al. | Apr 2012 | A1 |
20120127831 | Gicklhorn et al. | May 2012 | A1 |
20120140936 | Bonnick et al. | Jun 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120183156 | Schlessinger et al. | Jul 2012 | A1 |
20120213391 | Usami et al. | Aug 2012 | A1 |
20120215530 | Harsch | Aug 2012 | A1 |
20120237037 | Ninan et al. | Sep 2012 | A1 |
20120243697 | Frye | Sep 2012 | A1 |
20120263325 | Freeman et al. | Oct 2012 | A1 |
20120268145 | Chandra et al. | Oct 2012 | A1 |
20120269356 | Sheerin et al. | Oct 2012 | A1 |
20120275613 | Soulodre | Nov 2012 | A1 |
20120283593 | Searchfield et al. | Nov 2012 | A1 |
20120288124 | Fejzo et al. | Nov 2012 | A1 |
20130010970 | Hegarty et al. | Jan 2013 | A1 |
20130028443 | Pance et al. | Jan 2013 | A1 |
20130051572 | Goh et al. | Feb 2013 | A1 |
20130066453 | Seefeldt | Mar 2013 | A1 |
20130108055 | Hanna et al. | May 2013 | A1 |
20130129102 | Li et al. | May 2013 | A1 |
20130129122 | Johnson et al. | May 2013 | A1 |
20130202131 | Kemmochi et al. | Aug 2013 | A1 |
20130211843 | Clarkson | Aug 2013 | A1 |
20130216071 | Maher et al. | Aug 2013 | A1 |
20130223642 | Warren et al. | Aug 2013 | A1 |
20130230175 | Bech et al. | Sep 2013 | A1 |
20130259254 | Xiang et al. | Oct 2013 | A1 |
20130279706 | Marti | Oct 2013 | A1 |
20130315405 | Kanishima et al. | Nov 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt et al. | Dec 2013 | A1 |
20140003622 | Ikizyan et al. | Jan 2014 | A1 |
20140003623 | Lang | Jan 2014 | A1 |
20140003625 | Sheen et al. | Jan 2014 | A1 |
20140003626 | Holman et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140006587 | Kusano et al. | Jan 2014 | A1 |
20140016784 | Sen et al. | Jan 2014 | A1 |
20140016786 | Sen | Jan 2014 | A1 |
20140016802 | Sen | Jan 2014 | A1 |
20140023196 | Xiang et al. | Jan 2014 | A1 |
20140037097 | Labosco | Feb 2014 | A1 |
20140052770 | Gran et al. | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140079242 | Nguyen et al. | Mar 2014 | A1 |
20140084014 | Sim et al. | Mar 2014 | A1 |
20140086423 | Domingo et al. | Mar 2014 | A1 |
20140112481 | Li et al. | Apr 2014 | A1 |
20140119551 | Bharitkar et al. | May 2014 | A1 |
20140126730 | Crawley et al. | May 2014 | A1 |
20140161265 | Chaikin et al. | Jun 2014 | A1 |
20140169569 | Toivanen et al. | Jun 2014 | A1 |
20140180684 | Strub | Jun 2014 | A1 |
20140192986 | Lee et al. | Jul 2014 | A1 |
20140219456 | Morrell et al. | Aug 2014 | A1 |
20140219483 | Hong | Aug 2014 | A1 |
20140226823 | Sen et al. | Aug 2014 | A1 |
20140242913 | Pang | Aug 2014 | A1 |
20140267148 | Luna et al. | Sep 2014 | A1 |
20140270202 | Ivanov et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140273859 | Luna et al. | Sep 2014 | A1 |
20140279889 | Luna | Sep 2014 | A1 |
20140285313 | Luna et al. | Sep 2014 | A1 |
20140286496 | Luna et al. | Sep 2014 | A1 |
20140294200 | Baumgarte et al. | Oct 2014 | A1 |
20140310269 | Zhang et al. | Oct 2014 | A1 |
20140321670 | Nystrom et al. | Oct 2014 | A1 |
20140323036 | Daley et al. | Oct 2014 | A1 |
20140334644 | Selig et al. | Nov 2014 | A1 |
20140341399 | Dusse | Nov 2014 | A1 |
20140344689 | Scott et al. | Nov 2014 | A1 |
20140355768 | Sen et al. | Dec 2014 | A1 |
20140355794 | Morrell et al. | Dec 2014 | A1 |
20150011195 | Li | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150031287 | Pang et al. | Jan 2015 | A1 |
20150032844 | Tarr et al. | Jan 2015 | A1 |
20150036847 | Donaldson | Feb 2015 | A1 |
20150036848 | Donaldson | Feb 2015 | A1 |
20150043736 | Olsen et al. | Feb 2015 | A1 |
20150063610 | Mossner | Mar 2015 | A1 |
20150078586 | Ang et al. | Mar 2015 | A1 |
20150078596 | Sprogis | Mar 2015 | A1 |
20150100991 | Risberg et al. | Apr 2015 | A1 |
20150146886 | Baumgarte | May 2015 | A1 |
20150149943 | Nguyen et al. | May 2015 | A1 |
20150195666 | Massey et al. | Jul 2015 | A1 |
20150201274 | Ellner et al. | Jul 2015 | A1 |
20150208184 | Tan et al. | Jul 2015 | A1 |
20150212788 | Lang | Jul 2015 | A1 |
20150229699 | Liu | Aug 2015 | A1 |
20150260754 | Perotti et al. | Sep 2015 | A1 |
20150271616 | Kechichian et al. | Sep 2015 | A1 |
20150281866 | Williams et al. | Oct 2015 | A1 |
20150289064 | Jensen et al. | Oct 2015 | A1 |
20150358756 | Harma et al. | Dec 2015 | A1 |
20150382128 | Ridihalgh et al. | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160011846 | Sheen | Jan 2016 | A1 |
20160011850 | Sheen et al. | Jan 2016 | A1 |
20160014509 | Hansson et al. | Jan 2016 | A1 |
20160014510 | Sheen et al. | Jan 2016 | A1 |
20160014511 | Sheen et al. | Jan 2016 | A1 |
20160014534 | Sheen et al. | Jan 2016 | A1 |
20160014536 | Sheen | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160021473 | Riggi et al. | Jan 2016 | A1 |
20160021481 | Johnson et al. | Jan 2016 | A1 |
20160027467 | Proud | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160035337 | Aggarwal et al. | Feb 2016 | A1 |
20160037277 | Matsumoto et al. | Feb 2016 | A1 |
20160070526 | Sheen | Mar 2016 | A1 |
20160073210 | Sheen | Mar 2016 | A1 |
20160140969 | Srinivasan et al. | May 2016 | A1 |
20160165297 | Jamal-Syed et al. | Jun 2016 | A1 |
20160192098 | Oishi et al. | Jun 2016 | A1 |
20160192099 | Oishi et al. | Jun 2016 | A1 |
20160212535 | Le et al. | Jul 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160260140 | Shirley et al. | Sep 2016 | A1 |
20160309276 | Ridihalgh et al. | Oct 2016 | A1 |
20160313971 | Bierbower et al. | Oct 2016 | A1 |
20160316305 | Sheen et al. | Oct 2016 | A1 |
20160330562 | Crockett | Nov 2016 | A1 |
20160366517 | Chandran et al. | Dec 2016 | A1 |
20170086003 | Rabinowitz et al. | Mar 2017 | A1 |
20170105084 | Holman | Apr 2017 | A1 |
20170142532 | Pan | May 2017 | A1 |
20170207762 | Porter et al. | Jul 2017 | A1 |
20170223447 | Johnson et al. | Aug 2017 | A1 |
20170230772 | Johnson et al. | Aug 2017 | A1 |
20170280265 | Po | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
101491116 | Jul 2009 | CN |
0505949 | Sep 1992 | EP |
0772374 | May 1997 | EP |
1133896 | Aug 2002 | EP |
1349427 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2043381 | Apr 2009 | EP |
1349427 | Dec 2009 | EP |
2161950 | Mar 2010 | EP |
2194471 | Jun 2010 | EP |
2197220 | Jun 2010 | EP |
2429155 | Mar 2012 | EP |
1825713 | Oct 2012 | EP |
2591617 | Jun 2014 | EP |
2835989 | Feb 2015 | EP |
2860992 | Apr 2015 | EP |
2974382 | Apr 2017 | EP |
H02280199 | Nov 1990 | JP |
H05211700 | Aug 1993 | JP |
H0723490 | Jan 1995 | JP |
H1069280 | Mar 1998 | JP |
2002502193 | Jan 2002 | JP |
2003143252 | May 2003 | JP |
2005538633 | Dec 2005 | JP |
2006017893 | Jan 2006 | JP |
2006180039 | Jul 2006 | JP |
2007068125 | Mar 2007 | JP |
2009188474 | Aug 2009 | JP |
2010081124 | Apr 2010 | JP |
2011217068 | Oct 2011 | JP |
1020060116383 | Nov 2006 | KR |
1020080011831 | Feb 2008 | KR |
200153994 | Jul 2001 | WO |
200182650 | Nov 2001 | WO |
2003093950 | Nov 2003 | WO |
2004066673 | Aug 2004 | WO |
2007016465 | Feb 2007 | WO |
2011139502 | Nov 2011 | WO |
2013016500 | Jan 2013 | WO |
2014032709 | Mar 2014 | WO |
2014036121 | Mar 2014 | WO |
2015024881 | Feb 2015 | WO |
2015108794 | Jul 2015 | WO |
2015178950 | Nov 2015 | WO |
2016040324 | Mar 2016 | WO |
2017049169 | Mar 2017 | WO |
Entry |
---|
International Searching Authority, International Search Report and Written Opinion dated Jul. 5, 2016, issued in connection with International Application No. PCT/US2016/028997, filed on 22 Apr. 2016, 13 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jun. 5, 2015, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 12, 2016, issued in connection with International Application No. PCT/US2016/041179 filed Jul. 6, 2016, 9 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jun. 16, 2015, issued in connection with International Application No. PCT/US2015/020993, filed Mar. 17, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 18, 2015, issued in connection with International Application No. PCT/US2015/048954, filed Sep. 8, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043116, filed Jul. 20, 2016, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043840, filed Jul. 25, 2016, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048942, filed Sep. 8, 2015, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048944, filed Sep. 8, 2015, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2016, issued in connection with International Patent Application No. PCT/US2016/052266, filed on Sep. 16, 2016, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jan. 24, 2017, issued in connection with International Application No. PCT/US2016/052264, filed on Sep. 16, 2016, 17 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 25, 2016, issued in connection with International Application No. PCT/US2016/043109, filed Jul. 20, 2016, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Sep. 25, 2017, issued in connection with International Application No. PCT/US2017/042191, filed on Jul. 14, 2017, 16 pages. |
Japanese Patent Office, Japanese Office Action dated Oct. 3, 2017, issued in connection with Japanese Application No. 2017-501082, 7 pages. |
Japanese Patent Office, Non-Final Office Action with Translation dated Apr. 25, 2017, issued in connection with Japanese Patent Application No. 2016-568888, 7 pages. |
Japanese Patent Office, Non-Final Office Action with Translation dated Oct. 3, 2017, issued in connection with Japanese Patent Application No. 2017-501082, 3 pages. |
Japanese Patent Office, Office Action with English Summary dated Jul. 18, 2017, issued in connection with Japanese Patent Application No. 2017-513171, 4 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages. |
“auEQ for the iPhone,” Mar. 25, 2015, retrieved from the internet: URL:https://web.archive.org/web20150325152629/http://www.hotto.de/mobileapps/iphoneaueq.html [retrieved on Jun. 24, 2016], 6 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Microsoft Corporation, “Using Microsoft Outlook 2003,” Cambridge College, 2003. |
Motorola, “Simplefi, Wireless Digital Audio Receiver, Installation and User Guide,” Dec. 31, 2001, 111 pages. |
Mulcahy, John, “Room EQ Wizard: Room Acoustics Software,” REW, 2014, retrieved Oct. 10, 2014, 4 pages. |
Non-Final Action dated Jan. 29, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages. |
Non-Final Office Action dated Mar. 1, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 20 pages. |
Non-Final Office Action dated Nov. 1, 2017, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 15 pages. |
Non-Final Office Action dated Jun. 2, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 14 pages. |
Non-Final Office Action dated Jun. 2, 2017, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 18 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 12 pages. |
Non-Final Office Action dated Oct. 2, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages. |
Non-Final Office Action dated Feb. 3, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 12 pages. |
Non-Final Office Action dated Jan. 4, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 6 pages. |
Non-Final Office Action dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 10 pages. |
Non-Final Office Action dated Jul. 5, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 8 pages. |
Non-Final Office Action dated Jul. 6, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 6 pages. |
Non-Final Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 30 pages. |
Non-Final Office Action dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 5 pages. |
Non-Final Office Action dated Jul. 7, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 6 pages. |
Non-Final Office Action dated Mar. 7, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 24 pages. |
Non-Final Office Action dated Sep. 7, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 12 pages. |
Non-Final Office Action dated Jul. 8, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 6 pages. |
Non-Final Office Action dated Dec. 9, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Non-Final Office Action dated Mar. 10, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 10 pages. |
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 13 pages. |
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 9 pages. |
Non-Final Office Action dated Oct. 11, 2017, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages. |
Non-Final Office Action dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 24 pages. |
Non-Final Office Action dated Jul. 13, 2016, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 16 pages. |
Non-Final Office Action dated Dec. 14, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 19 pages. |
Advisory Action dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 3 pages. |
Advisory Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 3 pages. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Burger, Dennis, “Automated Room Correction Explained,” hometheaterreview.com, Nov. 18, 2013, http://hometheaterreview.com/automated-room-correction-explained/ Retrieved Oct. 10, 2014, 3 pages. |
Chinese Patent Office, First Office Action dated Aug. 11, 2017, issued in connection with Chinese Patent Application No. 201580013837.2, 8 pages. |
Chinese Patent Office, First Office Action dated Sep. 25, 2017, issued in connection with Chinese Patent Application No. 201580013894.0, 9 pages. |
Chinese Patent Office, Second Office Action with Translation dated Jan. 9, 2018, issued in connection with Chinese Patent Application No. 201580013837.2, 10 pages. |
“Constellation Acoustic System: a revolutionary breakthrough in acoustical design,” Meyer Sound Laboratories, Inc. 2012, 32 pages. |
“Constellation Microphones,” Meyer Sound Laboratories, Inc. 2013, 2 pages. |
Corrected Notice of Allowability dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 11 pages. |
Daddy, B., “Calibrating Your Audio with a Sound Pressure Level (SPL) Meter,” Blue-ray.com, Feb. 22, 2008 Retrieved Oct. 10, 2014, 15 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European Office Action dated Sep. 8, 2017, issued in connection with European Application No. 17000460.0, 8 pages. |
European Patent Office, European Search Report dated Jan. 18, 2018, issued in connection with European Patent Application No. 17185193.4, 9 pages. |
European Patent Office, Extended European Search Report dated Jan. 5, 2017, issued in connection with European Patent Application No. 15765555.6, 8 pages. |
European Patent Office, Extended Search Report dated Jan. 25, 2017, issued in connection with European Application No. 15765548.1, 7 pages. |
European Patent Office, Extended Search Report dated Apr. 26, 2017, issued in connection with European Application No. 15765548.1, 10 pages. |
European Patent Office, Office Action dated Jun. 13, 2017, issued in connection with European patent application No. 17000484.0, 10 pages. |
European Patent Office, Office Action dated Dec. 15, 2016, issued in connection with European Application No. 15766998.7, 7 pages. |
Ex Parte Quayle Office Action dated Jan. 24, 2018 issued in connection with U.S. Appl. No. 15/650,386, filed Jul. 14, 2017, 8 pages. |
Final Office Action dated Apr. 3, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Final Office Action dated Jul. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 31, 2015, 10 pages. |
Final Office Action dated Jun. 13, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 22 pages. |
Final Office Action dated Oct. 14, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 16 pages. |
Final Office Action dated Oct. 17, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Final Office Action dated Apr. 18, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 16 pages. |
Final Office Action dated Dec. 18, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 12 pages. |
Final Office Action dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 15 pages. |
Final Office Action dated Oct. 21, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages. |
Final Office Action dated Jan. 25, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages. |
Final Office Action dated Feb. 5, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 21 pages. |
First Action Interview Office Action dated Mar. 3, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 9 pages. |
First Action Interview Office Action dated Jul. 12, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
First Action Interview Office Action dated Jun. 30, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Apr. 5, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 4 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Oct. 7, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 5 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Feb. 16, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 5 pages. |
Gonzalez et al., “Simultaneous Measurement of Multichannel Acoustic Systems,” J. Audio Eng. Soc., 2004, pp. 26-42, vol. 52, No. 1/2. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 24, 2015, issued in connection with International Application No. PCT/US2014/030560, filed on Mar. 17, 2014, 7 pages. |
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 8 pages. |
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17. 2015, 9 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Mar. 23, 2017, issued in connection with International Patent Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 8 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028994 filed on Apr. 22, 2016, 7 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jul. 4, 2016, issued in connection with International Application No. PCT/US2016/028994, filed on Apr. 22, 2016, 12 pages. |
Notice of Allowance dated Sep. 20, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
Notice of Allowance dated Dec. 21, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages. |
Notice of Allowance dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages. |
Notice of Allowance dated Jul. 21, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 10 pages. |
Notice of Allowance dated Jun. 22, 2017, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages. |
Notice of Allowance dated Jun. 23, 2016, issued in connection with U.S. Appl. No. 14/921,781, filed Oct. 23, 2015, 8 pages. |
Notice of Allowance dated Oct. 23, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 16 pages. |
Notice of Allowance dated Sep. 23, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 7 pages. |
Notice of Allowance dated May 24, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 5 pages. |
Notice of Allowance dated Nov. 24, 2017, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages. |
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 7 pages. |
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 7 pages. |
Notice of Allowance dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages. |
Notice of Allowance dated Feb. 26, 2016, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 7 pages. |
Notice of Allowance dated Jul. 26, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 12 pages. |
Notice of Allowance dated Oct. 26, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 11 pages. |
Notice of Allowance dated Feb. 27, 2017, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 9 pages. |
Notice of Allowance dated Jul. 27, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages. |
Notice of Allowance dated Jun. 27, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 8 pages. |
Notice of Allowance dated Aug. 28, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 5 pages. |
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 10 pages. |
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 15/211,822, filed Jul. 15, 2016, 9 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages. |
Notice of Allowance dated Jul. 29, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 11 pages. |
Notice of Allowance dated Oct. 29, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 9 pages. |
Notice of Allowance dated Aug. 30, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 10 pages. |
Notice of Allowance dated Dec. 30, 2016, issued in connection with U.S. Appl. No. 14/696014, filed Apr. 24, 2015, 13 pages. |
Notice of Allowance dated Jan. 30, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 8 pages. |
Notice of Allowance dated Apr. 4, 2017, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 3, 2015, 8 pages. |
Notice of Allowance dated May 5, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages. |
Notice of Allowance dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Papp Istvan et al. “Adaptive Microphone Array for Unknown Desired Speaker's Transfer Function”, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY vol. 122, No. 2, Jul. 19, 2007, pp. 44-49. |
Preinterview First Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 6 pages. |
Preinterview First Office Action dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages. |
Preinterview First Office Action dated May 17, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 7 pages. |
Preinterview First Office Action dated May 25, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 7 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
Prismiq, Inc., “PRISMIQ Media Player User Guide,” 2003, 44 pages. |
Ross, Alex, “Wizards of Sound: Retouching acoustics, from the restaurant to the concert hall,” The New Yorker, Feb. 23, 2015. Web. Feb. 26, 2015, 9 pages. |
Supplemental Notice of Allowability dated Oct. 27, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 6 pages. |
United States Patent and Trademark Office, U.S. Appl, No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Non-Final Office Action dated Mar. 14, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 12 pages. |
Non-Final Office Action dated Oct. 14, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages. |
Non-Final Office Action dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages. |
Non-Final Office Action dated Feb. 18, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 10 pages. |
Non-Final Office Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 7 pages. |
Non-Final Office Action dated Aug. 2, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 22 pages. |
Non-Final Office Action dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages. |
Non-Final Office Action dated Jul. 20, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 13 pages. |
Non-Final Office Action dated Jun. 20, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 17 pages. |
Non-Final Office Action dated Jun. 21, 2016, issued in connection with U.S. Appl. No. 141/678,248, filed Apr. 3, 2015, 10 pages. |
Non-Final Office Action dated Nov. 21, 2014, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 20 pages. |
Non-Final Office Action dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 9 pages. |
Non-Final Office Action dated Dec. 27, 2017, issued in connection with U.S. Appl. No. 5/357,520, filed Nov. 21, 2016, 28 pages. |
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 19 pages. |
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 19 pages. |
Non-Final Office Action dated Jul. 27, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 11 pages. |
Non-Final Office Action dated Mar. 27, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 30 pages. |
Non-Final Office Action dated Jul. 28, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages. |
Non-Final Office Action dated Nov. 28, 2017, issued in connection with U.S. Appl. No. 5/673,170, filed Aug. 9, 2017, 7 pages. |
Non-Final Office Action dated May 30, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 9 pages. |
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 18 pages. |
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 8 pages. |
Notice of Allowance dated May 1, 2017, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 13 pages. |
Notice of Allowance dated Nov. 2, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages. |
Notice of Allowance dated Jun. 3, 2016, issued in connection with U.S. Appl. No. 14/921,799, filed Oct. 23, 2015, 8 pages. |
Notice of Allowance dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
Notice of Allowance dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages. |
Notice of Allowance dated Nov. 9, 2016, issued in connection with U.S. Appl. No. 14/805, 340, filed Jul. 21, 2015, 13 pages. |
Notice of Allowance dated Feb. 1, 2018, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages. |
Notice of Allowance dated Apr. 10, 2015, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 8 pages. |
Notice of Allowance dated Jul. 11, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 11 pages. |
Notice of Allowance dated Mar. 11, 2015, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 7 pages. |
Notice of Allowance dated Apr. 12, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 13 pages. |
Notice of Allowance dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 24 pages. |
Notice of Allowance dated Dec. 12, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages. |
Notice of Allowance dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 7 pages. |
Notice of Allowance dated Sep. 12, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 8 pages. |
Notice of Allowance dated Feb. 13, 2017, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 8 pages. |
Notice of Allowance dated Nov. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 8 pages. |
Notice of Allowance dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 2, 2016, 5 pages. |
Notice of Allowance dated Mar. 15, 2017, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 7 pages. |
Notice of Allowance dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 5, 2015, 8 pages. |
Notice of Allowance dated Oct. 16, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 10 pages. |
Notice of Allowance dated Sep. 16, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 7 pages. |
Notice of Allowance dated May 17, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 7 pages. |
Notice of Allowance dated Aug. 19, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages. |
Notice of Allowance dated Jun. 19, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 5 pages. |
Notice of Allowance dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 16 pages. |
Notice of Allowance dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 11 pages. |
Notice of Allowance dated Nov. 20, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20180063660 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14678248 | Apr 2015 | US |
Child | 15806126 | US | |
Parent | 13536493 | Jun 2012 | US |
Child | 14678248 | US |