The present disclosure relates generally to improved calibration techniques for haptic-based systems.
A continuous distribution of sound energy, referred to as an “acoustic field”, may be used for a range of applications including haptic feedback in mid-air.
By defining one or more control points in space, the acoustic field can be controlled. Each point can be assigned a value equating to a desired amplitude at the control point. A physical two-dimensional array of transducers can then be controlled to create an acoustic field exhibiting the desired amplitude at the control points.
However, because complete control of space is not possible, controlling the acoustic field at given points yields erroneous local maxima in the acoustic field levels at other related positions. In relation to mid-air haptic feedback, these can interfere in interactions with the space by creating secondary effects and ghost phenomena that can be felt outside the interaction area. The level and nature of the secondary maxima in the acoustic field is determined by how the space is controlled. One of the ways to change how the space is controlled is by rearranging the transducer elements. By arranging the two-dimensional array of transducer elements in different ways, unwanted effects on the acoustic field can be limited and controlled.
How to best approach designing an array of transducers that generates control points in an acoustic field with the minimum of erroneous maxima is not trivial.
Further, in prior applications, transducer layouts that minimize the formation of these erroneous maxima were described. In reality, however, due to physical manufacturing and production constraints inherent in the process of electronic design and layout these ideal configurations are often not achievable. As a result, a method to create configurations that maintain the required beneficial properties of the ideal physical arrangement while accounting for such design limitations is needed. Although this process could be performed manually this would be time consuming and prone to human error and as such an automated approach would be preferable.
Finally, in order to create an appropriate acoustic field that responds to input, a sensor must be attached to the system. This sensor is required for interaction, but the correspondence between the coordinate space of the acoustic field and the coordinate space of the sensor, must be established first. A human can perform this initial calibration step, by actuating the device, prompting for a corresponding behavior and then measuring the output of the sensor in this situation. This provides the correspondence between the two vector spaces. However, this requires human interaction and so is subject to human error, as well as requiring human intervention in a more general sense.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
Described herein are certain techniques to enhance calibration techniques in haptic systems. Some or all of these techniques may be used at the same time or one after the other in order to improve such calibration.
An acoustic field may be controlled by defining one or more control points in space. Each control point can be assigned a value equating to a desired amplitude at that control point. A physical set of transducers may then be controlled to create an acoustic field exhibiting the desired amplitude at the control points.
Because complete control of space is not possible, controlling the acoustic field at given points may yield erroneous local maxima in the acoustic field levels at other related positions. In relation to mid-air haptic feedback, these can interfere in interactions with the space by creating secondary effects and ghost phenomena that can be felt outside the interaction area.
The level and nature of the secondary maxima in the acoustic field is determined by how the space is controlled. One of the ways to change how the space is controlled is by rearranging the transducer elements. By arranging the transducer elements in different ways, unwanted effects on the acoustic field can be limited and controlled.
How to best approach designing an array of transducers that generates control points in an acoustic field with the minimum of erroneous maxima is not trivial. Existing array geometries will be reviewed to consider their drawbacks. New array geometries will then be reviewed to remedy these drawbacks.
Since the rectilinear structure is the source of these four ghost images 220230240250, a potential solution is to break up the rectilinear structure. As shown in
As shown by the hexagonal array simulation 400 in
As shown in
The issues outlined in the previous section necessitate the creation of a new type of array that has both uncorrelated secondary maxima that fall away from the control points and uniform density to avoid unexpected power fall off. A transducer arrangement that achieves both of these goals is desired with a geometry that has both uniform or predictable density and non-uniform sampling in any given direction to avoid ghost images.
The phyllotactic spiral pattern is common in nature where a dense packing of leaves to absorb the maximum amount of sunlight is needed. Its construction is based on angular proportions of the golden ratio (an irrational number) to produce alternating curved packing of elements that—while uniform and regular—can never result in a periodic sampling in any given direction. Two quantities are in the golden ratio (an irrational number, approximately 1.618) if their ratio is the same as the ratio of their sum to the larger of the two quantities.
As shown in
As shown in
The extra images in the regular array arrangements shown in
As shown, these images can be removed by creating a system wherein collinear groupings are minimized or there are no uniform separations. In these situations, the groupings do not have the same sampling approach as a discrete Fourier transform and so will not exhibit these effects. A random or Poisson disk sampling may be effective to eliminate these effects, but this has a downside of reducing the ability to pack the elements. Packing techniques that prevent uniform separation or collinearity are non-trivial as crystal structures in nature can attest. But the phyllotactic spiral design fulfills all these criteria by placing the transducer elements along curves that are constructed and governed by irrational numbers, minimizing the effects of collinearity.
Instead of using a square root distance (raising by a power of 0.5) that distributes transducers equally in array area, the exponent may be increased (raising by a power of the golden ratio minus one, 0.618) to spread the transducers more towards the edges. As shown in
By using the higher power in the exponent, the phyllotactic spiral relaxes the packing of the elements, making it more similar to the natural arrangement found in sunflowers. Here, the distribution of the transducers in a phyllotactic spiral pattern is sparser toward the edges of the phyllotactic spiral pattern. As the elements get further apart as they move away from the center, they may produce reduced haptic effects at the edge. However, these sparse transducers at the edge remain able to suppress excess noise, at the cost of a larger footprint and some extra transducers. This effect may justify the use of higher exponents in the production of the spiral.
The phyllotactic spiral array need not actually be in a complete spiral formation. The spiral may be cut into shapes that are more suitable for array footprints such as in a rectilinear, square or rectangle format. Thus one or more partial phyllotactic spiral patterns may be used to generate the desired effects. The use of the term “partial phyllotactic spiral pattern” herein may mean either a portion of a complete phyllotactic spiral pattern or a complete phyllotactic spiral pattern.
As shown in
Alternatively, the phyllotactic spiral may be cut into a frame for a device that gives mid-air haptic capabilities. As shown in
Moving the transducers in the z-direction (the direction orthogonal to the two-dimensional transducer array) and rotating them 45 degrees into a beveled “picture frame” arrangement verifies this result. In the arrangement shown in
Counter-intuitively, rotating each transducer further to point directly at the center of the shape actually degrades focusing performance, as the lack of resolving power perpendicular to the four sides of the array creates more powerful secondary maxima in the plane of the shape. In the arrangement shown in
The transducers need not all point in the same direction or be fixed at the same orientation in the z-axis.
While these transducer arrangements have been shown to use circular transducer elements the designs described are also applicable to differently shaped transducer elements, including square, rectangle or ellipse or other shapes.
Noise in the array output can cause a number of different phenomena. The first and most obvious side effect is that a high level of noise may interfere with the mid-air haptic qualities of the array. They may cause phantom points and low level stimulation that can drown out the intended signal. Another side effect is that since the array produces sound as a side effect, stronger random secondary maxima may result in more audible noise outside the working volume.
Reducing nearby secondary maxima will reduce the level of points of feedback that can interfere in the haptic sensation. De-correlating the noise with the feedback will smooth out noise more effectively by making it destructively interfere with itself spatially and temporally.
If the physical limitation of the placing of each electronic component is applied to the ideal layout by pruning transducers that are inappropriately placed, the design becomes sparse and inefficient.
1. Application of Physical Constraints
Transducers must be contained within the footprint of the printed circuit board.
2. Physical Constraint Optimization
Transducer layout design may be better optimized for physical constraints through the use of a simulation of two-dimensional physics. Each electrical component in the simulation is comprised of multiple layers. In each layer, an object interacts with other physical bodies that reside on the same layer. For example, a transducer body may be modeled as a primitive shape on one layer. A different but rigidly-connected shape on a separate layer represents the electrical pins connection beneath the transducer. In the above example, the transducer bodies interact with each other and with the edges of the printed circuit board. In contrast, the shapes that model the transducer pins interact only with the physical board connectors to ensure there is enough space to physically place the connector. Thus, the location of the component as a whole is optimized using the simulation of a physical process.
3. Simulation Behaviors that Enhance Design
A simulator (whether in hardware, software or both) configured to provide a physical simulation of such a constrained system may be used to provide an intuitive design tool for transducer placement tasks. The challenge is that the fulfillment of positive constraints is required in the face of a desired placement of components which violates negative constraints. Such an approach yields readily intuited results satisfying these constraints while attempting to give the closest placement to the ideal of any given component. The end goal of this effort is to design and deliver an efficient real-world layout of transducers on a circuit board.
The physical process may be envisioned as, for example, a repulsive force field between elements that spreads the components evenly and/or each component represented as a rigid body. These elements may be connected to their preferred locations by constraints that correspond to an interpretation of physical springs. In this way, the physical configuration in which the “springs”, positive constraints, are most relaxed while continuing to obey other physical negative constraints such as shape occlusion provides a comprehensive metaphor for component placement on a circuit board.
A rigid body simulation is one example of a physical simulation system that can be configured to yield metaphors for these constraints. The simulation of each component as a rigid body then prevents shape occlusion, as two rigid bodies may not occupy the same space at the same time. The simulator may also be used to apply a restraining force to each component in the design. This is intended to keep the components as close to the pre-calculated and ideal positions as possible. Deviation from the ideal positions results in an increased restoring force. This may be envisioned and modeled as a spring pulling the component towards the ideal location. At a predefined point, the spring may be configured to break, resulting in the deletion and possible relocation of the component.
Once the initial placement of the components, which may be automated, is complete the simulation is moved forward in time. As the simulation moves forwards in time, springs will constrict, which may pull components into better positions, while other constraints may push components away from their various preferred locations. Over time, the actions of these opposing forces will allow the board design to settle into a more optimized configuration that can be exported from the process. This may be repeated multiple times, or as a single step in a longer design process in order to obtain an effective circuit board design.
In the right layout 2130, the left-most transducer 2115 is removed because the expanded rectangular component-free zone 2132 forces the distance from the leftmost initial transducer placement 2116 to the simulated final transducer placement 2115 to be too large. This causes the spring to break 2131 and thus the simulated final transducer placement 2115 is removed from the layout.
As shown in the right layout 2240, the former middle-left transducer 2212 is moved to position 2222 on the other side of the array and a spring 2231 is used to model its placement with respect to the component free zone 2235. The rest of the elements in the right layout 2240 are the same as the center layout 2220.
Abruptly applying constraints to the component layout may create uncertainty due to physical constraints being immediately and sharply violated. To alleviate this, constraints and components may be made to move and expand slowly into position. This physical interpretation allows components to slowly adopt a position as a natural result of the simulation.
The simulation may also be interactive by allowing for the dynamic creation and deletion of components. These components are also physically simulated and this interactivity enables an element of human control over the placement process. In these cases, both the immediate component position and the anchoring location of its associated spring constraint may be modified.
An example of a layout improved using the foregoing methods is shown in
1. Levitation as an Input Calibration Step
The levitation of objects such as polystyrene beads, is possible using the acoustic field produced above the array. It has been shown that an optimization may be employed to generate a levitation point at which a small object can be trapped. (Marzo et al., Holographic acoustic elements for manipulation of levitated objects, Nature Communications 6:8661 (2015)). A levitation point may be created in a manner similar to a control point and at a predictable sub-wavelength offset from an equivalent control point that can be created at the same position. The object can then be sensed using the same sensor as the input, which could for example be a camera. This object may be then used as a fiducial marker floating in free space. This fiducial object may provide a correspondence between the input coordinate space of a sensing device capable of spatial tracking and the acoustic output coordinate space.
Once a bead is trapped at a levitation point, the levitation point may be slowly moved in a similar fashion to a control point. As the levitation point moves around the acoustic volume above the array, the correspondence between the acoustic output space and sensor input space is refined. In order to provide sufficient sensor calibration, the object must move through all three dimensions, registering correspondences between input and output space through time. An example path for the object might be between the vertices of a tetrahedron floating above the array. The system may be operated without human intervention if an acoustically transparent structure holds the fiducial in a predefined initial position so that the array can grip and levitate the object.
2. Levitation as an Output Calibration Step
If the correspondence between the input sensor space and the objective measurement of position is known, then the levitating object may be used to calibrate the output space of the array. As the formation of a levitation point is similar to the formation of a control point, the former may be used to measure the way in which the acoustic assumptions hold across the acoustic volume. This may be used to ascertain whether the positions to which the array focuses are correct and enable the computation of a correction factor in the event that the focus has been linearly or non-linearly transformed in space. Both the input and the output calibration steps may be performed at the same time.
The various features of the foregoing embodiments may be selected and combined to produce numerous variations of improved haptic systems.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover, in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
This application claims the benefit of the following three U.S. Provisional Patent Applications, all of which are incorporated by reference in their entirety: 1. Ser. No. 62/193,180, filed on Jul. 16, 2015.2. Ser. No. 62/275,206, filed on Jan. 5, 2016.3. Ser. No. 62/275,030, filed on Jan. 5, 2016.
Number | Name | Date | Kind |
---|---|---|---|
4218921 | Berge | Aug 1980 | A |
4760525 | Webb | Jul 1988 | A |
4771205 | Mequio | Sep 1988 | A |
4881212 | Takeuchi | Nov 1989 | A |
5122993 | Hikita | Jun 1992 | A |
5226000 | Moses | Jul 1993 | A |
5235986 | Maslak | Aug 1993 | A |
5243344 | Koulopoulos | Sep 1993 | A |
5329682 | Thurn | Jul 1994 | A |
5371834 | Tawel | Dec 1994 | A |
5422431 | Ichiki | Jun 1995 | A |
5426388 | Flora | Jun 1995 | A |
5477736 | Lorraine | Dec 1995 | A |
5511296 | Dias | Apr 1996 | A |
5729694 | Holzrichter | Mar 1998 | A |
5859915 | Norris | Jan 1999 | A |
6029518 | Oeftering | Feb 2000 | A |
6193936 | Gardner | Feb 2001 | B1 |
6216538 | Yasuda | Apr 2001 | B1 |
6436051 | Morris | Aug 2002 | B1 |
6503204 | Sumanaweera | Jan 2003 | B1 |
6647359 | Verplank | Nov 2003 | B1 |
6771294 | Pulli | Aug 2004 | B1 |
6772490 | Toda | Aug 2004 | B2 |
6800987 | Toda | Oct 2004 | B2 |
7107159 | German | Sep 2006 | B2 |
7109789 | Spencer | Sep 2006 | B2 |
7182726 | Williams | Feb 2007 | B2 |
7225404 | Zilles | May 2007 | B1 |
7284027 | Jennings, III | Oct 2007 | B2 |
7345600 | Fedigan | Mar 2008 | B1 |
7487662 | Schabron | Feb 2009 | B2 |
7497662 | Mollmann | Mar 2009 | B2 |
7577260 | Hooley | Aug 2009 | B1 |
7692661 | Cook | Apr 2010 | B2 |
RE42192 | Schabron | Mar 2011 | E |
7966134 | German | Jun 2011 | B2 |
8000481 | Nishikawa | Aug 2011 | B2 |
8123502 | Blakey | Feb 2012 | B2 |
8269168 | Axelrod | Sep 2012 | B1 |
8279193 | Birnbaum | Oct 2012 | B1 |
8351646 | Fujimura | Jan 2013 | B2 |
8369973 | Risbo | Feb 2013 | B2 |
8594350 | Hooley | Nov 2013 | B2 |
8607922 | Werner | Dec 2013 | B1 |
8782109 | Tsutsui | Jul 2014 | B2 |
8823674 | Birnbaum | Sep 2014 | B2 |
8833510 | Koh | Sep 2014 | B2 |
8884927 | Cheatham, III | Nov 2014 | B1 |
9208664 | Peters | Dec 2015 | B1 |
9267735 | Funayama | Feb 2016 | B2 |
9421291 | Robert | Aug 2016 | B2 |
9612658 | Subramanian | Apr 2017 | B2 |
9662680 | Yamamoto | May 2017 | B2 |
9667173 | Kappus | May 2017 | B1 |
9816757 | Zielinski | Nov 2017 | B1 |
9841819 | Carter | Dec 2017 | B2 |
9863699 | Corbin, III | Jan 2018 | B2 |
9898089 | Subramanian | Feb 2018 | B2 |
9936908 | Acosta | Apr 2018 | B1 |
9945818 | Ganti | Apr 2018 | B2 |
9958943 | Long | May 2018 | B2 |
9977120 | Carter | May 2018 | B2 |
10101811 | Carter | Oct 2018 | B2 |
10101814 | Carter | Oct 2018 | B2 |
10133353 | Eid | Nov 2018 | B2 |
10140776 | Schwarz | Nov 2018 | B2 |
10146353 | Smith | Dec 2018 | B1 |
10168782 | Tchon | Jan 2019 | B1 |
10268275 | Carter | Apr 2019 | B2 |
10281567 | Carter | May 2019 | B2 |
10318008 | Sinha | Jun 2019 | B2 |
10444842 | Long | Oct 2019 | B2 |
10469973 | Hayashi | Nov 2019 | B2 |
10496175 | Long | Dec 2019 | B2 |
10497358 | Tester | Dec 2019 | B2 |
10510357 | Kovesi | Dec 2019 | B2 |
10520252 | Momen | Dec 2019 | B2 |
10523159 | Megretski | Dec 2019 | B2 |
10531212 | Long | Jan 2020 | B2 |
10535174 | Rigiroli | Jan 2020 | B1 |
10569300 | Hoshi | Feb 2020 | B2 |
10593101 | Han | Mar 2020 | B1 |
10599434 | Barrett | Mar 2020 | B1 |
10657704 | Han | May 2020 | B1 |
10685538 | Carter | Jun 2020 | B2 |
10755538 | Carter | Aug 2020 | B2 |
10818162 | Carter | Oct 2020 | B2 |
10911861 | Buckland | Feb 2021 | B2 |
10915177 | Carter | Feb 2021 | B2 |
10921890 | Subramanian | Feb 2021 | B2 |
10930123 | Carter | Feb 2021 | B2 |
10943578 | Long | Mar 2021 | B2 |
10991074 | Bousmalis | Apr 2021 | B2 |
11048329 | Lee | Jun 2021 | B1 |
11080874 | Bardagjy | Aug 2021 | B1 |
11098951 | Kappus | Aug 2021 | B2 |
11106273 | Hazra | Aug 2021 | B2 |
11113860 | Rigiroli | Sep 2021 | B2 |
11125866 | Sumi | Sep 2021 | B2 |
11169610 | Sarafianou | Nov 2021 | B2 |
11189140 | Long | Nov 2021 | B2 |
11204644 | Long | Dec 2021 | B2 |
11276281 | Carter | Mar 2022 | B2 |
11350909 | Maresca | Jun 2022 | B2 |
11531395 | Kappus | Dec 2022 | B2 |
11543507 | Carter | Jan 2023 | B2 |
11550395 | Beattie | Jan 2023 | B2 |
11550432 | Carter | Jan 2023 | B2 |
11553295 | Kappus | Jan 2023 | B2 |
11693113 | Bachmann | Jul 2023 | B2 |
11714492 | Carter | Aug 2023 | B2 |
11715453 | Kappus | Aug 2023 | B2 |
11727790 | Carter | Aug 2023 | B2 |
11740018 | Kappus | Aug 2023 | B2 |
11742870 | Long | Aug 2023 | B2 |
11768540 | Long | Sep 2023 | B2 |
11816267 | Kappus | Nov 2023 | B2 |
11842517 | Lyons | Dec 2023 | B2 |
11886639 | Brown | Jan 2024 | B2 |
11921928 | Iodice | Mar 2024 | B2 |
11955109 | Long | Apr 2024 | B2 |
20010007591 | Pompei | Jul 2001 | A1 |
20010033124 | Norris | Oct 2001 | A1 |
20020149570 | Knowles | Oct 2002 | A1 |
20030024317 | Miller | Feb 2003 | A1 |
20030144032 | Brunner | Jul 2003 | A1 |
20030182647 | Radeskog | Sep 2003 | A1 |
20040005715 | Schabron | Jan 2004 | A1 |
20040014434 | Haardt | Jan 2004 | A1 |
20040052387 | Norris | Mar 2004 | A1 |
20040091119 | Duraiswami | May 2004 | A1 |
20040210158 | Organ | Oct 2004 | A1 |
20040226378 | Oda | Nov 2004 | A1 |
20040264707 | Yang | Dec 2004 | A1 |
20050052714 | Klug | Mar 2005 | A1 |
20050056851 | Althaus | Mar 2005 | A1 |
20050148874 | Brock-Fisher | Jul 2005 | A1 |
20050212760 | Marvit | Sep 2005 | A1 |
20050226437 | Pellegrini | Oct 2005 | A1 |
20050267695 | German | Dec 2005 | A1 |
20050273483 | Dent | Dec 2005 | A1 |
20060085049 | Cory | Apr 2006 | A1 |
20060090955 | Cardas | May 2006 | A1 |
20060091301 | Trisnadi | May 2006 | A1 |
20060164428 | Cook | Jul 2006 | A1 |
20070036492 | Lee | Feb 2007 | A1 |
20070056374 | Andrews | Mar 2007 | A1 |
20070094317 | Wang | Apr 2007 | A1 |
20070177681 | Choi | Aug 2007 | A1 |
20070214462 | Boillot | Sep 2007 | A1 |
20070236450 | Colgate | Oct 2007 | A1 |
20070263741 | Erving | Nov 2007 | A1 |
20080012647 | Risbo | Jan 2008 | A1 |
20080027686 | Mollmann | Jan 2008 | A1 |
20080084789 | Altman | Apr 2008 | A1 |
20080130906 | Goldstein | Jun 2008 | A1 |
20080152191 | Fujimura | Jun 2008 | A1 |
20080226088 | Aarts | Sep 2008 | A1 |
20080273723 | Hartung | Nov 2008 | A1 |
20080300055 | Lutnick | Dec 2008 | A1 |
20090093724 | Pernot | Apr 2009 | A1 |
20090116660 | Croft, III | May 2009 | A1 |
20090232684 | Hirata | Sep 2009 | A1 |
20090251421 | Bloebaum | Oct 2009 | A1 |
20090319065 | Risbo | Dec 2009 | A1 |
20100013613 | Weston | Jan 2010 | A1 |
20100016727 | Rosenberg | Jan 2010 | A1 |
20100030076 | Vortman | Feb 2010 | A1 |
20100044120 | Richter | Feb 2010 | A1 |
20100066512 | Rank | Mar 2010 | A1 |
20100085168 | Kyung | Apr 2010 | A1 |
20100103246 | Schwerdtner | Apr 2010 | A1 |
20100109481 | Buccafusca | May 2010 | A1 |
20100199232 | Mistry | Aug 2010 | A1 |
20100231508 | Cruz-Hernandez | Sep 2010 | A1 |
20100262008 | Roundhill | Oct 2010 | A1 |
20100302015 | Kipman | Dec 2010 | A1 |
20100321216 | Jonsson | Dec 2010 | A1 |
20110006888 | Bae | Jan 2011 | A1 |
20110010958 | Clark | Jan 2011 | A1 |
20110051554 | Varray | Mar 2011 | A1 |
20110066032 | Vitek | Mar 2011 | A1 |
20110199342 | Vartanian | Aug 2011 | A1 |
20110310028 | Camp, Jr. | Dec 2011 | A1 |
20120057733 | Morii | Mar 2012 | A1 |
20120063628 | Rizzello | Mar 2012 | A1 |
20120066280 | Tsutsui | Mar 2012 | A1 |
20120223880 | Birnbaum | Sep 2012 | A1 |
20120229400 | Birnbaum | Sep 2012 | A1 |
20120229401 | Birnbaum | Sep 2012 | A1 |
20120236689 | Brown | Sep 2012 | A1 |
20120243374 | Dahl | Sep 2012 | A1 |
20120249409 | Toney | Oct 2012 | A1 |
20120249474 | Pratt | Oct 2012 | A1 |
20120299853 | Dagar | Nov 2012 | A1 |
20120307649 | Park | Dec 2012 | A1 |
20120315605 | Cho | Dec 2012 | A1 |
20130035582 | Radulescu | Feb 2013 | A1 |
20130079621 | Shoham | Mar 2013 | A1 |
20130094678 | Scholte | Apr 2013 | A1 |
20130100008 | Marti | Apr 2013 | A1 |
20130101141 | McElveen | Apr 2013 | A1 |
20130173658 | Adelman | Jul 2013 | A1 |
20130271397 | Macdougall | Oct 2013 | A1 |
20130331705 | Fraser | Dec 2013 | A1 |
20140027201 | Islam | Jan 2014 | A1 |
20140104274 | Hilliges | Apr 2014 | A1 |
20140139071 | Yamamoto | May 2014 | A1 |
20140168091 | Jones | Jun 2014 | A1 |
20140201666 | Bedikian | Jul 2014 | A1 |
20140204002 | Bennet | Jul 2014 | A1 |
20140265572 | Siedenburg | Sep 2014 | A1 |
20140267065 | Levesque | Sep 2014 | A1 |
20140269207 | Baym | Sep 2014 | A1 |
20140269208 | Baym | Sep 2014 | A1 |
20140269214 | Baym | Sep 2014 | A1 |
20140270305 | Baym | Sep 2014 | A1 |
20140320436 | Modarres | Oct 2014 | A1 |
20140361988 | Katz | Dec 2014 | A1 |
20140369514 | Baym | Dec 2014 | A1 |
20150002477 | Cheatham, III | Jan 2015 | A1 |
20150005039 | Liu | Jan 2015 | A1 |
20150006645 | Oh | Jan 2015 | A1 |
20150007025 | Sassi | Jan 2015 | A1 |
20150013023 | Wang | Jan 2015 | A1 |
20150019299 | Harvey | Jan 2015 | A1 |
20150022466 | Levesque | Jan 2015 | A1 |
20150029155 | Lee | Jan 2015 | A1 |
20150066445 | Lin | Mar 2015 | A1 |
20150070147 | Cruz-Hernandez | Mar 2015 | A1 |
20150070245 | Han | Mar 2015 | A1 |
20150078136 | Sun | Mar 2015 | A1 |
20150081110 | Houston | Mar 2015 | A1 |
20150084929 | Lee | Mar 2015 | A1 |
20150110310 | Minnaar | Apr 2015 | A1 |
20150130323 | Harris | May 2015 | A1 |
20150168205 | Lee | Jun 2015 | A1 |
20150192995 | Subramanian | Jul 2015 | A1 |
20150209564 | Lewin | Jul 2015 | A1 |
20150220199 | Wang | Aug 2015 | A1 |
20150226537 | Schorre | Aug 2015 | A1 |
20150226831 | Nakamura | Aug 2015 | A1 |
20150241393 | Ganti | Aug 2015 | A1 |
20150248787 | Abovitz | Sep 2015 | A1 |
20150258431 | Stafford | Sep 2015 | A1 |
20150277610 | Kim | Oct 2015 | A1 |
20150293592 | Cheong | Oct 2015 | A1 |
20150304789 | Babayoff | Oct 2015 | A1 |
20150309629 | Amariutei | Oct 2015 | A1 |
20150323667 | Przybyla | Nov 2015 | A1 |
20150331576 | Piya | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20160019762 | Levesque | Jan 2016 | A1 |
20160019879 | Daley | Jan 2016 | A1 |
20160026253 | Bradski | Jan 2016 | A1 |
20160044417 | Clemen, Jr. | Feb 2016 | A1 |
20160124080 | Carter | May 2016 | A1 |
20160138986 | Carlin | May 2016 | A1 |
20160175701 | Froy | Jun 2016 | A1 |
20160175709 | Idris | Jun 2016 | A1 |
20160189702 | Blanc | Jun 2016 | A1 |
20160242724 | Lavallee | Aug 2016 | A1 |
20160246374 | Carter | Aug 2016 | A1 |
20160249150 | Carter | Aug 2016 | A1 |
20160291716 | Boser | Oct 2016 | A1 |
20160306423 | Uttermann | Oct 2016 | A1 |
20160320843 | Long | Nov 2016 | A1 |
20160339132 | Cosman | Nov 2016 | A1 |
20160358477 | Ansari | Dec 2016 | A1 |
20160374562 | Vertikov | Dec 2016 | A1 |
20170002839 | Bukland | Jan 2017 | A1 |
20170004819 | Ochiai | Jan 2017 | A1 |
20170018171 | Carter | Jan 2017 | A1 |
20170024921 | Beeler | Jan 2017 | A1 |
20170052148 | Estevez | Feb 2017 | A1 |
20170123487 | Hazra | May 2017 | A1 |
20170123499 | Eid | May 2017 | A1 |
20170140552 | Woo | May 2017 | A1 |
20170144190 | Hoshi | May 2017 | A1 |
20170153707 | Subramanian | Jun 2017 | A1 |
20170168586 | Sinha | Jun 2017 | A1 |
20170181725 | Han | Jun 2017 | A1 |
20170193768 | Long | Jul 2017 | A1 |
20170193823 | Jiang | Jul 2017 | A1 |
20170211022 | Reinke | Jul 2017 | A1 |
20170236506 | Przybyla | Aug 2017 | A1 |
20170249932 | Maxwell | Aug 2017 | A1 |
20170270356 | Sills | Sep 2017 | A1 |
20170279951 | Hwang | Sep 2017 | A1 |
20170336860 | Smoot | Nov 2017 | A1 |
20170366908 | Long | Dec 2017 | A1 |
20180035891 | Van Soest | Feb 2018 | A1 |
20180039333 | Carter | Feb 2018 | A1 |
20180047259 | Carter | Feb 2018 | A1 |
20180074580 | Hardee | Mar 2018 | A1 |
20180081439 | Daniels | Mar 2018 | A1 |
20180101234 | Carter | Apr 2018 | A1 |
20180139557 | Ochiai | May 2018 | A1 |
20180146306 | Benattar | May 2018 | A1 |
20180151035 | Maalouf | May 2018 | A1 |
20180166063 | Long | Jun 2018 | A1 |
20180181203 | Subramanian | Jun 2018 | A1 |
20180182372 | Tester | Jun 2018 | A1 |
20180190007 | Panteleev | Jul 2018 | A1 |
20180246576 | Long | Aug 2018 | A1 |
20180253627 | Baradel | Sep 2018 | A1 |
20180267156 | Carter | Sep 2018 | A1 |
20180271494 | Cuscuna | Sep 2018 | A1 |
20180304310 | Long | Oct 2018 | A1 |
20180309515 | Murakowski | Oct 2018 | A1 |
20180310111 | Kappus | Oct 2018 | A1 |
20180350339 | Macours | Dec 2018 | A1 |
20180361174 | Radulescu | Dec 2018 | A1 |
20190001129 | Rosenbluth | Jan 2019 | A1 |
20190038496 | Levesque | Feb 2019 | A1 |
20190091565 | Nelson | Mar 2019 | A1 |
20190163275 | Iodice | May 2019 | A1 |
20190175077 | Zhang | Jun 2019 | A1 |
20190187244 | Riccardi | Jun 2019 | A1 |
20190196578 | Iodice | Jun 2019 | A1 |
20190196591 | Long | Jun 2019 | A1 |
20190197840 | Kappus | Jun 2019 | A1 |
20190197841 | Carter | Jun 2019 | A1 |
20190197842 | Long | Jun 2019 | A1 |
20190204925 | Long | Jul 2019 | A1 |
20190206202 | Carter | Jul 2019 | A1 |
20190235628 | Lacroix | Aug 2019 | A1 |
20190257932 | Carter | Aug 2019 | A1 |
20190310710 | Deeley | Oct 2019 | A1 |
20190342654 | Buckland | Nov 2019 | A1 |
20200042091 | Long | Feb 2020 | A1 |
20200080776 | Kappus | Mar 2020 | A1 |
20200082221 | Tsai | Mar 2020 | A1 |
20200082804 | Kappus | Mar 2020 | A1 |
20200103974 | Carter | Apr 2020 | A1 |
20200117229 | Long | Apr 2020 | A1 |
20200193269 | Park | Jun 2020 | A1 |
20200218354 | Beattie | Jul 2020 | A1 |
20200257371 | Sung | Aug 2020 | A1 |
20200294299 | Rigiroli | Sep 2020 | A1 |
20200302760 | Carter | Sep 2020 | A1 |
20200320347 | Nikolenko | Oct 2020 | A1 |
20200327418 | Lyons | Oct 2020 | A1 |
20200380832 | Carter | Dec 2020 | A1 |
20210037332 | Kappus | Feb 2021 | A1 |
20210043070 | Carter | Feb 2021 | A1 |
20210056693 | Cheng | Feb 2021 | A1 |
20210109712 | Oliver | Apr 2021 | A1 |
20210111731 | Oliver | Apr 2021 | A1 |
20210112353 | Brian | Apr 2021 | A1 |
20210141458 | Sarafianou | May 2021 | A1 |
20210165491 | Sun | Jun 2021 | A1 |
20210170447 | Buckland | Jun 2021 | A1 |
20210183215 | Carter | Jun 2021 | A1 |
20210201884 | Kappus | Jul 2021 | A1 |
20210225355 | Long | Jul 2021 | A1 |
20210275141 | Eckersley | Sep 2021 | A1 |
20210303072 | Carter | Sep 2021 | A1 |
20210303758 | Long | Sep 2021 | A1 |
20210334706 | Yamaguchi | Oct 2021 | A1 |
20210381765 | Kappus | Dec 2021 | A1 |
20210397261 | Kappus | Dec 2021 | A1 |
20220000447 | Eibl | Jan 2022 | A1 |
20220035479 | Lasater | Feb 2022 | A1 |
20220083142 | Brown | Mar 2022 | A1 |
20220095068 | Kappus | Mar 2022 | A1 |
20220113806 | Long | Apr 2022 | A1 |
20220155949 | Ring | May 2022 | A1 |
20220198892 | Carter | Jun 2022 | A1 |
20220236806 | Carter | Jul 2022 | A1 |
20220252550 | Catsis | Aug 2022 | A1 |
20220300028 | Long | Sep 2022 | A1 |
20220300070 | Iodice | Sep 2022 | A1 |
20220329250 | Long | Oct 2022 | A1 |
20220393095 | Chilles | Dec 2022 | A1 |
20230036123 | Long | Feb 2023 | A1 |
20230075917 | Pittera | Mar 2023 | A1 |
20230117919 | Iodice | Apr 2023 | A1 |
20230124704 | Buckland | Apr 2023 | A1 |
20230141896 | Liu | May 2023 | A1 |
20230168228 | Kappus | Jun 2023 | A1 |
20230215248 | Lowther | Jul 2023 | A1 |
20230228857 | Carter | Jul 2023 | A1 |
20230251720 | Wren | Aug 2023 | A1 |
20230259213 | Long | Aug 2023 | A1 |
20230298444 | Kappus | Sep 2023 | A1 |
20230360504 | Kappus | Nov 2023 | A1 |
20230368771 | Kappus | Nov 2023 | A1 |
20230378966 | Long | Nov 2023 | A1 |
20240056655 | Page | Feb 2024 | A1 |
20240069640 | Long | Feb 2024 | A1 |
20240095953 | Lyons | Mar 2024 | A1 |
20240096183 | Carter | Mar 2024 | A1 |
20240129655 | Chilles | Apr 2024 | A1 |
Number | Date | Country |
---|---|---|
2470115 | Jun 2003 | CA |
2909804 | Nov 2014 | CA |
101986787 | Mar 2011 | CN |
102459900 | May 2012 | CN |
102591512 | Jul 2012 | CN |
103797379 | May 2014 | CN |
103984414 | Aug 2014 | CN |
107340871 | Nov 2017 | CN |
107407969 | Nov 2017 | CN |
107534810 | Jan 2018 | CN |
0057594 | Aug 1982 | EP |
309003 | Mar 1989 | EP |
0696670 | Feb 1996 | EP |
1875081 | Jan 2008 | EP |
1911530 | Apr 2008 | EP |
2271129 | Jan 2011 | EP |
1461598 | Apr 2014 | EP |
3207817 | Aug 2017 | EP |
3216231 | Aug 2019 | EP |
3916525 | Dec 2021 | EP |
2464117 | Apr 2010 | GB |
2513884 | Nov 2014 | GB |
2530036 | Mar 2016 | GB |
2008074075 | Apr 2008 | JP |
2010109579 | May 2010 | JP |
2011172074 | Sep 2011 | JP |
2012048378 | Mar 2012 | JP |
5477736 | Apr 2014 | JP |
2015035657 | Feb 2015 | JP |
2016035646 | Mar 2016 | JP |
2017168086 | Sep 2017 | JP |
6239796 | Nov 2017 | JP |
20120065779 | Jun 2012 | KR |
20130055972 | May 2013 | KR |
1020130055972 | May 2013 | KR |
20160008280 | Jan 2016 | KR |
20200082449 | Jul 2020 | KR |
201308837 | Feb 2013 | TW |
9118486 | Nov 1991 | WO |
9639754 | Dec 1996 | WO |
03050511 | Jun 2003 | WO |
2005017965 | Feb 2005 | WO |
2007144801 | Dec 2007 | WO |
2009071746 | Jun 2009 | WO |
2009112866 | Sep 2009 | WO |
2010003836 | Jan 2010 | WO |
2010139916 | Dec 2010 | WO |
2011132012 | Oct 2011 | WO |
2012023864 | Feb 2012 | WO |
2012104648 | Aug 2012 | WO |
2013179179 | Dec 2013 | WO |
2014181084 | Nov 2014 | WO |
2015006467 | Jan 2015 | WO |
2015039622 | Mar 2015 | WO |
2015127335 | Aug 2015 | WO |
2015194510 | Dec 2015 | WO |
2016007920 | Jan 2016 | WO |
2016073936 | May 2016 | WO |
2016095033 | Jun 2016 | WO |
2016099279 | Jun 2016 | WO |
2016132141 | Aug 2016 | WO |
2016132144 | Aug 2016 | WO |
2016137675 | Sep 2016 | WO |
2016162058 | Oct 2016 | WO |
2016171651 | Oct 2016 | WO |
2017172006 | Oct 2017 | WO |
2018109466 | Jun 2018 | WO |
2018168562 | Sep 2018 | WO |
2019190894 | Oct 2019 | WO |
2020049321 | Mar 2020 | WO |
2021130505 | Jul 2021 | WO |
2021260373 | Dec 2021 | WO |
2021262343 | Dec 2021 | WO |
Entry |
---|
Notice of Allowance dated Feb. 23, 2023 for U.S. Appl. No. 18/060,556 (pp. 1-10). |
Notice of Allowance dated Apr. 20, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-5). |
Notice of Allowance dated Apr. 22, 2020 for U.S. Appl. No. 15/671,107 (pp. 1-5). |
Notice of Allowance dated Dec. 19, 2018 for U.S. Appl. No. 15/665,629 (pp. 1-9). |
Notice of Allowance dated Dec. 21, 2018 for U.S. Appl. No. 15/983,864 (pp. 1-7). |
Notice of Allowance dated Feb. 10, 2020, for U.S. Appl. No. 16/160,862 (pp. 1-9). |
Notice of Allowance dated Feb. 7, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-7). |
Notice of Allowance dated Jul. 22, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9). |
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-9). |
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-9). |
Notice of Allowance dated Jun. 10, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-9). |
Notice of Allowance dated Jun. 17, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-9). |
Notice of Allowance dated Jun. 25, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-10). |
Notice of Allowance dated May 30, 2019 for U.S. Appl. No. 15/966,213 (pp. 1-9). |
Notice of Allowance dated Nov. 5, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-9). |
Notice of Allowance dated Oct. 1, 2020 for U.S. Appl. No. 15/897,804 (pp. 1-9). |
Notice of Allowance dated Oct. 16, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-7). |
Notice of Allowance dated Oct. 30, 2020 for US App. No. 15/839, 184 (pp. 1-9). |
Notice of Allowance dated Oct. 6, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-8). |
Notice of Allowance dated Sep. 30, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-10). |
Notice of Allowance in U.S. Appl. No. 15/210,661 dated Jun. 17, 2020 (22 pages). |
Nuttall, A. (Feb. 1981). Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing. 8 pages. |
Obrist et al., Emotions Mediated Through Mid-Air Haptics, CHI 2015, Apr. 18-23, 2015, Seoul, Republic of Korea. (10 pages). |
Obrist et al., Talking about Tactile Experiences, CHI 2013, Apr. 27-May 2, 2013 (10 pages). |
Office Action (Ex Parte Quayle Action) dated Jan. 6, 2023 for U.S. Appl. No. 17/195,795 (pp. 1-6). |
Office Action (Ex Parte Quayle Action) dated Jul. 20, 2023 for U.S. Appl. No. 16/843,281 (pp. 1-15). |
Office Action (Ex Parte Quayle Action) dated Sep. 18, 2023 for U.S. Appl. No. 18/066,267 (pp. 1-6). |
Office Action (Final Rejection) dated Jan. 9, 2023 for U.S. Appl. No. 16/144,474 (pp. 1-16). |
Office Action (Final Rejection) dated Mar. 14, 2022 for U.S. Appl. No. 16/564,016 (pp. 1-12). |
Office Action (Final Rejection) dated Mar. 21, 2023 for U.S. Appl. No. 16/995,819 (pp. 1-7). |
Office Action (Final Rejection) dated Jul. 25, 2023 for U.S. Appl. No. 17/454,823 (pp. 1-17). |
Office Action (Final Rejection) dated Aug. 30, 2023 for U.S. Appl. No. 16/564,016 (pp. 1-15). |
Office Action (Final Rejection) dated Sep. 16, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-6). |
Office Action (Final Rejection) dated Nov. 18, 2022 for U.S. Appl. No. 16/228,767 (pp. 1-27). |
Office Action (Final Rejection) dated Nov. 18, 2022 for U.S. Appl. No. 17/068,831 (pp. 1-9). |
Office Action (Final Rejection) dated Dec. 8, 2022 for U.S. Appl. No. 16/229,091 (pp. 1-9). |
Office Action (Final Rejection) dated Dec. 15, 2022 for U.S. Appl. No. 16/843,281 (pp. 1-25). |
Office Action (Non-Final Rejection) dated Jan. 21, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-12). |
Office Action (Non-Final Rejection) dated Jan. 24, 2022 for U.S. Appl. No. 16/228,767 (pp. 1-22). |
Office Action (Non-Final Rejection) dated Mar. 1, 2023 for U.S. Appl. No. 16/564,016 (pp. 1-10). |
Office Action (Non-Final Rejection) dated Mar. 4, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-5). |
Office Action (Non-Final Rejection) dated Mar. 15, 2022 for U.S. Appl. No. 16/144,474 (pp. 1-13). |
Office Action (Non-Final Rejection) dated Mar. 22, 2023 for U.S. Appl. No. 17/354,636 (pp. 1-5). |
Office Action (Non-Final Rejection) dated Apr. 1, 2022 for U.S. Appl. No. 16/229,091 (pp. 1-10). |
Office Action (Non-Final Rejection) dated Apr. 19, 2023 for U.S. Appl. No. 18/066,267 (pp. 1-11). |
Office Action (Non-Final Rejection) dated Apr. 27, 2023 for U.S. Appl. No. 16/229,091 (pp. 1-5). |
Office Action (Non-Final Rejection) dated May 2, 2022 for U.S. Appl. No. 17/068,831 (pp. 1-10). |
Office Action (Non-Final Rejection) dated May 8, 2023 for U.S. Appl. No. 18/065,603 (pp. 1-17). |
Office Action (Non-Final Rejection) dated May 10, 2023 for U.S. Appl. No. 17/477,536 (pp. 1-13). |
Office Action (Non-Final Rejection) dated May 25, 2022 for U.S. Appl. No. 16/843,281 (pp. 1-28). |
ISR and WO for PCT/GB2020/052829 (Feb. 10, 2021) (15 pages). |
ISR and WO for PCT/GB2021/052415 (Dec. 22, 2021) (16 pages). |
ISR and WO for PCT/GB2023/050001 (May 24, 2023) (20 pages). |
ISR for PCT/GB2020/052546 (Feb. 23, 2021) (14 pages). |
ISR for PCT/GB2020/053373 (Mar. 26, 2021) (16 pages). |
Iwamoto et al. (2008), Non-contact Method for Producing Tactile Sensation Using Airborne Ultrasound, EuroHaptics, pp. 504-513. |
Iwamoto et al., Airborne Ultrasound Tactile Display: Supplement, The University of Tokyo 2008 (2 pages). |
Iwamoto T et al, “Two-dimensional Scanning Tactile Display using Ultrasound Radiation Pressure”, Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on Alexandria, VA, USA Mar. 25-26, 2006, Piscataway, NJ, USA, IEEE, (Mar. 25, 2006), ISBN 978-1-4244-0226-7, pp. 57-61. |
Jager et al., “Air-Coupled 40-KHZ Ultrasonic 2D-Phased Array Based on a 3D-Printed Waveguide Structure”, 2017 IEEE, 4 pages. |
Japanese Office Action (with English language translation) for Application No. 2017-514569, dated Mar. 31, 2019, 10 pages. |
JonasChatel-Goldman, Touch increases autonomic coupling between romantic partners, Frontiers in Behavioral Neuroscience Mar. 2014, vol. 8, Article 95. |
Jonathan Taylor et al., Articulated Distance Fields for Ultra-Fast Tracking of Hands Interacting, ACM Transactions on Graphics, vol. 36, No. 4, Article 244, Publication Date: Nov. 2017, pp. 1-12. |
Jonathan Taylor et al., Efficient and Precise Interactive Hand Tracking Through Joint, Continuous Optimization of Pose and Correspondences, SIGGRAPH '16 Technical Paper, Jul. 24-28, 2016, Anaheim, CA, ISBN: 978-1-4503-4279-87/16/07, pp. 1-12. |
Jonathan Tompson et al., Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks, ACM Trans. Graph. 33, 5, Article 169, Aug. 2014, pp. 1-10. |
JP Office Action for JP 2020-534355 (Dec. 6, 2022) (8 pages). |
K. Jia, Dynamic properties of micro-particles in ultrasonic transportation using phase-controlled standing waves, J. Applied Physics 116, n. 16 (2014) (12 pages). |
Kai Tsumoto, Presentation of Tactile Pleasantness Using Airborne Ultrasound, 2021 IEEE World Haptics Conference (WHC) Jul. 6-9, 2021. Montreal, Canada. 5 pages. |
Kaiming He et al., Deep Residual Learning for Image Recognition, http://image-net.org/challenges/LSVRC/2015/ and http://mscoco.org/dataset/#detections-challenge2015, Dec. 10, 2015, pp. 1-12. |
Kamakura, T. and Aoki, K. (2006) “A Highly Directional Audio System using a Parametric Array in Air” WESPAC IX 2006 (8 pages). |
Keisuke Hasegawa, Electronically steerable ultrasound-driven long narrow air stream, Applied Physics Letters 111, 064104 (2017) 5 pages. |
Keisuke Hasegawa, Midair Ultrasound Fragrance Rendering, IEEE Transactions on Visualization and Computer Graphics, vol. 24, No. 4, Apr. 2018 1477. 9 pages. |
Keisuke Hasegawa,,Curved acceleration path of ultrasound-driven air flow, J. Appl. Phys. 125, 054902 (2019); 6 pages. |
Ken Wada, Ring Buffer Basics (2013) 6 pages. |
Kolb, et al., “Time-of-Flight Cameras in Computer Graphics,” Computer Graphics forum, vol. 29 (2010), No. 1, pp. 141-159. |
Konstantinos Bousmalis et al., Domain Separation Networks, 29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain. Aug. 22, 2016, pp. 1-15. |
Krim, et al., “Two Decades of Array Signal Processing Research—The Parametric Approach”, IEEE Signal Processing Magazine, Jul. 1996, pp. 67-94. |
Lang, Robert, “3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD—Technology”, A dissertation submitted to Department of EE and CS at Univ. of Siegen, dated Jun. 28, 2000, 223 pages. |
Large et al.,Feel the noise: Mid-air ultrasound haptics as a novel human-vehicle interaction paradigm, Applied Ergonomics (2019) (10 pages). |
Li, Larry, “Time-of-Flight Camera—An Introduction,” Texas Instruments, Technical White Paper, SLOA190B—Jan. 2014 Revised May 2014, 10 pages. |
Light, E.D., Progress in Two Dimensional Arrays for Real Time Volumetric Imaging, 1998 (17 pages). |
Line S Loken, Coding of pleasant touch by unmyelinated afferents in humans, Nature Neuroscience vol. 12 [ No. 5 [ May 2009 547. 2 pages. |
M. Barmatz et al, “Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields”, The Journal of the Acoustical Society of America, New York, NY, US, (Mar. 1, 1985), vol. 77, No. 3, pp. 928-945, XP055389249. |
M. Toda, New Type of Matching Layer for Air-Coupled Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelecthcs, and Frequency Control, vol. 49, No. 7, Jul. 2002 (8 pages). |
Mahboob, “Artificial neural networks for learning inverse kinematics of humanoid robot arms.” MS Thesis, 2015. (Year: 2015) 95 pages. |
Mahdi Rad et al., Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images, Mar. 26, 2018, pp. 1-14. |
Marco A B Andrade et al, “Matrix method for acoustic levitation simulation”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE, US, (Aug. 1, 2011), vol. 58, No. 8, ISSN 0885-3010, pp. 1674-1683. |
Mariana von Mohr, The soothing function of touch: affective touch reduces feelings of social exclusion, Scientific Reports, 7: 13516, Oct. 18, 2017. |
Marin, About LibHand, LibHand—A Hand Articulation Library, www.libhand.org/index.html, Mar. 26, 2020, pp. 1-2; www.libhand.org/download.html, 1 page; www.libhand.org/examples.html, pp. 1-2. |
Markus Oberweger et al., DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation, Aug. 28, 2017, pp. 1-10. |
Markus Oberweger et al., Hands Deep in Deep Learning for Hand Pose Estimation, Dec. 2, 2016, pp. 1-10. |
Marshall, M ., Carter, T., Alexander, J., & Subramanian, S. (2012). Ultratangibles: creating movable tangible objects on interactive tables. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, (pp. 2185-2188). |
Marzo et al., Holographic acoustic elements for manipulation of levitated objects, Nature Communications DOI: 10.1038/ncomms9661 (2015) (7 pages). |
Meijster, A., et al., “A General Algorithm for Computing Distance Transforms in Linear Time,” Mathematical Morphology and its Applications to Image and Signal Processing, 2002, pp. 331-340. |
Mingzhu Lu et al. (2006) Design and experiment of 256-element ultrasound phased array for noninvasive focused ultrasound surgery, Ultrasonics, vol. 44, Supplement, Dec. 22, 2006, pp. e325-e330. |
Mitsuru Nakajima, Remotely Displaying Cooling Sensation via Ultrasound-Driven Air Flow, Haptics Symposium 2018, San Francisco, USA p. 340. |
Mohamed Yacine Tsalamlal, Affective Communication through Air Jet Stimulation: Evidence from Event-Related Potentials, International Journal of Human—Computer Interaction 2018. 13 pages. |
Mohamed Yacine Tsalamlal, Non-Intrusive Haptic Interfaces: State-of-the Art Survey, HAID 2013, LNCS 7989, pp. 1-9, 2013. |
Montenegro et al., “Neural Network as an Alternative to the Jacobian for Iterative Solution to Inverse Kinematics,” 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE) João Pessoa, Brazil, 2018, pp. 333-338 (Year: 2018). |
Mueller, GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB, Eye in-Painting with Exemplar Generative Adverserial Networks, pp. 49-59 (Jun. 1, 2018). |
Nina Gaissert, Christian Wallraven, and Heinrich H. Bulthoff, “Visual and Haptic Perceptual Spaces Show High Similarity in Humans ”, published to Journal of Vision in 2010, available at http://www.journalofvision.org/content/10/11/2 and retrieved on Apr. 22, 2020 ( Year: 2010), 20 pages. |
Rocchesso et al., Accessing and Selecting Menu Items by In-Air Touch, ACM CHItaly'19, Sep. 23-25, 2019, Padova, Italy (9 pages). |
Rochelle Ackerley, Human C-Tactile Afferents Are Tuned to the Temperature of a Skin-Stroking Caress, J. Neurosci., Feb. 19, 2014, 34(8):2879-2883. |
Ryoko Takahashi, Tactile Stimulation by Repetitive Lateral Movement of Midair Ultrasound Focus, Journal of Latex Class Files, vol. 14, No. 8, Aug. 2015. |
Schmidt, Ralph, “Multiple Emitter Location and Signal Parameter Estimation” IEEE Transactions of Antenna and Propagation, vol. AP-34, No. 3, Mar. 1986, pp. 276-280. |
Sean Gustafson et al., “Imaginary Phone”, Proceedings of the 24th Annual ACM Symposium on User Interface Software and Techology: Oct. 16-19, 2011, Santa Barbara, CA, USA, ACM, New York, NY, Oct. 16, 2011, pp. 283-292, XP058006125, DOI: 10.1145/2047196.2047233, ISBN: 978-1-4503-0716-1. |
Search report and Written Opinion of ISA for PCT/GB2015/050417 dated Jul. 8, 2016 (20 pages). |
Search report and Written Opinion of ISA for PCT/GB2015/050421 dated Jul. 8, 2016 (15 pages). |
Search report and Written Opinion of ISA for PCT/GB2017/050012 dated Jun. 8, 2017. (18 pages). |
Search Report by EPO for EP 17748466 dated Jan. 13, 2021 (16 pages). |
Search Report for GB1308274.8 dated Nov. 11, 2013. (2 pages). |
Search Report for GB1415923.0 dated Mar. 11, 2015. (1 page). |
Search Report for PCT/GB/2017/053729 dated Mar. 15, 2018 (16 pages). |
Search Report for PCT/GB/2017/053880 dated Mar. 21, 2018. (13 pages). |
Search report for PCT/GB2014/051319 dated Dec. 8, 2014 (4 pages). |
Search report for PCT/GB2015/052507 dated Mar. 11, 2020 (19 pages). |
Search report for PCT/GB2015/052578 dated Oct. 26, 2015 (12 pages). |
Search report for PCT/GB2015/052916 dated Feb. 26, 2020 (18 pages). |
Search Report for PCT/GB2017/052332 dated Oct. 10, 2017 (12 pages). |
Search report for PCT/GB2018/051061 dated Sep. 26, 2018 (17 pages). |
Search report for PCT/US2018/028966 dated Jul. 13, 2018 (43 pages). |
Seo et al., “Improved numerical inverse kinematics for human pose estimation,” Opt. Eng. 50(3 037001 (Mar. 1, 2011) https:// doi.org/10.1117/1.3549255 (Year: 2011). |
Sergey Ioffe et al., Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariat Shift, Mar. 2, 2015, pp. 1-11. |
Seungryul, Pushing the Envelope for RGB-based Dense 3D Hand Pose Estimation for RGB-based Desne 3D Hand Pose Estimation via Neural Rendering, arXiv: 1904.04196v2 [cs.CV] Apr. 9, 2019 (5 pages). |
Shakeri, G., Williamson, J. H. and Brewster, S. (2018) May the Force Be with You: Ultrasound Haptic Feedback for Mid-Air Gesture Interaction in Cars. In: 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2018) (11 pages). |
Shanxin Yuan et al., BigHand2.2M Bechmark: Hand Pose Dataset and State of the Art Analysis, Dec. 9, 2017, pp. 1-9. |
Shome Subhra Das, Detectioin of Self Intersection in Synthetic Hand Pose Generators, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya University, Nagoya, Japan, May 8-12, 2017, pp. 354-357. |
Sixth Sense webpage, http://www.pranavmistry.com/projects/sixthsense/ Accessed Nov. 30, 2018, 7 pages. |
Smart Interface: Piezo Components with Flexible Printed Circuit Boards, www.physikinstrumente.co.uk/en/products/piezo-ceramic-components-transducers-for-oems/smart-interface/ (accessed Sep. 11, 2023) 5 pages. |
Stan Melax et al., Dynamics Based 3D Skeletal Hand Tracking, May 22, 2017, pp. 1-8. |
Stanley J. Bolanowski, Hairy Skin: Psychophysical Channels and Their Physiological Substrates, Somatosensory and Motor Research, vol. 11. No. 3, 1994, pp. 279-290. |
Stefan G. Lechner, Hairy Sensation, Physiology 28: 142-150, 2013. |
Steve Guest et al., “Audiotactile interactions in roughness perception”, Exp. Brain Res (2002) 146:161-171, DOI 10.1007/s00221-002-1164-z, /Accepted: May 16, 2002/Published online: Jul. 26, 2002, Springer-Verlag 2002, (11 pages). |
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-2). |
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-2). |
Sylvia Gebhardt, Ultrasonic Transducer Arrays for Particle Manipulation (date unknown) (2 pages). |
Takaaki Kamigaki, Noncontact Thermal and Vibrotactile Display Using Focused Airborne Ultrasound, EuroHaptics 2020, LNCS 12272, pp. 271-278, 2020. |
Takahashi Dean: “Ultrahaptics shows off sense of touch in virtual reality”, Dec. 10, 2016 (Dec. 10, 2016), XP055556416, Retrieved from the Internet: URL: https://venturebeat.com/2016/12/10/ultrahaptics-shows-off-sense-of-touch-in-virtual-reality/ [retrieved on Feb. 13, 2019] 4 pages. |
Takahashi, M. et al., Large Aperture Airborne Ultrasound Tactile Display Using Distributed Array Units, SICE Annual Conference 2010 p. 359-62. |
Takayuki et al., “Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound” IEEE Transactions on Haptics vol. 3, No. 3, p. 165 (2010). |
Teixeira, et al., “A brief introduction to Microsoft's Kinect Sensor,” Kinect, 26 pages, retrieved Nov. 2018. |
Toby Sharp et al., Accurate, Robust, and Flexible Real-time Hand Tracking, CHI '15, Apr. 18-23, 2015, Seoul, Republic of Korea, ACM 978-1-4503-3145-6/15/04, pp. 1-10. |
Tom Carter et al, “UltraHaptics: Multi-Point Mid-Air Haptic Feedback for Touch Surfaces”, Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, New York, New York, USA, (Jan. 1, 2013), ISBN 978-1-45-032268-3, pp. 505-514. |
Tom Nelligan and Dan Kass, Intro to Ultrasonic Phased Array (date unknown) (8 pages). |
Tomoo Kamakura, Acoustic streaming induced in focused Gaussian beams, J. Acoust. Soc. Am. 97 (5), Pt. 1, May 1995 p. 2740. |
Uta Sailer, How Sensory and Affective Attributes Describe Touch Targeting C-Tactile Fibers, Experimental Psychology (2020), 67(4), 224-236. |
Vincent Lepetit et al., Model Based Augmentation and Testing of an Annotated Hand Pose Dataset, ResearchGate, https://www.researchgate.net/publication/307910344, Sep. 2016, 13 pages. |
Walter, S., Nieweglowski, K., Rebenklau, L., Wolter, K. J., Lamek, B., Schubert, F., . . . & Meyendorf, N. (May 2008). Manufacturing and electrical interconnection of piezoelectric 1-3 composite materials for phased array ultrasonic transducers. In 2008 31st International Spring Seminar on Electronics Technology (pp. 255-260). |
Wang et al., Few-shot adaptive faster r-cnn.' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7173-7182. 2019. (Year: 2019). |
Wang et al., Device-Free Gesture Tracking Using Acoustic Signals, ACM MobiCom '16, pp. 82-94 (13 pages). |
Wilson et al., Perception of Ultrasonic Haptic Feedback on the Hand: Localisation and Apparent Motion, CHI 2014, Apr. 26-May 1, 2014, Toronto, Ontario, Canada. (10 pages). |
Wooh et al., “Optimum beam steering of linear phased arays,” Wave Motion 29 (1999) pp. 245-265, 21 pages. |
Xin Cheng et al, “Computation of the acoustic radiation force on a sphere based on the 3-D FDTD method”, Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2010 Symposium on, IEEE, (Feb. 10, 2010), ISBN 978-1-4244-9822-2, pp. 236-239. |
Xu Hongyi et al, “6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields”, IEEE Transactions on Haptics, IEEE, USA, vol. 10, No. 2, ISSN 1939-1412, (Sep. 27, 2016), pp. 151-161, (Jun. 16, 2017). |
Yang Ling et al, “Phase-coded approach for controllable generation of acoustical vortices”, Journal of Applied Physics, American Institute of Physics, US, vol. 113, No. 15, ISSN 0021-8979, (Apr. 21, 2013), pp. 154904-154904. |
Yarin Gal et al., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, Oct. 4, 2016, pp. 1-12, Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016, JMLR: W&CP vol. 48. |
Yaroslav Ganin et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 (2016) 1-35, submitted May 2015; published Apr. 2016. |
Yaroslav Ganin et al., Unsupervised Domain Adaptataion by Backpropagation, Skolkovo Institute of Science and Technology (Skoltech), Moscow Region, Russia, Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015, JMLR: W&CP vol. 37, copyright 2015 by the author(s), 11 pages. |
Yoshino, K. and Shinoda, H. (2013), “Visio Acoustic Screen for Contactless Touch Interface with Tactile Sensation”, University of Tokyo (5 pages). |
Zeng, Wejun, “Microsoft Kinect Sensor and Its Effect,” IEEE Multimedia, Apr.-Jun. 2012, 7 pages. |
Office Action (Non-Final Rejection) dated Jun. 9, 2022 for U.S. Appl. No. 17/080,840 (pp. 1-9). |
Office Action (Non-Final Rejection) dated Jun. 27, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-17). |
Office Action (Non-Final Rejection) dated Jun. 27, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-13). |
Office Action (Non-Final Rejection) dated Aug. 29, 2022 for U.S. Appl. No. 16/995,819 (pp. 1-6). |
Office Action (Non-Final Rejection) dated Sep. 7, 2023 for U.S. Appl. No. 16/144,474 (pp. 1-16). |
Office Action (Non-Final Rejection) dated Sep. 21, 2022 for U.S. Appl. No. 17/721,315 (pp. 1-10). |
Office Action (Non-Final Rejection) dated Oct. 17, 2022 for U.S. Appl. No. 17/807,730 (pp. 1-8). |
Office Action (Non-Final Rejection) dated Nov. 9, 2022 for U.S. Appl. No. 17/454,823 (pp. 1-16). |
Office Action (Non-Final Rejection) dated Nov. 16, 2022 for U.S. Appl. No. 17/134,505 (pp. 1-7). |
Office Action (Non-Final Rejection) dated Nov. 16, 2022 for U.S. Appl. No. 17/692,852 (pp. 1-4). |
Office Action (Non-Final Rejection) dated Dec. 6, 2022 for U.S. Appl. No. 17/409,783 (pp. 1-7). |
Office Action (Non-Final Rejection) dated Dec. 20, 2021 for U.S. Appl. No. 17/195,795 (pp. 1-7). |
Office Action (Non-Final Rejection) dated Dec. 22, 2022 for U.S. Appl. No. 17/457,663 (pp. 1-20). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jan. 18, 2022 for U.S. Appl. No. 16/899,720 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 11, 2022 for U.S. Appl. No. 16/228,760 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 28, 2022 for U.S. Appl. No. 17/068,825 (pp. 1-7). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 7, 2022 for U.S. Appl. No. 16/600,496 (pp. 1-5). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 8, 2023 for U.S. Appl. No. 17/721,315 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 15, 2023 for U.S. Appl. No. 17/134,505 (pp. 1-5). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 24, 2023 for U.S. Appl. No. 17/080,840 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Apr. 4, 2023 for U.S. Appl. No. 17/409,783 (pp. 1-5). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Apr. 6, 2023 for U.S. Appl. No. 17/807,730 (pp. 1-7). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Apr. 28, 2023 for U.S. Appl. No. 17/195,795 (pp. 1-7). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated May 12, 2023 for U.S. Appl. No. 16/229,091 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated May 24, 2023 for U.S. Appl. No. 16/229,091 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jun. 16, 2023 for U.S. Appl. No. 17/354,636 (pp. 1-7). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jul. 20, 2023 for U.S. Appl. No. 17/692,852 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 2, 2023 for U.S. Appl. No. 16/843,281 (pp. 1-5). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 8, 2023 for U.S. Appl. No. 17/645,305 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 24, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-6). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 31, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 7, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 8, 2022 for U.S. Appl. No. 17/176,899 (pp. 1-8). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 11, 2023 for U.S. Appl. No. 18/065,603 (pp. 1-11). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 12, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-7). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Oct. 31, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Oct. 31, 2022 for U.S. Appl. No. 17/176,899 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 1, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-5). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 2, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 10, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 16, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-2). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Dec. 14, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-8). |
Office Action dated Feb. 9, 2023 for U.S. Appl. No. 18/060,556 (pp. 1-5). |
Office Action dated Mar. 3, 2023 for U.S. Appl. No. 18/060,525 (pp. 1-12). |
Office Action dated Apr. 19, 2023 for U.S. Appl. No. 18/066,267 (pp. 1-11). |
Office Action dated Apr. 8, 2020, for U.S. Appl. No. 16/198,959 (pp. 1-17). |
Office Action dated Apr. 16, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-8). |
Office Action dated Apr. 17, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-15). |
Office Action dated Apr. 18, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-6). |
Office Action dated Apr. 28, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-12). |
“Flexible piezoelectric transducer for ultrasonic inspection of non-planar components.” Ultrasonics 48.5 (2008): 367-375. |
“Welcome to Project Soli” video, https://atap.google.com/#project-soli Accessed Nov. 30, 2018, 2 pages. |
A. B. Vallbo, Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects, Journal of Physiology (1995), 483.3, pp. 783-795. |
A. Sand, Head-Mounted Display with Mid-Air Tactile Feedback, Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, Nov. 13-15, 2015 (8 pages). |
Aksel Sveier et al.,Pose Estimation with Dual Quaternions and Iterative Closest Point, 2018 Annual American Control Conference (ACC) (8 pages). |
Al-Mashhadany, “Inverse Kinematics Problem (IKP) of 6-DOF Manipulator by Locally Recurrent Neural Networks (LRNNs),” Management and Service Science (MASS), International Conference on Management and Service Science., IEEE, Aug. 24, 2010, 5 pages. (Year: 2010). |
Alexander, J. et al. (2011), Adding Haptic Feedback to Mobile TV (6 pages). |
Almusawi et al., “A new artificial neural network approach in solving inverse kinematics of robotic arm (denso vp6242).” Computational intelligence and neuroscience 2016 (2016). (Year: 2016) 11 pages. |
Amanda Zimmerman, The gentle touch receptors of mammalian skin, Science, Nov. 21, 2014, vol. 346 Issue 6212, p. 950. |
Anonymous: “How does Ultrahaptics technology work?—Ultrahaptics Developer Information”, Jul. 31, 2018 (Jul. 31, 2018), XP055839320, Retrieved from the Internet: URL:https://developer.ultrahaptics.com/knowledgebase/haptics-overview/ [retrieved on Sep. 8, 2021]. |
Aoki et al., Sound location of stero reproduction with parametric loudspeakers, Applied Acoustics 73 (2012) 1289-1295 (7 pages). |
Ashish Shrivastava et al., Learning from Simulated and Unsupervised Images through Adversarial Training, Jul. 19, 2017, pp. 1-16. |
Azad et al., Deep domain adaptation under deep label scarcity. arXiv preprint arXiv:1809.08097 (2018) (Year: 2018) 10 pages. |
Bajard et al., BKM: A New Hardware Algorithm for Complex Elementary Functions, 8092 IEEE Transactions on Computers 43 (1994) (9 pages). |
Bajard et al., Evaluation of Complex Elementary Functions / A New Version of BKM, SPIE Conference on Advanced Signal Processing, Jul. 1999 (8 pages). |
Benjamin Long et al, “Rendering volumetric haptic shapes in mid-air using ultrasound”, ACM Transactions on Graphics (TOG), ACM, US, (Nov. 19, 2014), vol. 33, No. 6, ISSN 0730-0301, pp. 1-10. |
Beranek, L., & Mellow, T. (2019). Acoustics: Sound Fields, Transducers and Vibration. Academic Press, 3 pages. |
Bortoff et al., Pseudolinearization of the Acrobot using Spline Functions, IEEE Proceedings of the 31st Conference on Decision and Control, Sep. 10, 1992 (6 pages). |
Boureau et al.,“A theoretical analysis of feature pooling in visual recognition.” In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 111-118. 2010. (Year: 2010). |
Bożena Smagowska & Małgorzata Pawlaczyk-Łuszczyńska (2013) Effects of Ultrasonic Noise on the Human Body—A Bibliographic Review, International Journal of Occupational Safety and Ergonomics, 19:2, 195-202. |
Brian Kappus and Ben Long, Spatiotemporal Modulation for Mid-Air Haptic Feedback from an Ultrasonic Phased Array, ICSV25, Hiroshima, Jul. 8-12, 2018, 6 pages. |
Bybi, A., Grondel, S., Mzerd, A., Granger, C., Garoum, M., & Assaad, J. (2019). Investigation of cross-coupling in piezoelectric transducer arrays and correction. International Journal of Engineering and Technology Innovation, 9(4), 287. |
Canada Application 2,909,804 Office Action dated Oct. 18, 2019, 4 pages. |
Cappellari et al., “Identifying Electromyography Sensor Placement using Dense Neural Networks.” In DATA, pp. 130-141. 2018. ( Year: 2018). |
Casper et al., Realtime Control of Multiple-focus Phased Array Heating Patterns Based on Noninvasive Ultrasound Thermography, IEEE Trans Biomed Eng. Jan. 2012; 59(1):95-105. |
Certon, D., Felix, N., Hue, P. T. H., Patat, F., & Lethiecq, M. (Oct. 1999). Evaluation of laser probe performances for measuring cross-coupling in 1-3 piezocomposite arrays. In 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027) (vol. 2, pp. 1091-1094). |
Certon, D., Felix, N., Lacaze, E., Teston, F., & Patat, F. (2001). Investigation of cross-coupling in 1-3 piezocomposite arrays. ieee transactions on ultrasonics, ferroelectrics, and frequency control, 48(1), 85-92. |
Chang Suk Lee et al., An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter, J. Mater. Chem. C, 2018, 6, 4243 (7 pages). |
Christoper M. Bishop, Pattern Recognition and Machine Learning, 2006, pp. 1-758. |
Colgan, A., “How Does the Leap Motion Controller Work?” Leap Motion, Aug. 9, 2014, 10 pages. |
Communication Pursuant to Article 94(3) EPC for EP 19723179.8 (Feb. 15, 2022), 10 pages. |
Corrected Notice of Allowability dated Aug. 9, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-6). |
Corrected Notice of Allowability dated Jan. 14, 2021 for U.S. Appl. No. 15/897,804 (pp. 1-2). |
Corrected Notice of Allowability dated Jun. 21, 2019 for U.S. Appl. No. 15/966,213 (2 pages). |
Corrected Notice of Allowability dated Nov. 24, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-5). |
Corrected Notice of Allowability dated Oct. 31, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-2). |
Damn Geeky, “Virtual projection keyboard technology with haptic feedback on palm of your hand,” May 30, 2013, 4 pages. |
David Joseph Tan et al., Fits like a Glove: Rapid and Reliable Hand Shape Personalization, 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610-5619. |
Definition of “Interferometry” according to Wikipedia, 25 pages, Retrieved Nov. 2018. |
Definition of “Muitilateration” according to Wikipedia, 7 pages., Retrieved Nov. 2018. |
Definition of “Trilateration” according to Wikipedia, 2 pages., Retrieved Nov. 2018. |
Der et al., Inverse kinematics for reduced deformable models. ACM Transactions on graphics (TOG) 25, No. 3 (2006): 1174-1179. (Year: 2006). |
DeSilets, C. S. (1978). Transducer arrays suitable for acoustic imaging (No. GL-2833). Stanford Univ CA Edward L Ginzton Lab of Physics. 5 pages. |
Diederik P. Kingma et al., Adam: A Method for Stochastic Optimization, Jan. 30, 2017, pp. 1-15. |
Duka, “Neural network based inverse kinematics solution for trajectory tracking of a robotic arm.” Procedia Technology 12 (2014) 20-27. (Year: 2014). |
E. Bok, Metasurface for Water-to-Air Sound Transmission, Physical Review Letters 120, 044302 (2018) (6 pages). |
E.S. Ebbini et al. (1991), A spherical-section ultrasound phased array applicator for deep localized hyperthermia, Biomedical Engineering, IEEE Transactions on (vol. 38 Issue: 7), pp. 634-643. |
EPO 21186570.4 Extended Search Report dated Oct. 29, 2021, 10 pages. |
EPO Application 18 725 358.8 Examination Report Dated Sep. 22, 2021, 15 pages. |
EPO Communication for Application 18 811 906.9 (Nov. 29, 2021) (15 pages). |
EPO Examination Report 17 748 4656.4 (Jan. 12, 2021) (16 pages). |
EPO Examination Search Report 17 702 910.5 (Jun. 23, 2021) 10 pages. |
EPO ISR and WO for PCT/GB2022/050204 (Apr. 7, 2022) (15 pages). |
EPO Office Action for EP16708440.9 dated Sep. 12, 2018 (7 pages). |
EPSRC Grant summary EP/J004448/1 (2011) (1 page). |
Eric Tzeng et al., Adversarial Discriminative Domain Adaptation, Feb. 17, 2017, pp. 1-10. |
European Office Action for Application No. EP16750992.6, dated Oct. 2, 2019, 3 pages. |
Ex Parte Quayle Action dated Dec. 28, 2018 for U.S. Appl. No. 15/966,213 (pp. 1-7). |
Extended European Search Report for Application No. EP19169929.7, dated Aug. 6, 2019, 7 pages. |
Freeman et al., Tactile Feedback for Above-Device Gesture Interfaces: Adding Touch to Touchless Interactions ICMI'14, Nov. 12-16, 2014, Istanbul, Turkey (8 pages). |
Gareth Young et al.. Designing Mid-Air Haptic Gesture Controlled User Interfaces for Cars, PACM on Human-Computer Interactions, Jun. 2020 (24 pages). |
Gavrilov L R et al (2000) “A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery” Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on (vol. 47, Issue: 1), pp. 125-139. |
Gavrilov, L.R. (2008) “The Possibility of Generating Focal Regions of Complex Configurations in Application to the Problems of Stimulation of Human Receptor Structures by Focused Ultrasound” Acoustical Physics, vol. 54, No. 2, pp. 269-278. |
Georgiou et al., Haptic In-Vehicle Gesture Controls, Adjunct Proceedings of the 9th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '17), Sep. 24-27, 2017 (6 pages). |
GitHub—danfis/libccd: Library for collision detection between two convex shapes, Mar. 26, 2020, pp. 1-6. |
GitHub—IntelRealSense/hand_tracking_samples: researc codebase for depth-based hand pose estimation using dynamics based tracking and CNNs, Mar. 26, 2020, 3 pages. |
Gokturk, et al., “A Time-of-Flight Depth Sensor-System Description, Issues and Solutions,” Published in: 2004 Conference on Computer Vision and Pattern Recognition Workshop, Date of Conference: Jun. 27-Jul. 2, 2004, 9 pages. |
Guez, “Solution to the inverse kinematic problem in robotics by neural networks.” In Proceedings of the 2nd International Conference on Neural Networks, 1988. San Diego, California. (Year: 1988) 8 pages. |
Hasegawa, K. and Shinoda, H. (2013) “Aerial Display of Vibrotactile Sensation with High Spatial-Temporal Resolution using Large Aperture Airbourne Ultrasound Phased Array”, University of Tokyo (6 pages). |
Henneberg, J., Gerlach, A., Storck, H., Cebulla, H., & Marburg, S. (2018). Reducing mechanical cross-coupling in phased array transducers using stop band material as backing. Journal of Sound and Vibration, 424, 352-364. |
Henrik Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes, Lab Chip, 2012, 12, 20-28. |
Hilleges et al. Interactions in the air: adding further depth to interactive tabletops, UIST '09: Proceedings of the 22nd annual ACM symposium on User interface software and technologyOct. 2009 pp. 139-148. |
Hoshi et al.,Tactile Presentation by Airborne Ultrasonic Oscillator Array, Proceedings of Robotics and Mechatronics Lecture 2009, Japan Society of Mechanical Engineers; May 24, 2009 (5 pages). |
Hoshi T et al, “Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound”, IEEE Transactions on Haptics, IEEE, USA, (Jul. 1, 2010), vol. 3, No. 3, ISSN 1939-1412, pp. 155-165. |
Hoshi, T., Development of Aerial-Input and Aerial-Tactile-Feedback System, IEEE World Haptics Conference 2011, p. 569-573. |
Hoshi, T., Handwriting Transmission System Using Noncontact Tactile Display, IEEE Haptics Symposium 2012 pp. 399-401. |
Hoshi, T., Non-contact Tactile Sensation Synthesized by Ultrasound Transducers, Third Joint Euro haptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 2009 (5 pages). |
Hoshi, T., Touchable Holography, SIGGRAPH 2009, New Orleans, Louisiana, Aug. 3-7, 2009. (1 page). |
https://radiopaedia.org/articles/physical-principles-of-ultrasound-1?lang=GB (Accessed May 29, 2022). |
Hua J, Qin H., Haptics-based dynamic implicit solid modeling, IEEE Trans Vis Comput Graph. Sep.-Oct. 2004;10 (5):574-86. |
Hyunjae Gil, Whiskers: Exploring the Use of Ultrasonic Haptic Cues on the Face, CHI 2018, Apr. 21-26, 2018, Montréal, QC, Canada, 13 pages. |
Iddan, et al., “3D Imaging in the Studio (And Elsewhwere . . . ” Apr. 2001, 3DV systems Ltd., Yokneam, Isreal, www.3dvsystems.com.il, 9 pages. |
Imaginary Phone: Learning Imaginary Interfaces by Transferring Spatial Memory From a Familiar Device Sean Gustafson, Christian Holz and Patrick Baudisch. UIST 2011. (10 pages). |
IN 202047026493 Office Action dated Mar. 8, 2022, 6 pages. |
India Morrison, The skin as a social organ, Exp Brain Res (2010) 204:305-314. |
International Preliminary Report on Patentability and Written Opinion issued in corresponding PCT/US2017/035009, dated Dec. 4, 2018, 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2017/069569 dated Feb. 5, 2019, 11 pages. |
International Search Report and Written Opinion for App. No. PCT/GB2021/051590, dated Nov. 11, 2021, 20 pages. |
International Search Report and Written Opinion for Application No. PCT/GB2018/053738, date of mailing Apr. 11, 2019, 14 pages. |
International Search Report and Written Opinion for Application No. PCT/GB2018/053739, date of mailing Jun. 4, 2019, 16 pages. |
International Search Report and Written Opinion for Application No. PCT/GB2019/050969, date of mailing Jun. 13, 2019, 15 pages. |
International Search Report and Written Opinion for Application No. PCT/GB2019/051223, date of mailing Aug. 8, 2019, 15 pages. |
International Search Report and Written Opinion for Application No. PCT/GB2019/052510, date of mailing Jan. 14, 2020, 25 pages. |
Invitation to Pay Additional Fees for PCT/GB2022/051821 (Oct. 20, 2022), 15 pages. |
ISR & WO for PCT/GB2020/052545 (Jan. 27, 2021) 14 pages. |
ISR & WO For PCT/GB2021/052946, 15 pages. |
ISR & WO for PCT/GB2022/051388 (Aug. 30, 2022) (15 pages). |
ISR and WO for PCT/GB2020/050013 (Jul. 13, 2020) (20 pages). |
ISR and WO for PCT/GB2020/050926 (Jun. 2, 2020) (16 pages). |
ISR and WO for PCT/GB2020/052544 (Dec. 18, 2020) (14 pages). |
Office Action dated Apr. 29, 2020 for U.S. Appl. No. 16/374,301 (pp. 1-18). |
Office Action dated Apr. 4, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10). |
Office Action dated Aug. 10, 2021 for U.S. Appl. No. 16/564,016 (pp. 1-14). |
Office Action dated Aug. 19, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-9). |
Office Action dated Aug. 22, 2019 for U.S. Appl. No. 16/160,862 (pp. 1-5). |
Office Action dated Aug. 9, 2021 for U.S. Appl. No. 17/068,825 (pp. 1-9). |
Office Action dated Dec. 11, 2019 for U.S. Appl. No. 15/959,266 (pp. 1-15). |
Office Action dated Dec. 7, 2020 for U.S. Appl. No. 16/563,608 (pp. 1-8). |
Office Action dated Feb. 20, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-8). |
Office Action dated Feb. 25, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-7). |
Office Action dated Feb. 7, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-8). |
Office Action dated Jan. 10, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-6). |
Office Action dated Jan. 29, 2020 for U.S. Appl. No. 16/198,959 (p. 1-6). |
Office Action dated Jul. 10, 2019 for U.S. Appl. No. 15/210,661 (pp. 1-12). |
Office Action dated Jul. 26, 2019 for U.S. Appl. No. 16/159,695 (pp. 1-8). |
Office Action dated Jul. 9, 2020 for U.S. Appl. No. 16/228,760 (pp. 1-17). |
Office Action dated Jun. 19, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-12). |
Office Action dated Jun. 25, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-27). |
Office Action dated Jun. 25, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-5). |
Office Action dated Mar. 11, 2021 for U.S. Appl. No. 16/228,767 (pp. 1-23). |
Office Action dated Mar. 20, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-10). |
Office Action dated Mar. 31, 2021 for U.S. Appl. No. 16/228,760 (pp. 1-21). |
Office Action dated May 13, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9). |
Office Action dated May 14, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-6). |
Office Action dated May 16, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-7). |
Office Action dated May 18, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-21). |
Office Action dated Oct. 17, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10). |
Office Action dated Oct. 29, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-7). |
Office Action dated Oct. 31, 2019 for U.S. Appl. No. 15/671,107 (pp. 1-6). |
Office Action dated Oct. 7, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-9). |
Office Action dated Sep. 16, 2021 for U.S. Appl. No. 16/600,496 (pp. 1-8). |
Office Action dated Sep. 18, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-14). |
Office Action dated Sep. 21, 2020 for U.S. Appl. No. 16/198,959 (pp. 1-17). |
Office Action dated Sep. 24, 2021 for U.S. Appl. No. 17/080,840 (pp. 1-9). |
OGRECave/ogre—GitHub: ogre/Samples/Media/materials at 7de80a7483f20b50f2b10d7ac6de9d9c6c87d364, Mar. 26, 2020, 1 page. |
Oikonomidis et al., “Efficient model-based 3D tracking of hand articulations using Kinect.” In BmVC, vol. 1, No. 2, p. 3. 2011. (Year: 2011). |
Optimal regularisation for acoustic source reconstruction by inverse methods, Y. Kim, P.A. Nelson, Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, UK; 25 pages. |
Oscar Martínez-Graullera et al, “2D array design based on Fermat spiral for ultrasound imaging”, Ultrasonics, (Feb. 1, 2010), vol. 50, No. 2, ISSN 0041-624X, pp. 280-289, XP055210119. |
Oyama et al., “Inverse kinematics learning for robotic arms with fewer degrees of freedom by modular neural network systems,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta., 2005, pp. 1791-1798, doi: 10.1109/ IROS.2005.1545084. (Year: 2005). |
Papoulis, A. (1977). Signal Analysis. The University of Michigan: McGraw-Hill, pp. 92-93. |
Partial International Search Report for Application No. PCT/GB2018/053735, date of mailing Apr. 12, 2019, 14 pages. |
Partial ISR for Application No. PCT/GB2020/050013 dated May 19, 2020 (16 pages). |
Partial ISR for PCT/GB2023/050001 (Mar. 31, 2023) 13 pages. |
Patricio Rodrigues, E., Francisco de Oliveira, T., Yassunori Matuda, M., & Buiochi, F. (Sep. 2019). Design and Construction of a 2-D Phased Array Ultrasonic Transducer for Coupling in Water. In Inter-Noise and Noise-Con Congress and Conference Proceedings (vol. 259, No. 4, pp. 5720-5731). Institute of Noise Control Engineering. |
PCT Partial International Search Report for Application No. PCT/GB2018/053404 date of mailing Feb. 25, 2019, 13 pages. |
Péter Tamás Kovács et al, “Tangible Holographic 3D Objects with Virtual Touch”, Interactive Tabletops & Surfaces, ACM, 2 Penn Plaza, Suite 701 New York NY 10121-0701 USA, (Nov. 15, 2015), ISBN 978-1-4503-3899-8, pp. 319-324. |
Phys.org, Touchable Hologram Becomes Reality, Aug. 6, 2009, by Lisa Zyga (2 pages). |
Pompei, F.J. (2002), “Sound from Ultrasound: The Parametric Array as an Audible Sound Source”, Massachusetts Institute of Technology (132 pages). |
Prabhu, K. M. (2013). Window Functions and Their Applications in Signal Processing . CRC Press., pp. 87-127. |
Rakkolainen et al., A Survey of Mid-Air Ultrasound Haptics and Its Applications (IEEE Transactions on Haptics), vol. 14, No. 1, 2021, 18 pages. |
Andre J. Duerinckx, Matched gaussian apodization of pulsed acoustic phased arrays, Ultrasonic Imaging, vol. 2, Issue 4, Oct. 1980, pp. 338-369. |
EPO Examination Report for EP19769198.3 (Jul. 11, 2023) 9 pages. |
Examination Report for EP 17 826 539.3 (Aug. 2, 2023) (5 pages). |
First Examination report for ndian Patent Application No. 202247024128 (Aug. 11, 2023) (6 pages). |
IL OA for IL 278402 (Nov. 29, 2023) 4 pages. |
Inoue, A Pinchable Aerial Virtual Sphere by Acoustic Ultrasound Stationary Wave, IEEE (Year: 2014) 4 pages. |
ISR and WO for PCT/GB2023/052122 (Oct. 18, 2023) 13 pages. |
ISR and WO for PCT/GB2023/052612 (Mar. 7, 2024) 18 pages. |
Ochiai, Cross-Field Aerial Haptics: Rendering Haptic Feedback in Air with Light and Acoustic Fields, CHI (Year: 2016) 10 pages. |
Office Action (Non-Final Rejection) dated Jan. 19, 2024 for U.S. Appl. No. 18/305,354 (pp. 1-4). |
Office Action (Non-Final Rejection) dated Feb. 1, 2024 for U.S. Appl. No. 17/835,411 (pp. 1-7). |
Office Action (Non-Final Rejection) dated Mar. 14, 2024 for U.S. Appl. No. 18/188,584 (pp. 1-5). |
Office Action (Non-Final Rejection) dated Sep. 28, 2023 for U.S. Appl. No. 16/995,819 (pp. 1-8). |
Office Action (Non-Final Rejection) dated Oct. 3, 2023 for U.S. Appl. No. 18/303,386 (pp. 1-18). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jan. 31, 2024 for U.S. Appl. No. 18/352,981 (pp. 1-6). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Oct. 12, 2023 for U.S. Appl. No. 18/066,267 (pp. 1-5). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Oct. 18, 2023 for U.S. Appl. No. 17/477,536 (pp. 1-8). |
Schiefler, Generation and Analysis of Ultrasound Images Using Plane Wave and Sparse Arrays Techniques, Sensors (Year: 2018) 23 pages. |
Number | Date | Country | |
---|---|---|---|
20240021072 A1 | Jan 2024 | US |
Number | Date | Country | |
---|---|---|---|
62275030 | Jan 2016 | US | |
62275206 | Jan 2016 | US | |
62193180 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15210661 | Jul 2016 | US |
Child | 17080840 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17080840 | Oct 2020 | US |
Child | 18359951 | US |