The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for the purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings.
Embodiments described herein involve, inter alia, techniques to facilitate calibration of a media playback system. Some calibration procedures contemplated herein involve a recording devices (e.g., a control devices) of a media playback system detecting sound waves (e.g., one or more calibration sounds) that were emitted by one or more playback devices of the media playback system. A processing device, such as one of the two or more recording devices or another device that is communicatively coupled to the media playback system, may analyze the detected sound waves to determine one or more calibrations for the one or more playback devices of the media playback system. Such calibrations may configure the one or more playback devices to a given listening area (i.e., the environment in which the playback device(s) were positioned while emitting the sound waves).
In some embodiments contemplated herein, the processing device may determine two or more calibrations for the one or more playback devices. Such calibrations may configure the one or more playback devices in different ways. In operation, one of the two or more calibrations may be applied to playback by the one or more playback devices, perhaps for different use cases. Example uses cases might include music playback or surround sound (i.e., home theater), among others.
Within examples, the calibration may include spectral and/or spatial calibration. For instance, the processing device may determine a first calibration that configures the one or more playback devices to a given listening area spectrally. Such a calibration may generally help offset acoustic characteristics of the environment and be applied during certain use cases, such as music playback. The processing device may also determine a second calibration that configures the one or more playback devices to a given listening area spatially (and perhaps also spectrally). Such a calibration may configure the one or more playback devices to one or more particular locations within the environment (e.g., one or more preferred listening positions, such as favorite seating location), perhaps by adjusting time-delay and/or loudness for those particular locations. This second calibration may be applied during other use cases, such as home theater.
In some examples, the one or more playback devices may switch among the two or more calibrations based on certain conditions, which may indicate various use cases. For instance, a playback device may apply a certain calibration based on the particular audio content being played back by the playback device. To illustrate, a playback device that is playing back an audio-only track might apply a first calibration (e.g., a calibration that includes spectral calibration) while a playback device that is playing back audio associated with video might apply a second calibration (e.g., a calibration that includes spatial calibration). If the audio content changes, the playback device might apply a different calibration. Alternatively, a certain calibration may be selected via input on a control device.
Other playback conditions might also cause the playback device to apply a certain calibration. For instance a playback device may apply a particular calibration based on the content source (e.g., a physical input or streaming audio). As another example, a playback device may apply a particular calibration based on the presence of listeners (and perhaps that those listeners are in or not in certain locations). Yet further, a playback device may apply a particular calibration based on a grouping that playback device is a member of (or perhaps based on the playback device being not a member of the grouping). Other examples are possible as well.
Acoustics of an environment may vary from location to location within the environment. Because of this variation, some calibration procedures may be improved by positioning the playback device to be calibrated within the environment in the same way that the playback device will later be operated. In that position, the environment may affect the calibration sound emitted by a playback device in a similar manner as playback will be affected by the environment during operation.
Further, some example calibration procedures may involve one or more recording devices detecting the calibration sound at multiple physical locations within the environment, which may further assist in capturing acoustic variability within the environment. To facilitate detecting the calibration sound at multiple points within an environment, some calibration procedures involve a moving microphone. For example, a microphone that is detecting the calibration sound may be moved through the environment while the calibration sound is emitted. Such movement may facilitate detecting the calibration sounds at multiple physical locations within the environment, which may provide a better understanding of the environment as a whole.
As indicated above, example calibration procedures may involve a playback device emitting a calibration sound, which may be detected by multiple recording devices. In some embodiments, the detected calibration sounds may be analyzed across a range of frequencies over which the playback device is to be calibrated (i.e., a calibration range). Accordingly, the particular calibration sound that is emitted by a playback device covers the calibration frequency range. The calibration frequency range may include a range of frequencies that the playback device is capable of emitting (e.g., 15-30,000 Hz) and may be inclusive of frequencies that are considered to be in the range of human hearing (e.g., 20-20,000 Hz). By emitting and subsequently detecting a calibration sound covering such a range of frequencies, a frequency response that is inclusive of that range may be determined for the playback device. Such a frequency response may be representative of the environment in which the playback device emitted the calibration sound.
In some embodiments, a playback device may repeatedly emit the calibration sound during the calibration procedure such that the calibration sound covers the calibration frequency range during each repetition. With a moving microphone, repetitions of the calibration sound are continuously detected at different physical locations within the environment. For instance, the playback device might emit a periodic calibration sound. Each period of the calibration sound may be detected by the recording device at a different physical location within the environment thereby providing a sample (i.e., a frame representing a repetition) at that location. Such a calibration sound may therefore facilitate a space-averaged calibration of the environment. When multiple microphones are utilized, each microphone may cover a respective portion of the environment (perhaps with some overlap).
Yet further, the recording devices may measure both moving and stationary samples. For instance, while the one or more playback devices output a calibration sound, a recording device may move within the environment. During such movement, the recording device may pause at one or more locations to measure stationary samples. Such locations may correspond to preferred listening locations. In another example, a first recording device and a second recording device may include a first microphone and a second microphone respectively. While the playback device emits a calibration sound, the first microphone may move and the second microphone may remain stationary, perhaps at a particular listening location within the environment (e.g., a favorite chair).
Example techniques may involve determining two or more calibrations and/or applying a given calibration to playback by one or more playback devices. A first implementation may include detecting, via one or more microphones, at least a portion of one or more calibration sounds as emitted by one or more playback devices of a zone during a calibration sequence. Such detecting may include recording first samples of the one or more calibrations sounds while the one or more microphones are in motion through a given environment and recording second samples of the one or more calibrations sounds while the one or more microphones are stationary at one or more particular locations within the given environment. The implementation may also include determining a first calibration for the one or more playback devices based on at least the first samples of the one or more calibrations sounds and determining a second calibration for the one or more playback devices based on at least the second samples of the one or more calibrations sounds. The implementation may further include applying at least one of (a) the first calibration or (b) the second calibration to playback by the one or more playback devices.
A second implementation may include displaying, via a graphical interface one or more prompts to move the control device within a given environment during a calibration sequence of a given zone that comprises one or more playback devices and detecting, via one or more microphones, at least a portion of one or more calibration sounds as emitted by the one or more playback devices during the calibration sequence. Such detecting may include recording first samples of the one or more calibrations sounds while the one or more microphones are in motion through the given environment and recording second samples of the one or more calibrations sounds while the one or more microphones are stationary at one or more particular locations within the given environment. The implementation may also include determining a first calibration for the one or more playback devices based on at least the first samples of the one or more calibrations sounds and determining a second calibration for the one or more playback devices based on at least the second samples of the one or more calibrations sounds. The implementation may further include sending at least one of the first calibration and the second calibration to the zone.
A third implementation includes a playback device receiving (i) a first calibration and (ii) a second calibration, detecting that the playback device is playing back media content in a given playback state, and applying the one of (a) the first calibration or (b) the second calibration to playback by the playback device based on the detected given playback state.
Each of the these example implementations may be embodied as a method, a device configured to carry out the implementation, or a non-transitory computer-readable medium containing instructions that are executable by one or more processors to carry out the implementation, among other examples. It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments, including combinations of the example features described herein.
While some examples described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this description is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
Further discussions relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in
a. Example Playback Devices
In one example, the processor 202 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 206. The memory 206 may be a tangible computer-readable medium configured to store instructions executable by the processor 202. For instance, the memory 206 may be data storage that can be loaded with one or more of the software components 204 executable by the processor 202 to achieve certain functions. In one example, the functions may involve the playback device 200 retrieving audio data from an audio source or another playback device. In another example, the functions may involve the playback device 200 sending audio data to another device or playback device on a network. In yet another example, the functions may involve pairing of the playback device 200 with one or more playback devices to create a multi-channel audio environment.
Certain functions may involve the playback device 200 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener will preferably not be able to perceive time-delay differences between playback of the audio content by the playback device 200 and the one or more other playback devices. U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference, provides in more detail some examples for audio playback synchronization among playback devices.
The memory 206 may further be configured to store data associated with the playback device 200, such as one or more zones and/or zone groups the playback device 200 is a part of, audio sources accessible by the playback device 200, or a playback queue that the playback device 200 (or some other playback device) may be associated with. The data may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device 200. The memory 206 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.
The audio processing components 208 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In one embodiment, one or more of the audio processing components 208 may be a subcomponent of the processor 202. In one example, audio content may be processed and/or intentionally altered by the audio processing components 208 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback by the playback device 200, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.
Audio content to be processed and/or played back by the playback device 200 may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 214.
The network interface 214 may be configured to facilitate a data flow between the playback device 200 and one or more other devices on a data network. As such, the playback device 200 may be configured to receive audio content over the data network from one or more other playback devices in communication with the playback device 200, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 200 may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 214 may be configured to parse the digital packet data such that the data destined for the playback device 200 is properly received and processed by the playback device 200.
As shown, the network interface 214 may include wireless interface(s) 216 and wired interface(s) 218. The wireless interface(s) 216 may provide network interface functions for the playback device 200 to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device 200 is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 218 may provide network interface functions for the playback device 200 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 214 shown in
In one example, the playback device 200 and one other playback device may be paired to play two separate audio components of audio content. For instance, playback device 200 may be configured to play a left channel audio component, while the other playback device may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. The paired playback devices (also referred to as “bonded playback devices”) may further play audio content in synchrony with other playback devices.
In another example, the playback device 200 may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may be configured to process and reproduce sound differently than an unconsolidated playback device or playback devices that are paired, because a consolidated playback device may have additional speaker drivers through which audio content may be rendered. For instance, if the playback device 200 is a playback device designed to render low frequency range audio content (i.e. a subwoofer), the playback device 200 may be consolidated with a playback device designed to render full frequency range audio content. In such a case, the full frequency range playback device, when consolidated with the low frequency playback device 200, may be configured to render only the mid and high frequency components of audio content, while the low frequency range playback device 200 renders the low frequency component of the audio content. The consolidated playback device may further be paired with a single playback device or yet another consolidated playback device.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in
b. Example Playback Zone Configurations
Referring back to the media playback system 100 of
As shown in
In one example, one or more playback zones in the environment of
As suggested above, the zone configurations of the media playback system 100 may be dynamically modified, and in some embodiments, the media playback system 100 supports numerous configurations. For instance, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102 from the balcony zone to the office zone, the office zone may now include both the playback device 118 and the playback device 102. The playback device 102 may be paired or grouped with the office zone and/or renamed if so desired via a control device such as the control devices 126 and 128. On the other hand, if the one or more playback devices are moved to a particular area in the home environment that is not already a playback zone, a new playback zone may be created for the particular area.
Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For instance, the dining room zone and the kitchen zone 114 may be combined into a zone group for a dinner party such that playback devices 112 and 114 may render audio content in synchrony. On the other hand, the living room zone may be split into a television zone including playback device 104, and a listening zone including playback devices 106, 108, and 110, if the user wishes to listen to music in the living room space while another user wishes to watch television.
c. Example Control Devices
The processor 302 may be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 304 may be configured to store instructions executable by the processor 302 to perform those functions. The memory 304 may also be configured to store the media playback system controller application software and other data associated with the media playback system 100 and the user.
In one example, the network interface 306 may be based on an industry standard (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The network interface 306 may provide a means for the control device 300 to communicate with other devices in the media playback system 100. In one example, data and information (e.g., such as a state variable) may be communicated between control device 300 and other devices via the network interface 306. For instance, playback zone and zone group configurations in the media playback system 100 may be received by the control device 300 from a playback device or another network device, or transmitted by the control device 300 to another playback device or network device via the network interface 306. In some cases, the other network device may be another control device.
Playback device control commands such as volume control and audio playback control may also be communicated from the control device 300 to a playback device via the network interface 306. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the control device 300. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others. Accordingly, the control device 300 may sometimes be referred to as a controller, whether the control device 300 is a dedicated controller or a network device on which media playback system controller application software is installed.
The user interface 308 of the control device 300 may be configured to facilitate user access and control of the media playback system 100, by providing a controller interface such as the controller interface 400 shown in
The playback control region 410 may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 410 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.
The playback zone region 420 may include representations of playback zones within the media playback system 100. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 420 may be dynamically updated as playback zone or zone group configurations are modified.
The playback status region 430 may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 420 and/or the playback status region 430. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 400.
The playback queue region 440 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
Referring back to the user interface 400 of
The audio content sources region 450 may include graphical representations of selectable audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. Discussions pertaining to audio content sources may be found in the following section.
While operating as a control device of a media playback system, smartphone 500 may display one or more controller interface, such as controller interface 400. Similar to playback control region 410, playback zone region 420, playback status region 430, playback queue region 440, and/or audio content sources region 450 of
d. Example Audio Content Sources
As indicated previously, one or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g., according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of
In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of
e. Example Calibration Sequence
One or more playback devices of a media playback system may output one or more calibration sounds as part of a calibration sequence or procedure. Such a calibration sequence may calibration the one or more playback devices to particular locations within a listening area. In some cases, the one or more playback devices may be joining into a grouping, such as a bonded zone or zone group. In such cases, the calibration procedure may calibrate the one or more playback devices as a group.
The one or more playback devices may initiate the calibration procedure based on a trigger condition. For instance, a recording device, such as control device 126 of media playback system 100, may detect a trigger condition that causes the recording device to initiate calibration of one or more playback devices (e.g., one or more of playback devices 102-124). Alternatively, a playback device of a media playback system may detect such a trigger condition (and then perhaps relay an indication of that trigger condition to the recording device).
In some embodiments, detecting the trigger condition may involve detecting input data indicating a selection of a selectable control. For instance, a recording device, such as control device 126, may display an interface (e.g., control interface 400 of
To illustrate such a control,
Control interface 600 further includes a graphical region 606 that includes a video depicting how to assist in the calibration procedure. Some calibration procedures may involve moving a microphone through an environment in order to obtain samples of the calibration sound at multiple physical locations. In order to prompt a user to move the microphone, the control device may display a video or animation depicting the step or steps to be performed during the calibration.
To illustrate movement of the control device during calibration,
In other examples, detecting the trigger condition may involve a playback device detecting that the playback device has become uncalibrated, which might be caused by moving the playback device to a different position. For example, the playback device may detect physical movement via one or more sensors that are sensitive to movement (e.g., an accelerometer). As another example, the playback device may detect that it has been moved to a different zone (e.g., from a “Kitchen” zone to a “Living Room” zone), perhaps by receiving an instruction from a control device that causes the playback device to leave a first zone and join a second zone.
In further examples, detecting the trigger condition may involve a recording device (e.g., a control device or playback device) detecting a new playback device in the system. Such a playback device may have not yet been calibrated for the environment. For instance, a recording device may detect a new playback device as part of a set-up procedure for a media playback system (e.g., a procedure to configure one or more playback devices into a media playback system). In other cases, the recording device may detect a new playback device by detecting input data indicating a request to configure the media playback system (e.g., a request to configure a media playback system with an additional playback device).
In some cases, the first recording device (or another device) may instruct the one or more playback devices to emit the calibration sound. For instance, a recording device, such as control device 126 of media playback system 100, may send a command that causes a playback device (e.g., one of playback devices 102-124) to emit a calibration sound. The control device may send the command via a network interface (e.g., a wired or wireless network interface). A playback device may receive such a command, perhaps via a network interface, and responsively emit the calibration sound.
In some embodiments, the one or more playback devices may repeatedly emit the calibration sound during the calibration procedure such that the calibration sound covers the calibration frequency range during each repetition. With a moving microphone, repetitions of the calibration sound are detected at different physical locations within the environment, thereby providing samples that are spaced throughout the environment. In some cases, the calibration sound may be periodic calibration signal in which each period covers the calibration frequency range.
To facilitate determining a frequency response, the calibration sound should be emitted with sufficient energy at each frequency to overcome background noise. To increase the energy at a given frequency, a tone at that frequency may be emitted for a longer duration. However, by lengthening the period of the calibration sound, the spatial resolution of the calibration procedure is decreased, as the moving microphone moves further during each period (assuming a relatively constant velocity). As another technique to increase the energy at a given frequency, a playback device may increase the intensity of the tone. However, in some cases, attempting to emit sufficient energy in a short amount of time may damage speaker drivers of the playback device.
Some implementations may balance these considerations by instructing the playback device to emit a calibration sound having a period that is approximately ⅜th of a second in duration (e.g., in the range of ¼ to 1 second in duration). In other words, the calibration sound may repeat at a frequency of 2-4 Hz. Such a duration may be long enough to provide a tone of sufficient energy at each frequency to overcome background noise in a typical environment (e.g., a quiet room) but also be short enough that spatial resolution is kept in an acceptable range (e.g., less than a few feet assuming normal walking speed).
In some embodiments, the one or more playback devices may emit a hybrid calibration sound that combines a first component and a second component having respective waveforms. For instance, an example hybrid calibration sound might include a first component that includes noises at certain frequencies and a second component that sweeps through other frequencies (e.g., a swept-sine). A noise component may cover relatively low frequencies of the calibration frequency range (e.g., 10-50 Hz) while the swept signal component covers higher frequencies of that range (e.g., above 50 Hz). Such a hybrid calibration sound may combine the advantages of its component signals.
A swept signal (e.g., a chirp or swept sine) is a waveform in which the frequency increases or decreases with time. Including such a waveform as a component of a hybrid calibration sound may facilitate covering a calibration frequency range, as a swept signal can be chosen that increases or decreases through the calibration frequency range (or a portion thereof). For example, a chirp emits each frequency within the chirp for a relatively short time period such that a chirp can more efficiently cover a calibration range relative to some other waveforms.
However, because each frequency within the chirp is emitted for a relatively short duration of time, the amplitude (or sound intensity) of the chirp must be relatively high at low frequencies to overcome typical background noise. Some speakers might not be capable of outputting such high intensity tones without risking damage. Further, such high intensity tones might be unpleasant to humans within audible range of the playback device, as might be expected during a calibration procedure that involves a moving microphone. Accordingly, some embodiments of the calibration sound might not include a chirp that extends to relatively low frequencies (e.g., below 50 Hz). Instead, the chirp or swept signal may cover frequencies between a relatively low threshold frequency (e.g., a frequency around 50-100 Hz) and a maximum of the calibration frequency range. The maximum of the calibration range may correspond to the physical capabilities of the channel(s) emitting the calibration sound, which might be 20,000 Hz or above.
A swept signal might also facilitate the reversal of phase distortion caused by the moving microphone. As noted above, a moving microphone causes phase distortion, which may interfere with determining a frequency response from a detected calibration sound. However, with a swept signal, the phase of each frequency is predictable (as Doppler shift). This predictability facilitates reversing the phase distortion so that a detected calibration sound can be correlated to an emitted calibration sound during analysis. Such a correlation can be used to determine the effect of the environment on the calibration sound.
As noted above, a swept signal may increase or decrease frequency over time. In some embodiments, the recording device may instruct the one or more playback devices to emit a chirp that descends from the maximum of the calibration range (or above) to the threshold frequency (or below). A descending chirp may be more pleasant to hear to some listeners than an ascending chirp, due to the physical shape of the human ear canal. While some implementations may use a descending swept signal, an ascending swept signal may also be effective for calibration.
As noted above, example calibration sounds may include a noise component in addition to a swept signal component. Noise refers to a random signal, which is in some cases filtered to have equal energy per octave. In embodiments where the noise component is periodic, the noise component of a hybrid calibration sound might be considered to be pseudorandom. The noise component of the calibration sound may be emitted for substantially the entire period or repetition of the calibration sound. This causes each frequency covered by the noise component to be emitted for a longer duration, which decreases the signal intensity typically required to overcome background noise.
Moreover, the noise component may cover a smaller frequency range than the chirp component, which may increase the sound energy at each frequency within the range. As noted above, a noise component might cover frequencies between a minimum of the frequency range and a threshold frequency, which might be, for example around a frequency around 50-100 Hz. As with the maximum of the calibration range, the minimum of the calibration range may correspond to the physical capabilities of the channel(s) emitting the calibration sound, which might be 20 Hz or below.
Some implementations of a hybrid calibration sound may include a transition frequency range in which the noise component and the swept component overlap. As indicated above, in some examples, the control device may instruct the playback device to emit a calibration sound that includes a first component (e.g., a noise component) and a second component (e.g., a sweep signal component). The first component may include noise at frequencies between a minimum of the calibration frequency range and a first threshold frequency, and the second component may sweep through frequencies between a second threshold frequency and a maximum of the calibration frequency range.
To overlap these signals, the second threshold frequency may a lower frequency than the first threshold frequency. In such a configuration, the transition frequency range includes frequencies between the second threshold frequency and the first threshold frequency, which might be, for example, 50-100 Hz. By overlapping these components, the playback device may avoid emitting a possibly unpleasant sound associated with a harsh transition between the two types of sounds.
In some embodiments, a spectral adjustment may be applied to the calibration sound to give the calibration sound a desired shape, or roll off, which may avoid overloading speaker drivers. For instance, the calibration sound may be filtered to roll off at 3 dB per octave, or 1/f. Such a spectral adjustment might not be applied to vary low frequencies to prevent overloading the speaker drivers.
In some embodiments, the calibration sound may be pre-generated. Such a pre-generated calibration sound might be stored on the control device, the playback device, or on a server (e.g., a server that provides a cloud service to the media playback system). In some cases, the control device or server may send the pre-generated calibration sound to the playback device via a network interface, which the playback device may retrieve via a network interface of its own. Alternatively, a control device may send the playback device an indication of a source of the calibration sound (e.g., a URI), which the playback device may use to obtain the calibration sound.
Alternatively, the control device or the playback device may generate the calibration sound. For instance, for a given calibration range, the control device may generate noise that covers at least frequencies between a minimum of the calibration frequency range and a first threshold frequency and a swept sine that covers at least frequencies between a second threshold frequency and a maximum of the calibration frequency range. The control device may combine the swept sine and the noise into the periodic calibration sound by applying a crossover filter function. The cross-over filter function may combine a portion of the generated noise that includes frequencies below the first threshold frequency and a portion of the generated swept sine that includes frequencies above the second threshold frequency to obtain the desired calibration sound. The device generating the calibration sound may have an analog circuit and/or digital signal processor to generate and/or combine the components of the hybrid calibration sound.
Further example calibration procedures are described in U.S. patent application Ser. No. 14/805,140 filed Jul. 21, 2015, entitled “Hybrid Test Tone For Space-Averaged Room Audio Calibration Using A Moving Microphone,” U.S. patent application Ser. No. 14/805,340 filed Jul. 21, 2015, entitled “Concurrent Multi-Loudspeaker Calibration with a Single Measurement,” and U.S. patent application Ser. No. 14/864,393 filed Sep. 24, 2015, entitled “Facilitating Calibration of an Audio Playback Device,” which are incorporated herein in their entirety.
Calibration may be facilitated via one or more control interfaces, as displayed by one or more devices. Example interfaces are described in U.S. patent application Ser. No. 14/696,014 filed Apr. 24, 2015, entitled “Speaker Calibration,” and U.S. patent application Ser. No. 14/826,873 filed Aug. 14, 2015, entitled “Speaker Calibration User Interface,” which are incorporated herein in their entirety.
Moving now to several example implementations, implementations 1300, 1500 and 1600 shown in
In addition, for the implementations disclosed herein, the flowcharts show functionality and operation of one possible implementation of present embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as computer-readable media that stores data for short periods of time like register memory, processor cache, and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the implementations disclosed herein, each block may represent circuitry that is wired to perform the specific logical functions in the process.
As discussed above, embodiments described herein may facilitate the calibration of one or more playback devices by determining multiple calibrations.
a. Detect Calibration Sounds as Emitted by Playback Device(s)
At block 1302, implementation 1300 involves detecting one or more calibration sounds as emitted by one or more playback devices during a calibration sequence. For instance, a recording device (e.g., control device 126 or 128 of
Given that the recording device is moving throughout the calibration environment, the recording device may detect iterations of the calibration sound at different physical locations of the environment, which may provide a better understanding of the environment as a whole. For example, referring back to
As noted above, in some embodiment, a playback device may output a periodic calibration sound (or perhaps repeat the same calibration sound) such that the playback device measures a repetition of the calibration sound at different points along the paths. Each recorded repetition may be referred to as a frame. Different frames may represent responses of the environment to the calibration sound at various physical locations within the environment. Comparison of such frames may indicate how the acoustic characteristics change from one physical location in the environment to another, which influences the calibration determined for the playback device in that environment.
In some implementations, a recording device may measure one or more first samples (e.g., first frames) while in motion through a given environment. In some implementations, the first samples may indicate responses of the given environment to the calibration sound at a plurality of locations throughout the environment. In combination, such responses may indicate response of the environment generally. Such responses may ultimately be used in determining a first calibration for the one or more playback devices (e.g., a spectral calibration).
Further, a recording device may measure one or more second samples (e.g., second frames) while stationary at one or more particular locations within the given environment. The second samples may indicate responses of the given environment to the calibration sound at the one or more particular locations. Such locations may correspond to preferred listening locations (e.g., a favorite chair or other seated or standing location). Frames measured at such locations may represent respective response of the environment to the calibration sound as detected in those locations. A given listening location may cover a certain area (e.g., a sofa may cover a portion of a living room). As such, while measuring a response of such an location, remaining stationary while measuring samples at that location may involve some movement generally within a certain area associated with the location.
Such responses may ultimately be used in determining a second calibration for the one or more playback devices (e.g., a spatial calibration), which may configure output from the one or more speakers to those locations. In some cases, a recording device may measure multiple samples or frames at a particular location. These samples may be combined (e.g., averaged) to determine a response for that particular location.
While the recording device is detecting the one or more calibration sounds, movement of that recording device through the listening area may be detected. Such movement may be detected using a variety of sensors and techniques. For instance, the first recording device may receive movement data from a sensor, such as an accelerometer, GPS, or inertial measurement unit. In other examples, a playback device may facilitate the movement detection. For example, given that a playback device is stationary, movement of the recording device may be determined by analyzing changes in sound propagation delay between the recording device and the playback device.
Based on such detected movement, the recording device may identify first samples (e.g., frames) that were measured while the recording device was in motion and second samples that were measured while the recording device was stationary. For instance, if the movement data indicates that the recording device is stationary for a threshold period of time (e.g., more than a few seconds or so), the recording device may identify that location as a particular location (e.g., a preferred listening location) and further identify samples (e.g. frames) received at that location as corresponding to that location. Such samples may be used by a processing device to determine a calibration associated with the particular locations (e.g., a spatial calibration associated with preferred listening locations). Samples measured while the movement data indicates that the recording device is moving may be identified as first samples. These samples may be used by a processing device to determine a calibration associated with the environment generally (e.g., a spectral calibration).
In some embodiments, measuring the second samples at the one or more particular locations may include measuring distance from two or more playback devices to the one or more particular locations. For instance, a given zone under calibration may include a plurality of devices (e.g., playback devices 104, 106, 108, and/or 110 of the Living Room Zone). In operation, such devices may output audio jointly (e.g., in synchrony, or as respective channels of an audio content, such as stereo or surround sound content). Measure such distances may involve measuring respective propagation delays of sound from the playback devices to the recording device. Synchronization features of the playback devices described herein may facilitate such measurement, as sound emitted from the playback devices may be approximately simultaneous.
Using measured distances from such playback devices to a given location, a calibration can be determined to offset differences in the measured distances. For instance, a calibration may time output of audio by the respective playback devices to offset differences in the propagation delays of the respective playback devices. Such calibration may facilitate sound from two or more of the playback devices propagating to a particular location at around the same time. Yet further, such measured distances may be used to calibrate the two or more playback devices to different loudness such that a listener at the preferred location might perceive audio from the two or more to be approximately the same loudness. Other examples are possible as well.
Although some example calibration procedures contemplated herein suggest movement by the recording devices, such movement is not necessary. For instance, in an example calibration sequence, a first recording device may move through the environment while measuring moving frames (e.g., first frames) while a second recording device remains stationary at a preferred location. In other examples, each recording device may move and pause at one or more particular locations. Other combinations are possible as well.
b. Determine Calibrations
In
Some example techniques for determining a calibration are described in U.S. patent application Ser. No. 13/536,493 filed Jun. 28, 2012, entitled “System and Method for Device Playback Calibration” and published as US 2014/0003625 A1, which is incorporated herein in its entirety. Example techniques are described in paragraphs [0019]-[0025] and [0068]-[0118] as well as generally throughout the specification.
Further example techniques for determining a calibration are described in U.S. patent application Ser. No. 14/216,306 filed Mar. 17, 2014, entitled “Audio Settings Based On Environment” and published as US 2015/0263692 A1, which is incorporated herein in its entirety. Example techniques are described in paragraphs [0014]-[0025] and [0063]-[0114] as well as generally throughout the specification.
Additional example techniques for determining a calibration are described in U.S. patent application Ser. No. 14/481,511 filed Sep. 9, 2014, entitled “Playback Device Calibration” and published as US 2016/0014534 A1, which is incorporated herein in its entirety. Example techniques are described in paragraphs [0017]-[0043] and [0082]-[0184] as well as generally throughout the specification.
The processing device may be implemented in various devices. In some cases, the processing device may be a control device or a playback device of the media playback system. Such a device may operate also as a recording device, such that the processing device and the recording device are the same device. Alternatively, the processing device may be a server (e.g., a server that is providing a cloud service to the media playback system via the Internet). Other examples are possible as well.
In some implementations, the processing device may determine a first calibration based on at least the first samples of the one or more calibrations sounds. As noted above, such first samples may represent respective responses of the given environment to the calibration sound at a plurality of locations throughout the environment. In combination, such responses may indicate response of the environment generally and may ultimately be used in determining a first calibration for the one or more playback devices. For instance, the processing device may determine a spectral calibration that offsets acoustics characteristics of the environment as indicated by the response(s), perhaps by boosting or cutting output at various frequencies to offset attenuation or amplification by the environment.
To illustrate, continuing the example above, control device 126 may determine a first calibration for the Living Room zone of media playback system 100, which includes playback devices 104, 106, 108, and 110. The shape of the Living Room, the open layout leading to the Kitchen and Dining Rooms, the furniture within such rooms, and other environmental factors may give the Living Room certain acoustic characteristics (e.g., by attenuating or amplifying certain frequencies). An example first calibration may be based on samples measured by control device 126 while moving through this room (e.g., along path 700). When applied to playback by this zone, the first calibration may offset some of these acoustic characteristics by boosting or cutting frequencies affected by the environment).
The processing device may determine a second calibration based on at least the second samples of the one or more calibrations sounds. As noted above, such samples may indicate responses of the given environment to the calibration sound at the one or more particular locations. Frames measured at such locations may represent respective response of the environment to the calibration sound as detected in those locations.
Based on such responses, the second calibration may determine a calibration that adjusts output of the playback devices spectrally (e.g., a spectral calibration). Such a calibration may use the first samples and/or the second samples. In some cases, the second samples may be weighted more heavily in the calibration than the first samples, so as to offset acoustics characteristics of the environment as detected in the particular location(s). In some cases, the second samples may be weighted more heavily by virtue of these samples being more numerous (as multiple samples are measured while the recording device is stationary), which may cause a combined response to weigh towards these locations. Alternatively, the particular locations might be emphasized in the spectral calibration more explicitly, or not at all.
The second calibration may also calibrate the one or more playback devices spatially. For instance, the second calibration may offset differences in the measured distances from such playback devices to the particular location(s) that correspond to the second samples. For instance, as noted above, a calibration may time output of audio by the respective playback devices to offset differences in the propagation delays of the respective playback devices. Such calibration may facilitate sound from two or more of the playback devices propagating to a particular location at around the same time.
Yet further, such measured distances may be used to calibrate the two or more playback devices to different gains. For instance, the second calibration may adjust respective gain of the one or more playback devices to offset differences such that a listener at the preferred location might perceive audio from the two or more to be approximately the same loudness. As noted above, two or more playback devices may be joined into a bonded zone or other grouping. For instance, two playback devices may be joined into a stereo pair. A second calibration for such a stereo pair may balance gain of the stereo pair to the one or more particular locations. Other examples are possible as well.
To illustrate, continuing the example above, control device 126 may determine a second calibration for the Living Room zone of media playback system 100, perhaps in addition to the first calibration for that zone described above. An example second calibration may be based on samples measured while stationary at one or more particular locations in this room (e.g., at point 704) and perhaps also on other samples measured while moving through this room (e.g., along path 700). When applied to playback by this zone, the second calibration may calibrate the Living Room zone spectrally, perhaps by offsetting acoustic characteristics of the room. Alternatively, or additionally, the second calibration may calibrate the Living Room zone spatially, perhaps by offsetting differences in respective distances between playback devices 104, 106, 108, and/or 110 and the one or more particular locations in this room (e.g., at point 704).
c. Apply a Calibration to Playback
At block 1306, implementation 1300 involves applying a calibration to playback. For instance, a recording device (e.g., a control device) may send one or more messages that instructs the one or more playback devices to apply a particular one of two or more calibrations to playback. Such messages may also include the determined calibration, which may be stored and/or maintained on the playback device(s) or a device that is communicatively coupled to the playback device(s). Alternatively, each of the one or more playback devices may identify a particular calibration to apply, perhaps based on a use case. Yet further, a playback device acting as a group coordinator for a group of playback devices (e.g., a zone group or bonded zone) may identify a particular calibration to apply to playback by the group of playback devices. In operation, when playing back media, the applied calibration may adjust output of the playback devices.
As noted above, playback devices undergoing calibration may be a member of a zone (e.g., the zones of media playback system 100). Further, such playback devices may be joined into a grouping, such as a bonded zone or zone group, and may undergo calibration as the grouping. In such embodiments, applying a calibration may be involve applying a calibration to a zone, a zone group, a bonded zone, or other configuration into which the playback devices are arranged. Further, a given calibration may include respective calibrations for multiple playback devices, perhaps adjusted for the types or capabilities of the playback device. Yet further, as noted above, individual calibrations may adjust for respective physical locations of the playback devices.
In some implementations, the media playback system may apply a particular one of the calibrations (e.g., a first or second calibration) based on one or more operating conditions, which may be indicative of different use cases. For instance, a control device may detect that a certain change has occurred such that a particular condition is present and then instruct the playback device(s) to apply a certain calibration corresponding to that particular condition. Alternatively, a playback device may detect the condition and apply a particular calibration that corresponds to that condition. Yet further, a group coordinator may detect a condition (or receive a message indicating that such a condition is present) and apply a particular condition to playback by the group.
In some examples, the media playback system may apply a certain calibration based on the audio content being played back (or that has been instructed to be played back) by the one or more playback devices. For instance, the media playback system may detect that the one or more playback devices are playing back media content that consists of only audio (e.g., music). In such cases, the media playback system may apply a particular calibration, such as a spectral calibration (e.g., the first calibration described above). Such a calibration may tune playback across an environment generally (e.g., throughout the Living Room zone).
In some configurations, the one or more playback devices may receive media content that is associated with both audio and video (e.g., a television show or movie). The playback device(s) may play back the audio portion of the content while a television or monitor plays back the video portion. When playing back such content, the media playback system may apply a particular calibration. In some cases, the media playback system may apply a spatial calibration (e.g., the second calibration described above), as such a calibration may configure playback to one or more particular locations (e.g., a seating location within the Living Room zone of media playback system 100, which may be used to watch and listen to the media content).
The media playback system may apply a certain calibration based on the source of the audio content. For instance, some playback devices may receive content via a network interface (e.g., streaming music) or via one or more physical inputs (e.g., analog line-in input or a digital input such as TOS-LINK® or HDMI®). Receiving content via a particular one of these sources may suggest a particular use case. For instance, receiving content via the network interface may indicate music playback. As such, while receiving content via the network interface, the media playback system may apply a particular calibration (e.g., the first calibration). As another example, receiving content via a particular physical input may indicate home theater use (i.e., playback of audio from a television show or movie). While playing back content from that input, the media playback system may apply a different calibration (e.g., the second calibration).
As noted above, playback devices may be joined into various groupings, such as a zone group or bonded zone. In some implementations, upon two or more playback devices being joined into a grouping, the two or more playback devices may apply a particular calibration. For instance, a zone group of two or more zones may configure the playback devices of those zones to playback media in synchrony (e.g., to playback music across multiple zones). Based on detecting that the zone group was formed, the media playback system may apply a certain calibration associated with zone groups (or the particular zone group that was formed). This might be a spectral calibration so as to tune playback across the multiple zones generally.
In some example media playback systems, one or more of the zones may be configured to operate in one or more “zone scenes.” Zone scenes may cause one or more zones to play particular content at a particular time of day. For instance, a particular zone scene configured for the Kitchen zone of media playback system 100 might cause playback device 114 to playback a particular internet radio station (e.g., a news station) during breakfast (e.g., from 7:00 AM to 7:30 AM). Another example zone scene may cause the Living Room zone and the Dining Room zone to form a zone group to play a particular playlist at 6:00 PM (e.g., when the user typically arrives home from school or work). Further example zone scenes and techniques involving such scenes are described in U.S. patent application Ser. No. 11/853,790 filed Sep. 11, 2007, entitled “Controlling and manipulating groupings in a multi-zone media system,” which is incorporated herein in its entirety.
A given zone scene may be associated with a particular calibration. For instance, upon entering a particular zone scene, the media playback system may apply a particular calibration associated with that zone scene to playback by the one or more playback devices. Alternatively, the content or configuration associated with a zone scene may cause the playback devices to apply a particular calibration. For example, a zone scene may involve playback of a particular media content or content source that causes the playback devices to apply a particular calibration.
In further examples, a media playback system may detect the presence and/or location of listeners in proximity to the one or more playback devices (e.g., within a zone). Such listeners may be detected using various techniques. For instance, Wi-Fi or other wireless signals from personal devices (e.g., smartphones or tablets) carried by the listeners may be detected by wireless receivers on the playback devices. Alternatively, voices may be detected by microphones on one or more devices of the media playback systems. As another example, the playback devices may detect movement of listeners near the playback devices via proximity sensors. Other examples are possible as well.
The media playback devices may apply a certain calibration based on the presence and/or location of listeners relative to the to the one or more playback devices. For instance, if there are multiple listeners in a room (e.g., in proximity to the playback devices of a zone), the media playback system may apply a particular calibration (e.g., the first calibration, so as to tune playback generally across the zone). However, if the listeners are clustered near the one or more particular locations, the media playback system may apply a different calibration (e.g., the second calibration, so as to configure playback to those locations).
In yet further examples, a control device of the media playback system may display a control interface by which a particular calibration can be selected. To illustrate such an interface,
In some examples, the calibration or calibration state may be shared among devices of a media playback system using one or more state variables. Some examples techniques involving calibration state variables are described in U.S. patent application Ser. No. 14/793,190 filed Jul. 7, 2015, entitled “Calibration State Variable,” and U.S. patent application Ser. No. 14/793,205 filed Jul. 7, 2015, entitled “Calibration Indicator,” which are incorporated herein in their entirety.
As discussed above, embodiments described herein may involve applying one of multiple calibrations to playback by a media playback system.
a. Receive Calibrations
At block 1502, implementation 1500 involves receiving two or more calibrations. For instance, a playback device may receive two or more calibrations (e.g., the first and second calibrations described above in connection with implementation 1300 of
b. Detect Playback State
At block 1504, implementation 1500 involves detecting a playback state. For instance, the playback device may detect that it is playing back media content in a given playback state. Alternatively, the playback device may detect that it has been instructed to play back media content in a given playback state. Other examples are possible as well.
As described above, in some implementations, a particular may apply a particular one of the calibrations (e.g., a first or second calibration) based on one or more operating conditions, as described above in connection with block 1306 of implementation 1300. Such operating conditions may correspond to various playback states.
In some examples, the playback device may apply a certain calibration based on the audio content that the playback device is playing back (or that it has been instructed to play back). For instance, the playback device may detect that it is playing back media content that consists of only audio (e.g., music). In such cases, the playback device may apply a particular calibration, such as a spectral calibration (e.g., the first calibration described above). Such a calibration may tune playback across an environment generally (e.g., throughout the Living Room zone).
In some configurations, the playback device may receive media content that is associated with both audio and video (e.g., a television show or movie). When playing back such content, the playback device may apply a particular calibration. In some cases, the playback device may apply a spatial calibration (e.g., the second calibration described above), as such a calibration may configure playback to one or more particular locations (e.g., a seating location within the Living Room zone of media playback system 100, which may be used to watch and listen to the media content).
The playback device may apply a certain calibration based on the source of the audio content. Receiving content via a particular one of these sources may apply a particular use case. For instance, receiving content via a network interface may indicate music playback. As such, while receiving content via the network interface, the playback device may apply a particular calibration (e.g., the first calibration). As another example, receiving content via a particular physical input may indicate home theater use (i.e., playback of audio from a television show or movie). While playing back content from that input, the playback device may apply a different calibration (e.g., the second calibration).
As noted above, playback devices may be joined into various groupings, such as a zone group or bonded zone. In some implementations, upon being joined into a grouping with another playback device, the playback device may apply a particular calibration. For instance, based on detecting that the playback device has joined a particular zone group, the playback device may apply a certain calibration associated with zone groups (or with the particular zone group). This might be a spectral calibration so as to tune playback across the multiple zones generally.
As noted above, a given zone scene may be associated with a particular calibration. Upon entering a particular zone scene, the playback device may apply a particular calibration associated with that zone scene. Alternatively, the content or configuration associated with a zone scene may cause the playback device to apply a particular calibration. For example, a zone scene may involve playback of a particular media content or content source, which causes the playback device to apply a particular calibration.
As indicated above, a playback device may detect the presence and/or location of listeners in proximity to the one or more playback devices (e.g., within a zone). The playback device may apply a certain calibration based on the presence and/or location of listeners relative to the playback device. For instance, if there are multiple listeners in a room (e.g., in proximity to the playback devices of a zone), the playback device may apply a particular calibration (e.g., the first calibration, so as to configure playback generally across the zone). However, if the listeners are clustered near the one or more particular locations, the playback device may apply a different calibration (e.g., the second calibration, so as to configure playback to those locations).
In yet further examples, the playback state may be indicated to the playback device by way of one or more messages from a control device or another playback device. For instance, after receiving input that selects a particular calibration (e.g., via control interface 1400), a smartphone 500 may indicate to the playback device that a particular calibration is selected. The playback device may apply that calibration to playback. As another example, the playback device may be a member of a group, such as a bonded zone group. Another playback device, such as a group coordinator device of that group, may detect a playback state for the group and send a message indicating that playback state (or the calibration for that state) to the playback device.
c. Apply a Calibration
Referring again to
In some cases, the playback device may also apply the calibration to one or more additional playback devices. For instance, the playback device may be a member (e.g., the group coordinator) of a group (e.g., a zone group). The playback device may send messages instructing other playback devices in the group to apply the calibration. Upon receiving such a message, these playback devices may apply the calibration.
As noted above, embodiments described herein may facilitate the calibration of one or more playback devices.
a. Display Prompt(s) For Calibration Sequence
At block 1602, implementation 1600 involves displaying one or more prompts for a calibration sequence. Such prompts may serve as a guide through various aspects of a calibration sequence. For instance, such prompts may guide preparation of one or more playback devices to be calibrated, a recording device that will measure calibration sounds emitted by the one or more playback devices, and/or the environment in which the calibration will be carried out.
As noted above, example calibration sequences may involve a recording device moving through the environment so as to measure the calibration sounds at different locations. As such, example prompts displayed for a calibration sequence may include one or more prompts to move the control device. Such prompts may guide a user in moving the recording device during the calibration.
To illustrate, in
Some recording devices, such as smartphones, have microphones that are mounted towards the bottom of the device, which may position the microphone nearer to the user's mouth during a phone call. However, when the recording device is held in a hand during the calibration procedure, such a mounting position might be less than ideal for detecting the calibration sounds. For instance, in such a position, the hand might fully or partially obstruct the microphone, which may affect the microphone measuring calibration sounds emitted by the playback device. In some cases, rotating the recording device such that its microphone is oriented upwards may improve the microphone's ability to measure the calibration sounds. To offset the rotation, the recording device may display a control interface that is rotated 180 degrees, as shown in
As described above, during an example calibration procedure, a recording device may measure one or more first samples while moving through the environment and one or more second samples while stationary at one or more particular locations (e.g., one or more preferred listening locations). To suggest such a pattern of movement, the prompts to move the recording device may include displaying a prompt to move the control device continuously through the given environment for one or more first portions of the calibration sequence and also to remain stationary with the control device at the one or more particular locations within the given environment for one or more second portions of the calibration sequence. Such prompts may guide a user in moving the recording device during the calibration so as to measure both stationary samples and samples at a plurality of other locations within the environment (e.g., as measured while moving along a path).
The one or more prompts may suggest different patterns of movement to obtain such samples. In some examples, a recording device may prompt to move to a particular location (e.g., a preferred listening location) to begin the calibration. While the recording device is at that location, the recording device may measure calibration sounds emitted by the playback devices. The recording device may then prompt to move throughout the room while the recording device measures calibration sounds emitted by the playback devices. In some examples, the recording device may pause at additional locations to obtain samples at additional preferred locations. In other examples, movement of the recording device might not begin at a preferred location. Instead, the recording device may display a prompt to move throughout the room and pause at preferred listening locations. Other patterns are possible as well.
To illustrate such prompts, in
Next,
In
As indicated above, example interfaces are described in U.S. patent application Ser. No. 14/696,014 filed Apr. 24, 2015, entitled “Speaker Calibration,” and U.S. patent application Ser. No. 14/826,873 filed Aug. 14, 2015, entitled “Speaker Calibration User Interface,” which are incorporated herein in their entirety.
b. Detect Calibration Sound(s)
Referring again to
c. Determine Calibration
In
d. Send Calibrations
At block 1608, implementation 1600 involves sending one or more calibrations. For instance, the processing device may send two or more calibrations to the one or more playback devices via a network interface. The one or more playback devices may store the calibrations and apply a given one of the calibrations to playback. In embodiments in which the playback devices are configured as one or more zones, the processing device may send the calibration(s) to the zone, perhaps to be maintained by a given playback device of the zone or a device that the zone is communicatively coupled to. In some cases, the processing device may maintain the calibrations and send one or more of the calibrations to the one or more playback devices, perhaps upon request (e.g., when the playback device is applying a particular calibration). Other examples are possible as well.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
(Feature 1) A method comprising: detecting, via one or more microphones during a calibration sequence: first samples including at least a portion of one or more calibration sounds as emitted by one or more playback devices of a zone while the one or more microphones are in motion in a given environment; and second samples of the one or more calibrations sounds while the one or more microphones are stationary at one or more particular locations within the given environment; determining first and second calibrations for the one or more playback devices based on at least the first and second samples, respectively; and causing at least one of the first and second calibrations to be applied to playback by the one or more playback devices.
(Feature 2) The method of feature 1, wherein, when applied to playback by the one or more playback devices: the first calibration is configured to offset acoustic characteristics of the given environment, and the second calibration is configured to offset acoustic characteristics of the given environment and to calibrate the one or more playback devices to the one or more particular locations.
(Feature 3) The method of feature 1 or 2, wherein the second calibration is determined based on a combination of the first and second samples.
(Feature 4) The method of feature 2 or 3, wherein calibrating the one or more playback devices to the one or more particular locations comprises one or more of: offsetting propagation delay from the one or more playback devices to the one or more particular locations, and adjusting respective gains of the one or more playback devices based on respective distances from the one or more playback devices to the one or more particular locations.
(Feature 5) The method of feature 4, wherein: the one or more playback devices comprise a stereo pair, and adjusting respective gains comprises balancing gain of the stereo pair to the one or more particular locations.
(Feature 6) The method of any preceding feature, wherein applying at least one of the first and second calibrations comprises determining one of the first and second calibrations to apply to playback based on at least one of: a determination that media content being played back consists of audio; a determination that media content being played back comprises audio and video; a determination that media content being played back is received via a physical input of a given playback device, a determination that media content being played back is from a network source; a determination that one or more listeners are located in the one or more particular locations; and a determination that a plurality of listeners are located in the given environment; and a determination that the zone is joined into a zone group with a second zone of the media playback system comprising one or more additional playback devices.
(Feature 7) A control device comprising: a graphical interface; one or more microphones; and a processor configured for: causing the graphical interface to display one or more prompts to instruct a user to move the control device within a given environment during a calibration sequence of a given zone that comprises one or more playback devices; performing the method of one of features 1 to 6, wherein causing at least one of the first and second calibrations to be applied comprises sending at least one of the first and second calibrations to the zone.
(Feature 8) The control device of feature 7, wherein recording the first samples comprises: detecting, via one or more sensors, that the control device is in motion; and recording, as respective first samples, one or more first frames corresponding to respective periods of a periodic calibration tone of the emitted calibration sounds.
(Feature 9) The control device of feature 7 or 8, wherein: the control device comprises one or more sensors; and recording the second samples comprises: detecting, via the one or more sensors, that control device is stationary for a threshold period of time at a given location of the one or more particular locations; and while the control device is stationary, recording, as respective second samples, one or more second frames corresponding to respective periods of a periodic calibration tone of the emitted calibration sounds.
(Feature 10) The control device of one of features 7 to 9, wherein the displayed one or more prompts comprise: a prompt to move the control device continuously through the given environment for one or more first portions of the calibration sequence; and a prompt to remain stationary with the control device at the one or more particular locations within the given environment for one or more second portions of the calibration sequence.
(Feature 11) A processor configured for use with the control device of one of features 7 to 10.
(Feature 12) A system comprising: a control device according to one of features 7 to 10 and at least one playback device comprising one or more processors configured for: receiving first and second calibrations; and applying the one of the first and second calibrations to playback by the playback device based on a detected given playback state of the playback device.
(Feature 13) The system of feature 12, wherein the at least one playback device is configured to detect a playback state that is at least one of: media content being played back consists of audio; media content being played back comprises audio and video; media content being played back is received via physical input of a given playback device, media content being played back is from a network source; one or more listeners are located in the one or more particular locations; and a plurality of listeners are located in the given environment; and a zone comprising the playback device is joined into a zone group with a second zone one or more additional playback devices.
(Feature 14) A playback device for use with the system of feature 12 or 13.
As noted above, example techniques may involve determining two or more calibrations and/or applying a given calibration to playback by one or more playback devices. A first implementation may include detecting, via one or more microphones, at least a portion of one or more calibration sounds as emitted by one or more playback devices of a zone during a calibration sequence. Such detecting may include recording first samples of the one or more calibrations sounds while the one or more microphones are in motion through a given environment and recording second samples of the one or more calibrations sounds while the one or more microphones are stationary at one or more particular locations within the given environment. The implementation may also include determining a first calibration for the one or more playback devices based on at least the first samples of the one or more calibrations sounds and determining a second calibration for the one or more playback devices based on at least the second samples of the one or more calibrations sounds. The implementation may further include applying at least one of (a) the first calibration or (b) the second calibration to playback by the one or more playback devices.
A second implementation may include displaying, via a graphical interface one or more prompts to move the control device within a given environment during a calibration sequence of a given zone that comprises one or more playback devices and detecting, via one or more microphones, at least a portion of one or more calibration sounds as emitted by the one or more playback devices during the calibration sequence. Such detecting may include recording first samples of the one or more calibrations sounds while the one or more microphones are in motion through the given environment and recording second samples of the one or more calibrations sounds while the one or more microphones are stationary at one or more particular locations within the given environment. The implementation may also include determining a first calibration for the one or more playback devices based on at least the first samples of the one or more calibrations sounds and determining a second calibration for the one or more playback devices based on at least the second samples of the one or more calibrations sounds. The implementation may further include sending at least one of the first calibration and the second calibration to the zone.
A third implementation includes a playback device receiving (i) a first calibration and (ii) a second calibration, detecting that the playback device is playing back media content in a given playback state, and applying the one of (a) the first calibration or (b) the second calibration to playback by the playback device based on the detected given playback state.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 16/542,418, filed on Aug. 16, 2029, entitled “Calibration Based on Grouping,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 16/542,418 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 16/011,402, filed on Jun. 18, 2018, entitled “Calibration Based on Audio Content Type,” and issued as U.S. Pat. No. 10,390,161 on Aug. 20, 2019, which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 16/011,402 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/005,853, filed on Jan. 25, 2016, entitled “Calibration with Particular Locations,” and issued as U.S. Pat. No. 10,003,899 on Jun. 19, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4306113 | Morton | Dec 1981 | A |
4342104 | Jack | Jul 1982 | A |
4504704 | Ohyaba et al. | Mar 1985 | A |
4592088 | Shimada | May 1986 | A |
4628530 | Op De Beek et al. | Dec 1986 | A |
4631749 | Rapaich | Dec 1986 | A |
4694484 | Atkinson et al. | Sep 1987 | A |
4773094 | Dolby | Sep 1988 | A |
4995778 | Brussel | Feb 1991 | A |
5218710 | Yamaki et al. | Jun 1993 | A |
5255326 | Stevenson | Oct 1993 | A |
5323257 | Abe et al. | Jun 1994 | A |
5386478 | Plunkett | Jan 1995 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5553147 | Pineau | Sep 1996 | A |
5581621 | Koyama et al. | Dec 1996 | A |
5754774 | Bittinger et al. | May 1998 | A |
5757927 | Gerzon et al. | May 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5910991 | Farrar | Jun 1999 | A |
5923902 | Inagaki | Jul 1999 | A |
5939656 | Suda | Aug 1999 | A |
6018376 | Nakatani | Jan 2000 | A |
6032202 | Lea et al. | Feb 2000 | A |
6072879 | Ouchi et al. | Jun 2000 | A |
6111957 | Thomasson | Aug 2000 | A |
6256554 | Dilorenzo | Jul 2001 | B1 |
6363155 | Horbach | Mar 2002 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6469633 | Wachter et al. | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6573067 | Dib-Hajj et al. | Jun 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6639989 | Zacharov et al. | Oct 2003 | B1 |
6643744 | Cheng | Nov 2003 | B1 |
6704421 | Kitamura | Mar 2004 | B1 |
6721428 | Allred et al. | Apr 2004 | B1 |
6731760 | Pedersen | May 2004 | B2 |
6757517 | Chang | Jun 2004 | B2 |
6760451 | Craven et al. | Jul 2004 | B1 |
6766025 | Levy et al. | Jul 2004 | B1 |
6778869 | Champion | Aug 2004 | B2 |
6798889 | Dicker et al. | Sep 2004 | B1 |
6862440 | Sampath | Mar 2005 | B2 |
6916980 | Ishida et al. | Jul 2005 | B2 |
6931134 | Waller, Jr. et al. | Aug 2005 | B1 |
6985694 | De Bonet et al. | Jan 2006 | B1 |
6990211 | Parker | Jan 2006 | B2 |
7031476 | Chrisop et al. | Apr 2006 | B1 |
7039212 | Poling et al. | May 2006 | B2 |
7058186 | Tanaka | Jun 2006 | B2 |
7072477 | Kincaid | Jul 2006 | B1 |
7092537 | Allred et al. | Aug 2006 | B1 |
7103187 | Neuman | Sep 2006 | B1 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7187947 | White et al. | Mar 2007 | B1 |
7236773 | Thomas | Jun 2007 | B2 |
7289637 | Montag et al. | Oct 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7312785 | Tsuk et al. | Dec 2007 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7477751 | Lyon et al. | Jan 2009 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7483540 | Rabinowitz et al. | Jan 2009 | B2 |
7489784 | Yoshino | Feb 2009 | B2 |
7490044 | Kulkarni | Feb 2009 | B2 |
7492909 | Carter et al. | Feb 2009 | B2 |
7519188 | Berardi et al. | Apr 2009 | B2 |
7529377 | Nackvi et al. | May 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7590772 | Marriott et al. | Sep 2009 | B2 |
7630500 | Beckman et al. | Dec 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7664276 | McKee | Feb 2010 | B2 |
7676044 | Sasaki et al. | Mar 2010 | B2 |
7689305 | Kreifeldt et al. | Mar 2010 | B2 |
7720237 | Bharitkar et al. | May 2010 | B2 |
7742740 | Goldberg et al. | Jun 2010 | B2 |
7769183 | Bharitkar et al. | Aug 2010 | B2 |
7796068 | Raz et al. | Sep 2010 | B2 |
7835689 | Goldberg et al. | Nov 2010 | B2 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7876903 | Sauk | Jan 2011 | B2 |
7925203 | Lane et al. | Apr 2011 | B2 |
7949140 | Kino | May 2011 | B2 |
7949707 | McDowall et al. | May 2011 | B2 |
7961893 | Kino | Jun 2011 | B2 |
7970922 | Svendsen | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8005228 | Bharitkar et al. | Aug 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8042961 | Massara et al. | Oct 2011 | B2 |
8045721 | Burgan et al. | Oct 2011 | B2 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8050652 | Qureshey et al. | Nov 2011 | B2 |
8063698 | Howard | Nov 2011 | B2 |
8074253 | Nathan | Dec 2011 | B1 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8116476 | Inohara | Feb 2012 | B2 |
8126156 | Corbett | Feb 2012 | B2 |
8126172 | Horbach et al. | Feb 2012 | B2 |
8131390 | Braithwaite et al. | Mar 2012 | B2 |
8139774 | Berardi et al. | Mar 2012 | B2 |
8144883 | Pdersen et al. | Mar 2012 | B2 |
8160276 | Liao et al. | Apr 2012 | B2 |
8160281 | Kim et al. | Apr 2012 | B2 |
8170260 | Reining et al. | May 2012 | B2 |
8175292 | Aylward et al. | May 2012 | B2 |
8175297 | Ho et al. | May 2012 | B1 |
8194874 | Starobin et al. | Jun 2012 | B2 |
8229125 | Short | Jul 2012 | B2 |
8233632 | MacDonald et al. | Jul 2012 | B1 |
8234395 | Millington | Jul 2012 | B2 |
8238547 | Ohki et al. | Aug 2012 | B2 |
8238578 | Aylward | Aug 2012 | B2 |
8243961 | Morrill | Aug 2012 | B1 |
8264408 | Kainulainen et al. | Sep 2012 | B2 |
8265310 | Berardi et al. | Sep 2012 | B2 |
8270620 | Christensen et al. | Sep 2012 | B2 |
8279709 | Choisel et al. | Oct 2012 | B2 |
8281001 | Busam et al. | Oct 2012 | B2 |
8290185 | Kim | Oct 2012 | B2 |
8291349 | Park et al. | Oct 2012 | B1 |
8300845 | Zurek et al. | Oct 2012 | B2 |
8306235 | Mahowald | Nov 2012 | B2 |
8325931 | Howard et al. | Dec 2012 | B2 |
8325935 | Rutschman | Dec 2012 | B2 |
8325944 | Duwenhorst et al. | Dec 2012 | B1 |
8331585 | Hagen et al. | Dec 2012 | B2 |
8332414 | Nguyen et al. | Dec 2012 | B2 |
8379876 | Zhang | Feb 2013 | B2 |
8391501 | Khawand et al. | Mar 2013 | B2 |
8392505 | Haughay et al. | Mar 2013 | B2 |
8401202 | Brooking | Mar 2013 | B2 |
8433076 | Zurek et al. | Apr 2013 | B2 |
8452020 | Gregg et al. | May 2013 | B2 |
8463184 | Dua | Jun 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8488799 | Goldstein et al. | Jul 2013 | B2 |
8503669 | Mao | Aug 2013 | B2 |
8527876 | Wood et al. | Sep 2013 | B2 |
8577045 | Gibbs | Nov 2013 | B2 |
8577048 | Chaikin et al. | Nov 2013 | B2 |
8600075 | Lim | Dec 2013 | B2 |
8620006 | Berardi et al. | Dec 2013 | B2 |
8682002 | Wihardja et al. | Mar 2014 | B2 |
8731206 | Park | May 2014 | B1 |
8755538 | Kwon | Jun 2014 | B2 |
8798280 | Goldberg et al. | Aug 2014 | B2 |
8819554 | Basso et al. | Aug 2014 | B2 |
8831244 | Apfel | Sep 2014 | B2 |
8855319 | Liu et al. | Oct 2014 | B2 |
8862273 | Karr | Oct 2014 | B2 |
8879761 | Johnson et al. | Nov 2014 | B2 |
8903526 | Beckhardt et al. | Dec 2014 | B2 |
8914559 | Kalayjian et al. | Dec 2014 | B2 |
8930005 | Reimann et al. | Jan 2015 | B2 |
8934647 | Joyce et al. | Jan 2015 | B2 |
8934655 | Breen et al. | Jan 2015 | B2 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8965033 | Wiggins | Feb 2015 | B2 |
8965546 | Visser et al. | Feb 2015 | B2 |
8977974 | Kraut | Mar 2015 | B2 |
8984442 | Pirnack et al. | Mar 2015 | B2 |
8989406 | Wong et al. | Mar 2015 | B2 |
8995687 | Marino, Jr. et al. | Mar 2015 | B2 |
8995688 | Chemtob et al. | Mar 2015 | B1 |
8996370 | Ansell | Mar 2015 | B2 |
9020153 | Britt, Jr. | Apr 2015 | B2 |
9021153 | Lu | Apr 2015 | B2 |
9042556 | Kallai et al. | May 2015 | B2 |
9065929 | Chen et al. | Jun 2015 | B2 |
9084058 | Reilly et al. | Jul 2015 | B2 |
9100766 | Soulodre et al. | Aug 2015 | B2 |
9106192 | Sheen et al. | Aug 2015 | B2 |
9179233 | Kang | Nov 2015 | B2 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9219460 | Bush | Dec 2015 | B2 |
9231545 | Agustin et al. | Jan 2016 | B2 |
9264839 | Oishi et al. | Feb 2016 | B2 |
9286384 | Kuper et al. | Mar 2016 | B2 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9307340 | Seefeldt | Apr 2016 | B2 |
9319816 | Narayanan | Apr 2016 | B1 |
9398392 | Ridihalgh et al. | Jul 2016 | B2 |
9451377 | Massey et al. | Sep 2016 | B2 |
9462399 | Bharitkar et al. | Oct 2016 | B2 |
9467779 | Iyengar et al. | Oct 2016 | B2 |
9472201 | Sleator | Oct 2016 | B1 |
9473207 | McCormack et al. | Oct 2016 | B2 |
9489948 | Chu et al. | Nov 2016 | B1 |
9524098 | Griffiths et al. | Dec 2016 | B2 |
9538305 | Lehnert et al. | Jan 2017 | B2 |
9538308 | Isaac et al. | Jan 2017 | B2 |
9544701 | Rappoport | Jan 2017 | B1 |
9560449 | Carlsson et al. | Jan 2017 | B2 |
9560460 | Chaikin et al. | Jan 2017 | B2 |
9584915 | Fullam | Feb 2017 | B2 |
9609383 | Hirst | Mar 2017 | B1 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9648422 | Sheen et al. | May 2017 | B2 |
9654073 | Apodaca | May 2017 | B2 |
9674625 | Armstrong-Muntner et al. | Jun 2017 | B2 |
9678708 | Bierbower et al. | Jun 2017 | B2 |
9686625 | Patel | Jun 2017 | B2 |
9689960 | Barton et al. | Jun 2017 | B1 |
9690271 | Sheen et al. | Jun 2017 | B2 |
9690539 | Sheen et al. | Jun 2017 | B2 |
9699582 | Sheerin et al. | Jul 2017 | B2 |
9706323 | Sheen et al. | Jul 2017 | B2 |
9715365 | Kusano et al. | Jul 2017 | B2 |
9723420 | Family et al. | Aug 2017 | B2 |
9729984 | Tan et al. | Aug 2017 | B2 |
9736584 | Sheen et al. | Aug 2017 | B2 |
9743207 | Hartung | Aug 2017 | B1 |
9743208 | Oishi et al. | Aug 2017 | B2 |
9749763 | Sheen | Aug 2017 | B2 |
9763018 | McPherson et al. | Sep 2017 | B1 |
9781532 | Sheen | Oct 2017 | B2 |
9788113 | Wilberding et al. | Oct 2017 | B2 |
9794722 | Petrov | Oct 2017 | B2 |
9807536 | Liu | Oct 2017 | B2 |
9860662 | Jarvis et al. | Jan 2018 | B2 |
9864574 | Hartung et al. | Jan 2018 | B2 |
9910634 | Sheen | Mar 2018 | B2 |
9913056 | Master et al. | Mar 2018 | B2 |
9916126 | Lang | Mar 2018 | B2 |
9952825 | Sheen | Apr 2018 | B2 |
9984703 | Ur et al. | May 2018 | B2 |
10045142 | McPherson et al. | Aug 2018 | B2 |
10125006 | Jacobsen et al. | Nov 2018 | B2 |
10127006 | Sheen | Nov 2018 | B2 |
10154359 | Sheen | Dec 2018 | B2 |
10206052 | Perianu | Feb 2019 | B2 |
10299061 | Sheen | May 2019 | B1 |
10402154 | Hartung et al. | Sep 2019 | B2 |
20010038702 | Lavoie et al. | Nov 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20010043592 | Jimenez et al. | Nov 2001 | A1 |
20010053228 | Jones | Dec 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020078161 | Cheng | Jun 2002 | A1 |
20020089529 | Robbin | Jul 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20020126852 | Kashani et al. | Sep 2002 | A1 |
20020136414 | Jordan et al. | Sep 2002 | A1 |
20020146136 | Carter, Jr. | Oct 2002 | A1 |
20030002689 | Folio | Jan 2003 | A1 |
20030031334 | Layton et al. | Feb 2003 | A1 |
20030081115 | Curry et al. | May 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20030159569 | Ohta | Aug 2003 | A1 |
20030161479 | Yang et al. | Aug 2003 | A1 |
20030161492 | Miller et al. | Aug 2003 | A1 |
20030179891 | Rabinowitz et al. | Sep 2003 | A1 |
20030235311 | Grancea et al. | Dec 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040114771 | Vaughan et al. | Jun 2004 | A1 |
20040131338 | Asada et al. | Jul 2004 | A1 |
20040237750 | Smith et al. | Dec 2004 | A1 |
20050021470 | Martin et al. | Jan 2005 | A1 |
20050031143 | Devantier et al. | Feb 2005 | A1 |
20050063554 | Devantier et al. | Mar 2005 | A1 |
20050147261 | Yeh | Jul 2005 | A1 |
20050157885 | Olney et al. | Jul 2005 | A1 |
20050276425 | Forrester et al. | Dec 2005 | A1 |
20060008256 | Khedouri et al. | Jan 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060032357 | Roovers et al. | Feb 2006 | A1 |
20060153391 | Hooley et al. | Jul 2006 | A1 |
20060195480 | Spiegelman et al. | Aug 2006 | A1 |
20060225097 | Lawrence-Apfelbaum | Oct 2006 | A1 |
20070003067 | Gierl et al. | Jan 2007 | A1 |
20070025559 | Mihelich et al. | Feb 2007 | A1 |
20070032895 | Nackvi et al. | Feb 2007 | A1 |
20070038999 | Millington | Feb 2007 | A1 |
20070086597 | Kino | Apr 2007 | A1 |
20070116254 | Looney et al. | May 2007 | A1 |
20070121955 | Johnston et al. | May 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20080002839 | Eng | Jan 2008 | A1 |
20080014989 | Sandegard et al. | Jan 2008 | A1 |
20080065247 | Igoe | Mar 2008 | A1 |
20080069378 | Rabinowitz et al. | Mar 2008 | A1 |
20080077261 | Baudino et al. | Mar 2008 | A1 |
20080098027 | Aarts | Apr 2008 | A1 |
20080136623 | Calvarese | Jun 2008 | A1 |
20080144864 | Huon et al. | Jun 2008 | A1 |
20080175411 | Greve | Jul 2008 | A1 |
20080214160 | Jonsson | Sep 2008 | A1 |
20080232603 | Soulodre et al. | Sep 2008 | A1 |
20080266385 | Smith et al. | Oct 2008 | A1 |
20080281523 | Dahl et al. | Nov 2008 | A1 |
20090003613 | Christensen et al. | Jan 2009 | A1 |
20090024662 | Park et al. | Jan 2009 | A1 |
20090047993 | Vasa | Feb 2009 | A1 |
20090063274 | Dublin, III et al. | Mar 2009 | A1 |
20090110218 | Swain | Apr 2009 | A1 |
20090138507 | Burckart et al. | May 2009 | A1 |
20090147134 | Iwamatsu | Jun 2009 | A1 |
20090175476 | Bottum | Jul 2009 | A1 |
20090180632 | Goldberg et al. | Jul 2009 | A1 |
20090196428 | Kim | Aug 2009 | A1 |
20090202082 | Bharitkar et al. | Aug 2009 | A1 |
20090252481 | Ekstrand | Oct 2009 | A1 |
20090285404 | Hsu et al. | Nov 2009 | A1 |
20090304194 | Eggleston et al. | Dec 2009 | A1 |
20090304205 | Hardacker et al. | Dec 2009 | A1 |
20090316923 | Tashev et al. | Dec 2009 | A1 |
20100013550 | Tanaka | Jan 2010 | A1 |
20100095332 | Gran et al. | Apr 2010 | A1 |
20100104114 | Chapman | Apr 2010 | A1 |
20100128902 | Liu et al. | May 2010 | A1 |
20100135501 | Corbett et al. | Jun 2010 | A1 |
20100142735 | Yoon et al. | Jun 2010 | A1 |
20100146445 | Kraut | Jun 2010 | A1 |
20100162117 | Basso et al. | Jun 2010 | A1 |
20100189203 | Wilhelmsson et al. | Jul 2010 | A1 |
20100195846 | Yokoyama | Aug 2010 | A1 |
20100272270 | Chaikin et al. | Oct 2010 | A1 |
20100296659 | Tanaka | Nov 2010 | A1 |
20100303248 | Tawada | Dec 2010 | A1 |
20100303250 | Goldberg et al. | Dec 2010 | A1 |
20100323793 | Andall | Dec 2010 | A1 |
20110007904 | Tomoda et al. | Jan 2011 | A1 |
20110007905 | Sato et al. | Jan 2011 | A1 |
20110029111 | Sabin et al. | Feb 2011 | A1 |
20110087842 | Lu et al. | Apr 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110135103 | Sun et al. | Jun 2011 | A1 |
20110150228 | Yoon et al. | Jun 2011 | A1 |
20110150230 | Tanaka | Jun 2011 | A1 |
20110150247 | Oliveras | Jun 2011 | A1 |
20110170710 | Son | Jul 2011 | A1 |
20110234480 | Fino et al. | Sep 2011 | A1 |
20110235808 | Kon | Sep 2011 | A1 |
20110268281 | Florencio et al. | Nov 2011 | A1 |
20110293123 | Neumeyer et al. | Dec 2011 | A1 |
20120032928 | Alberth et al. | Feb 2012 | A1 |
20120051558 | Kim et al. | Mar 2012 | A1 |
20120057724 | Rabinowitz et al. | Mar 2012 | A1 |
20120063615 | Crockett et al. | Mar 2012 | A1 |
20120093320 | Flaks et al. | Apr 2012 | A1 |
20120114152 | Nguyen et al. | May 2012 | A1 |
20120127831 | Gicklhorn et al. | May 2012 | A1 |
20120140936 | Bonnick et al. | Jun 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120183156 | Schlessinger et al. | Jul 2012 | A1 |
20120184335 | Kim et al. | Jul 2012 | A1 |
20120213391 | Usami et al. | Aug 2012 | A1 |
20120215530 | Harsch et al. | Aug 2012 | A1 |
20120237037 | Ninan et al. | Sep 2012 | A1 |
20120243697 | Frye et al. | Sep 2012 | A1 |
20120263325 | Freeman et al. | Oct 2012 | A1 |
20120268145 | Chandra et al. | Oct 2012 | A1 |
20120269356 | Sheerin et al. | Oct 2012 | A1 |
20120275613 | Soulodre et al. | Nov 2012 | A1 |
20120283593 | Searchfield et al. | Nov 2012 | A1 |
20120288124 | Fejzo et al. | Nov 2012 | A1 |
20130003981 | Lane | Jan 2013 | A1 |
20130010970 | Hegarty et al. | Jan 2013 | A1 |
20130019193 | Rhee et al. | Jan 2013 | A1 |
20130028443 | Pance et al. | Jan 2013 | A1 |
20130051572 | Goh et al. | Feb 2013 | A1 |
20130066453 | Seefeldt | Mar 2013 | A1 |
20130108055 | Hanna et al. | May 2013 | A1 |
20130129102 | Li et al. | May 2013 | A1 |
20130129122 | Johnson et al. | May 2013 | A1 |
20130166227 | Hermann et al. | Jun 2013 | A1 |
20130170647 | Reilly et al. | Jul 2013 | A1 |
20130179535 | Baalu et al. | Jul 2013 | A1 |
20130202131 | Kemmochi et al. | Aug 2013 | A1 |
20130211843 | Clarkson | Aug 2013 | A1 |
20130216071 | Maher et al. | Aug 2013 | A1 |
20130223642 | Warren et al. | Aug 2013 | A1 |
20130230175 | Bech et al. | Sep 2013 | A1 |
20130259254 | Xiang et al. | Oct 2013 | A1 |
20130279706 | Marti et al. | Oct 2013 | A1 |
20130305152 | Griffiths et al. | Nov 2013 | A1 |
20130315405 | Kanishima et al. | Nov 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt et al. | Dec 2013 | A1 |
20130346559 | Van Erven et al. | Dec 2013 | A1 |
20140003611 | Mohammad et al. | Jan 2014 | A1 |
20140003622 | Ikizyan et al. | Jan 2014 | A1 |
20140003623 | Lang | Jan 2014 | A1 |
20140003625 | Sheen et al. | Jan 2014 | A1 |
20140003626 | Holman et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140006587 | Kusano | Jan 2014 | A1 |
20140016784 | Sen et al. | Jan 2014 | A1 |
20140016786 | Sen | Jan 2014 | A1 |
20140016802 | Sen | Jan 2014 | A1 |
20140023196 | Xiang et al. | Jan 2014 | A1 |
20140029201 | Yang et al. | Jan 2014 | A1 |
20140032709 | Saussy et al. | Jan 2014 | A1 |
20140037097 | Labosco | Feb 2014 | A1 |
20140037107 | Marino, Jr. et al. | Feb 2014 | A1 |
20140052770 | Gran et al. | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140079242 | Nguyen et al. | Mar 2014 | A1 |
20140084014 | Sim et al. | Mar 2014 | A1 |
20140086423 | Domingo et al. | Mar 2014 | A1 |
20140112481 | Li et al. | Apr 2014 | A1 |
20140119551 | Bharitkar et al. | May 2014 | A1 |
20140126730 | Crawley et al. | May 2014 | A1 |
20140161265 | Chaikin et al. | Jun 2014 | A1 |
20140169569 | Toivanen et al. | Jun 2014 | A1 |
20140180684 | Strub | Jun 2014 | A1 |
20140192986 | Lee et al. | Jul 2014 | A1 |
20140219456 | Morrell et al. | Aug 2014 | A1 |
20140219483 | Hong | Aug 2014 | A1 |
20140226823 | Sen et al. | Aug 2014 | A1 |
20140242913 | Pang | Aug 2014 | A1 |
20140267148 | Luna et al. | Sep 2014 | A1 |
20140270202 | Ivanov et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140273859 | Luna et al. | Sep 2014 | A1 |
20140274212 | Zurek et al. | Sep 2014 | A1 |
20140279889 | Luna et al. | Sep 2014 | A1 |
20140285313 | Luna et al. | Sep 2014 | A1 |
20140286496 | Luna et al. | Sep 2014 | A1 |
20140294200 | Baumgarte et al. | Oct 2014 | A1 |
20140294201 | Johnson et al. | Oct 2014 | A1 |
20140310269 | Zhang et al. | Oct 2014 | A1 |
20140321670 | Nystrom et al. | Oct 2014 | A1 |
20140323036 | Daley et al. | Oct 2014 | A1 |
20140334644 | Selig et al. | Nov 2014 | A1 |
20140341399 | Dusse | Nov 2014 | A1 |
20140344689 | Scott et al. | Nov 2014 | A1 |
20140355768 | Sen et al. | Dec 2014 | A1 |
20140355794 | Morrell et al. | Dec 2014 | A1 |
20140364056 | Belk et al. | Dec 2014 | A1 |
20150011195 | Li | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150023509 | Devantier et al. | Jan 2015 | A1 |
20150031287 | Pang et al. | Jan 2015 | A1 |
20150032844 | Tarr et al. | Jan 2015 | A1 |
20150036847 | Donaldson | Feb 2015 | A1 |
20150036848 | Donaldson | Feb 2015 | A1 |
20150043736 | Olsen et al. | Feb 2015 | A1 |
20150063610 | Mossner | Mar 2015 | A1 |
20150078586 | Ang et al. | Mar 2015 | A1 |
20150078596 | Sprogis et al. | Mar 2015 | A1 |
20150100991 | Risberg et al. | Apr 2015 | A1 |
20150146886 | Baumgarte | May 2015 | A1 |
20150149943 | Nguyen et al. | May 2015 | A1 |
20150161360 | Paruchuri et al. | Jun 2015 | A1 |
20150195666 | Massey et al. | Jul 2015 | A1 |
20150201274 | Ellner et al. | Jul 2015 | A1 |
20150208184 | Tan et al. | Jul 2015 | A1 |
20150220558 | Snibbe et al. | Aug 2015 | A1 |
20150223002 | Mehta et al. | Aug 2015 | A1 |
20150229699 | Liu | Aug 2015 | A1 |
20150260754 | Perotti et al. | Sep 2015 | A1 |
20150264023 | Reno | Sep 2015 | A1 |
20150271616 | Kechichian et al. | Sep 2015 | A1 |
20150271620 | Lando et al. | Sep 2015 | A1 |
20150281866 | Williams et al. | Oct 2015 | A1 |
20150286360 | Wachter | Oct 2015 | A1 |
20150289064 | Jensen et al. | Oct 2015 | A1 |
20150358756 | Harma et al. | Dec 2015 | A1 |
20150382128 | Ridihalgh et al. | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160011846 | Sheen | Jan 2016 | A1 |
20160011850 | Sheen et al. | Jan 2016 | A1 |
20160014509 | Hansson et al. | Jan 2016 | A1 |
20160014510 | Sheen | Jan 2016 | A1 |
20160014511 | Sheen et al. | Jan 2016 | A1 |
20160014534 | Sheen | Jan 2016 | A1 |
20160014536 | Sheen | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160021473 | Riggi et al. | Jan 2016 | A1 |
20160021481 | Johnson et al. | Jan 2016 | A1 |
20160027467 | Proud | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160035337 | Aggarwal et al. | Feb 2016 | A1 |
20160036881 | Tembey et al. | Feb 2016 | A1 |
20160037277 | Matsumoto et al. | Feb 2016 | A1 |
20160061597 | De et al. | Mar 2016 | A1 |
20160073210 | Sheen | Mar 2016 | A1 |
20160088438 | O'Keeffe | Mar 2016 | A1 |
20160119730 | Virtanen | Apr 2016 | A1 |
20160140969 | Srinivasan et al. | May 2016 | A1 |
20160165297 | Jamal-Syed et al. | Jun 2016 | A1 |
20160192098 | Oishi et al. | Jun 2016 | A1 |
20160192099 | Oishi et al. | Jun 2016 | A1 |
20160212535 | Le Nerriec et al. | Jul 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160254696 | Plumb et al. | Sep 2016 | A1 |
20160260140 | Shirley et al. | Sep 2016 | A1 |
20160309276 | Ridihalgh et al. | Oct 2016 | A1 |
20160330562 | Crockett | Nov 2016 | A1 |
20160353018 | Anderson et al. | Dec 2016 | A1 |
20160366517 | Chandran et al. | Dec 2016 | A1 |
20170026769 | Patel | Jan 2017 | A1 |
20170041724 | Master et al. | Feb 2017 | A1 |
20170069338 | Elliot et al. | Mar 2017 | A1 |
20170083279 | Sheen | Mar 2017 | A1 |
20170086003 | Rabinowitz et al. | Mar 2017 | A1 |
20170105084 | Holman | Apr 2017 | A1 |
20170142532 | Pan | May 2017 | A1 |
20170207762 | Porter et al. | Jul 2017 | A1 |
20170223447 | Johnson et al. | Aug 2017 | A1 |
20170230772 | Johnson et al. | Aug 2017 | A1 |
20170257722 | Kerdranvat et al. | Sep 2017 | A1 |
20170280265 | Po | Sep 2017 | A1 |
20170286052 | Hartung et al. | Oct 2017 | A1 |
20170303039 | Iyer et al. | Oct 2017 | A1 |
20170311108 | Patel | Oct 2017 | A1 |
20170374482 | McPherson et al. | Dec 2017 | A1 |
20180122378 | Mixter et al. | May 2018 | A1 |
20180376268 | Kerdranvat | Dec 2018 | A1 |
20190037328 | McPherson et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1369188 | Sep 2002 | CN |
1447624 | Oct 2003 | CN |
1622694 | Jun 2005 | CN |
1984507 | Jun 2007 | CN |
101032187 | Sep 2007 | CN |
101047777 | Oct 2007 | CN |
101366177 | Feb 2009 | CN |
101491116 | Jul 2009 | CN |
101681219 | Mar 2010 | CN |
101754087 | Jun 2010 | CN |
101800051 | Aug 2010 | CN |
102004823 | Apr 2011 | CN |
102318325 | Jan 2012 | CN |
102823277 | Dec 2012 | CN |
102893633 | Jan 2013 | CN |
103491397 | Jan 2014 | CN |
103811010 | May 2014 | CN |
103988523 | Aug 2014 | CN |
104219604 | Dec 2014 | CN |
104247461 | Dec 2014 | CN |
104284291 | Jan 2015 | CN |
104584061 | Apr 2015 | CN |
105163221 | Dec 2015 | CN |
0505949 | Sep 1992 | EP |
0772374 | May 1997 | EP |
1133896 | Aug 2002 | EP |
1349427 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2043381 | Apr 2009 | EP |
1349427 | Dec 2009 | EP |
2161950 | Mar 2010 | EP |
2194471 | Jun 2010 | EP |
2197220 | Jun 2010 | EP |
2288178 | Feb 2011 | EP |
2429155 | Mar 2012 | EP |
1825713 | Oct 2012 | EP |
2613573 | Jul 2013 | EP |
2591617 | Jun 2014 | EP |
2747081 | Jun 2014 | EP |
2835989 | Feb 2015 | EP |
2860992 | Apr 2015 | EP |
2874413 | May 2015 | EP |
3128767 | Feb 2017 | EP |
2974382 | Apr 2017 | EP |
2986034 | May 2017 | EP |
3285502 | Feb 2018 | EP |
H02280199 | Nov 1990 | JP |
H05199593 | Aug 1993 | JP |
H05211700 | Aug 1993 | JP |
H06327089 | Nov 1994 | JP |
H0723490 | Jan 1995 | JP |
H1069280 | Mar 1998 | JP |
H10307592 | Nov 1998 | JP |
2002502193 | Jan 2002 | JP |
2003143252 | May 2003 | JP |
2003304590 | Oct 2003 | JP |
2005086686 | Mar 2005 | JP |
2005538633 | Dec 2005 | JP |
2006017893 | Jan 2006 | JP |
2006180039 | Jul 2006 | JP |
2006340285 | Dec 2006 | JP |
2007068125 | Mar 2007 | JP |
2007271802 | Oct 2007 | JP |
2008228133 | Sep 2008 | JP |
2009188474 | Aug 2009 | JP |
2010056970 | Mar 2010 | JP |
2010081124 | Apr 2010 | JP |
2010141892 | Jun 2010 | JP |
2011123376 | Jun 2011 | JP |
2011130212 | Jun 2011 | JP |
2011164166 | Aug 2011 | JP |
2011217068 | Oct 2011 | JP |
2013247456 | Dec 2013 | JP |
2013253884 | Dec 2013 | JP |
6356331 | Jul 2018 | JP |
6567735 | Aug 2019 | JP |
1020060116383 | Nov 2006 | KR |
1020080011831 | Feb 2008 | KR |
200153994 | Jul 2001 | WO |
0182650 | Nov 2001 | WO |
200182650 | Nov 2001 | WO |
2003093950 | Nov 2003 | WO |
2004066673 | Aug 2004 | WO |
2007016465 | Feb 2007 | WO |
2011139502 | Nov 2011 | WO |
2013016500 | Jan 2013 | WO |
2013126603 | Aug 2013 | WO |
2014032709 | Mar 2014 | WO |
2014032709 | Mar 2014 | WO |
2014036121 | Mar 2014 | WO |
2015024881 | Feb 2015 | WO |
2015108794 | Jul 2015 | WO |
2015178950 | Nov 2015 | WO |
2016040324 | Mar 2016 | WO |
2017049169 | Mar 2017 | WO |
Entry |
---|
Advisory Action dated Jul. 1, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 2 pages. |
Advisory Action dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 3 pages. |
Advisory Action dated Dec. 11, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 3 pages. |
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 3 pages. |
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 3 pages. |
Advisory Action dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 3 pages. |
Advisory Action dated Jun. 19, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 3 pages. |
Advisory Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 3 pages. |
Advisory Action dated Jun. 3, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 3 pages. |
Advisory Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 3 pages. |
Advisory Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 3 pages. |
An Overview of IEEE 1451.4 Transducer Electronic Data Sheets (TEDS) National Instruments, 19 pages. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Bluetooth. “Specification of the Bluetooth System: the ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Burger, Dennis, “Automated Room Correction Explained,” hometheaterreview.com, Nov. 18, 2013, http://hometheaterreview.com/automated-room-correction-explained/ Retrieved Oct. 10, 2014, 3 pages. |
Chinese Patent Office, First Office Action and Translation dated Jun. 19, 2019, issued in connection with Chinese Application No. 201680054189.X, 11 pages. |
Chinese Patent Office, First Office Action and Translation dated Jun. 29, 2020, issued in connection with Chinese Application No. 201780057093.3, 11 pages. |
Chinese Patent Office, First Office Action and Translation dated Aug. 4, 2020, issued in connection with Chinese Application No. 201910395715.4, 22 pages. |
Chinese Patent Office, First Office Action dated Aug. 11, 2017, issued in connection with Chinese Patent Application No. 201580013837.2, 8 pages. |
Chinese Patent Office, First Office Action dated Nov. 20. 2018, issued in connection with Chinese Application No. 201580047998.3, 21 pages. |
Chinese Patent Office, First Office Action dated Sep. 25, 2017, issued in connection with Chinese Patent Application No. 201580013894.0, 9 pages. |
Chinese Patent Office, First Office Action dated Nov. 5, 2018, issued in connection with Chinese Application No. 201680044080.8, 5 pages. |
Chinese Patent Office, Office Action dated Nov. 14,2019, issued in connection with Chinese Application No. 201680040086.8, 9 pages. |
Chinese Patent Office, Second Office Action and Translation dated Aug. 26, 2019, issued in connection with Chinese Application No. 201580047998.3, 25 pages. |
Chinese Patent Office, Second Office Action dated Jan. 11, 2019, issued in connection with Chinese Application No. 201680044080.8, 4 pages. |
Chinese Patent Office, Second Office Action dated Feb. 3, 2019, issued in connection with Chinese Application No. 201580048594.6, 11 pages. |
Chinese Patent Office, Second Office Action dated May 6, 2020, issued in connection with Chinese Application No. 201680040086.8, 3 pages. |
Chinese Patent Office, Second Office Action with Translation dated Jan. 9, 2018, issued in connection with Chinese Patent Application No. 201580013837.2, 10 pages. |
Chinese Patent Office, Third Office Action dated Apr. 11, 2019, issued in connection with Chinese Application No. 201580048594.6, 4 pages. |
“Constellation Acoustic System: a revolutionary breakthrough in acoustical design,” Meyer Sound Laboratories, Inc. 2012, 32 pages. |
“Constellation Microphones,” Meyer Sound Laboratories, Inc. 2013, 2 pages. |
Corrected Notice of Allowability dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 11 pages. |
Daddy, B., “Calibrating Your Audio with a Sound Pressure Level (SPL) Meter,” Blue-ray.com, Feb. 22, 2008 Retrieved Oct. 10, 2014, 15 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European Examination Report dated May 11, 2018, issued in connection with European Application No. 16748186.0, 6 pages. |
European Patent Office, European Extended Search Report dated Mar. 16, 2020, issued in connection with European Application No. 19209551.1, 7 pages. |
European Patent Office, European Extended Search Report dated Oct. 16, 2018, issued in connection with European Application No. 17185193.4, 6 pages. |
European Patent Office, European Extended Search Report dated Jul. 17, 2019, issued in connection with European Application No. 19167365.6, 7 pages. |
European Patent Office, European Extended Search Report dated Mar. 25, 2020, issued in connection with European Application No. 19215348.4, 10 pages. |
European Patent Office, European Extended Search Report dated Jun. 26, 2018, issued in connection with European Application No. 18171206.8, 9 pages. |
European Patent Office, European Extended Search Report dated Sep. 8, 2017, issued in connection with European Application No. 17000460.0, 8 pages. |
European Patent Office, European Office Action dated Nov. 10, 2020, issued in connection with European Application No. 19168800.1, 5 pages. |
European Patent Office, European Office Action dated Dec. 11, 2018, issued in connection with European Application No. 15778787.0, 6 pages. |
European Patent Office, European Office Action dated Jul. 11, 2019, issued in connection with European Application No. 15778787.0, 10 pages. |
European Patent Office, European Office Action dated Sep. 16, 2020, issued in connection with European European Application No. 15778787.0, 7 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Apr. 5, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 4 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Oct. 7, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 5 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Feb. 16, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 5 pages. |
Gonzalez et al., “Simultaneous Measurement of Multichannel Acoustic Systems,” J. Audio Eng. Soc., 2004, pp. 26-42, vol. 52, No. 1/2. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 24, 2015, issued in connection with International Application No. PCT/US2014/030560, filed on Mar. 17, 2014, 7 pages. |
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 8 pages. |
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 9 pages. |
International Bureau, International Preliminary Report on Patentability, dated Aug. 9, 2018, issued in connection with International Application No. PCT/US2017/014596, filed on Jan. 23, 2017, 11 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Mar. 23, 2017, issued in connection with International Patent Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 8 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028994 filed on Apr. 22, 2016, 7 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jul. 4, 2016, issued in connection with International Application No. PCT/US2016/028994, filed on Apr. 22, 2016, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jul. 5, 2016, issued in connection with International Application No. PCT/US2016/028997, filed on Apr. 22, 2016, 13 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jun. 5, 2015, issued in connection with International Application No. PCT/US2015/021000, filed on Mar. 17, 2015, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 12, 2016, issued in connection with International Application No. PCT/US2016/041179 filed on Jul. 6, 2016, 9 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jun. 16, 2015, issued in connection with International Application No. PCT/US2015/020993, filed on Mar. 17, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 18, 2015, issued in connection with International Application No. PCT/US2015/048954, filed on Sep. 8, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043116, filed on Jul. 20, 2016, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043840, filed on Jul. 25, 2016, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048942, filed on Sep. 8, 2015, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048944, filed on Sep. 8, 2015, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2016, issued in connection with International Patent Application No. PCT/US2016/052266, filed on Sep. 16, 2016, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jan. 24, 2017, issued in connection with International Application No. PCT/US2016/052264, filed on Sep. 16, 2016, 17 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 25, 2016, issued in connection with International Application No. PCT/US2016/043109, filed on Jul. 20, 2016, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Sep. 25, 2017, issued in connection with International Application No. PCT/US2017/042191, filed on Jul. 14, 2017, 16 pages. |
International Searching Authority, International Search Report and Written Opinion dated Aug. 3, 2017, in connection with International Application No. PCT/US2017014596, 20 pages. |
Japanese Patent Office, English Translation of Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 4 pages. |
Japanese Patent Office, Japanese Office Action dated Oct. 3, 2017, issued in connection with Japanese Application No. 2017-501082, 7 pages. |
Japanese Patent Office, Non-Final Office Action and Translation dated Dec. 10, 2019, issued in connection with Japanese Patent Application No. 2018-213477, 8 pages. |
Japanese Patent Office, Non-Final Office Action with Translation dated Apr. 25, 2017, issued in connection with Japanese Patent Application No. 2016-568888, 7 pages. |
Japanese Patent Office, Non-Final Office Action with Translation dated Oct. 3, 2017, issued in connection with Japanese Patent Application No. 2017-501082, 3 pages. |
Japanese Patent Office, Office Action and Translation dated Jun. 12, 2020, issued in connection with Japanese Patent Application No. 2019-056360, 6 pages. |
Japanese Patent Office, Office Action and Translation dated Nov. 4, 2020, issued in connection with Japanese Patent Application No. 2019-141349, 6 pages. |
Japanese Patent Office, Office Action dated Jun. 12, 2018, issued in connection with Japanese Application No. 2018-502729, 4 pages. |
Japanese Patent Office, Office Action dated May 14, 2019, issued in connection with Japanese Patent Application No. 2018-500529, 8 pages. |
Japanese Patent Office, Office Action dated Aug. 21, 2018, issued in connection with Japanese Application No. 2018-514418, 7 pages. |
Japanese Patent Office, Office Action dated Jul. 24, 2018, issued in connection with Japanese Application No. 2018-514419, 5 pages. |
Japanese Patent Office, Office Action dated Feb. 4, 2020, issued in connection with Japanese Patent Application No. 2018-500529, 6 pages. |
Japanese Patent Office, Office Action dated Jun. 4, 2019, issued in connection with Japanese Patent Application No. 2018-112810, 4 pages. |
Japanese Patent Office, Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 8 pages. |
Japanese Patent Office, Office Action with English Summary dated Jul. 18, 2017, issued in connection with Japanese Patent Application No. 2017-513171, 4 pages. |
Japanese Patent Office, Translation of Office Action dated May 14, 2019, issued in connection with Japanese Patent Application No. 2018-500529, 5 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
John Mark and Paul Hufnagel “What is 1451.4, what are its uses and how does it work?” IEEE Standards Association, The IEEE 1451.4 Standard for Smart Transducers, 14pages. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages. |
“AuEQ for the iPhone,” Mar. 25, 2015, retrieved from the internet: URL:https://web.archive.org/web20150325152629/http://www.hotto.de/mobileapps/iphoneaueq.html [retrieved on Jun. 24, 2016], 6 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Microsoft Corporation, “Using Microsoft Outlook 2003,” Cambridge College, 2003. |
Motorola, “Simplefi, Wireless Digital Audio Receiver, Installation and User Guide,” Dec. 31, 2001, 111 pages. |
Mulcahy, John, “Room EQ Wizard: Room Acoustics Software,” REW, 2014, retrieved Oct. 10, 2014, 4 pages. |
Non-Final Action dated Jan. 29, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages. |
Notice of Allowance dated Sep. 23, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 7 pages. |
Notice of Allowance dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 13 pages. |
Notice of Allowance dated Jul. 24, 2020, issued in connection with U.S. Appl. No. 16/665,415, filed Oct. 28, 2019, 12 pages. |
Notice of Allowance dated May 24, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 5 pages. |
Notice of Allowance dated Nov. 24, 2017, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages. |
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 7 pages. |
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 7 pages. |
Notice of Allowance dated Apr. 25, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 8 pages. |
Notice of Allowance dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages. |
Notice of Allowance dated Feb. 26, 2016, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 7 pages. |
Notice of Allowance dated Jul. 26, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 12 pages. |
Notice of Allowance dated Oct. 26, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 11 pages. |
Notice of Allowance dated Feb. 27, 2017, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 9 pages. |
Notice of Allowance dated Jul. 27, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages. |
Notice of Allowance dated Jun. 27, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 8 pages. |
Notice of Allowance dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/555,832, filed Aug. 29, 2019, 5 pages. |
Notice of Allowance dated Aug. 28, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 5 pages. |
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 10 pages. |
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 15/211,822, filed Jul. 15, 2016, 9 pages. |
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 5 pages. |
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 11 pages. |
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 8 pages. |
Notice of Allowance dated Aug. 29, 2019, issued in connection with U.S. Appl. No. 16/185,906, filed Nov. 9, 2018, 8 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages. |
Notice of Allowance dated Jul. 29, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 11 pages. |
Notice of Allowance dated Oct. 29, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 9 pages. |
Notice of Allowance dated May 3, 2019, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 7 pages. |
Notice of Allowance dated May 3, 2019, issued in connection with U.S. Appl. No. 16/181,583, filed Nov. 6, 2018, 7 pages. |
Notice of Allowance dated Aug. 30, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 10 pages. |
Notice of Allowance dated Dec. 30, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages. |
Notice of Allowance dated Jan. 30, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 8 pages. |
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 7 pages. |
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 8 pages. |
Notice of Allowance dated Mar. 31, 2020, issued in connection with U.S. Appl. No. 16/538,629, filed Aug. 12, 2019, 9 pages. |
Notice of Allowance dated Apr. 4, 2017, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages. |
Notice of Allowance dated Feb. 4, 2019, issued in connection with U.S. Appl. No. 15/166,241, filed Aug. 26, 2016, 8 pages. |
Notice of Allowance dated Feb. 4, 2019, issued in connection with U.S. Appl. No. 16/181,583, filed Nov. 6, 2018, 9 pages. |
Notice of Allowance dated Feb. 4, 2020, issued in connection with U.S. Appl. No. 16/416,619, filed May 20, 2019, 7 pages. |
Notice of Allowance dated Oct. 4, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 7 pages. |
Notice of Allowance dated Apr. 5, 2018, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages. |
Notice of Allowance dated Jun. 5, 2019, issued in connection with U.S. Appl. No. 15/859,311, filed Dec. 29, 2017, 8 pages. |
Notice of Allowance dated Jun. 5, 2019, issued in connection with U.S. Appl. No. 15/865,221, filed Jan. 8, 2018, 8 pages. |
Notice of Allowance dated Mar. 5, 2019, issued in connection with U.S. Appl. No. 16/102,499, filed Aug. 13, 2018, 8 pages. |
Notice of Allowance dated May 5, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages. |
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 10 pages. |
Notice of Allowance dated Aug. 6, 2020, issued in connection with U.S. Appl. No. 16/564,684, filed Sep. 9, 2019, 8 pages. |
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages. |
Notice of Allowance dated Apr. 8, 2019, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 8 pages. |
Notice of Allowance dated Jul. 8, 2019, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 5 pages. |
Notice of Allowance dated Jun. 8, 2020, issued in connection with U.S. Appl. No. 16/658,896, filed Oct. 21, 2019, 8 pages. |
Non-Final Office Action dated Mar. 1, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 20 pages. |
Non-Final Office Action dated Nov. 1, 2017, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 15 pages. |
Non-Final Office Action dated Jun. 2, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 14 pages. |
Non-Final Office Action dated Jun. 2, 2017, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 18 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 12 pages. |
Non-Final Office Action dated Oct. 2, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages. |
Non-Final Office Action dated Feb. 3, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 12 pages. |
Non-Final Office Action dated Jul. 3, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 30 pages. |
Non-Final Office Action dated Jan. 4, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 6 pages. |
Non-Final Office Action dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 10 pages. |
Non-Final Office Action dated Sep. 4, 2019, issued in connection with U.S. Appl. No. 16/213,552, filed Dec. 7, 2018, 16 pages. |
Non-Final Office Action dated Jul. 5, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 8 pages. |
Non-Final Office Action dated Jul. 6, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 6 pages. |
Non-Final Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 30 pages. |
Non-Final Office Action dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages. |
Non-Final Office Action dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 5 pages. |
Non-Final Office Action dated Jul. 7, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 6 pages. |
Non-Final Office Action dated Mar. 7, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 24 pages. |
Non-Final Office Action dated Sep. 7, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 12 pages. |
Non-Final Office Action dated Jul. 8, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 6 pages. |
Non-Final Office Action dated Dec. 9, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Non-Final Office Action dated Apr. 10, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages. |
Non-Final Office Action dated Mar. 10, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 10 pages. |
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 8 pages. |
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 13 pages. |
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 9 pages. |
Non-Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/556,297, filed Aug. 30, 2019, 9 pages. |
Non-Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/658,896, filed Oct. 21, 2019, 14 pages. |
Non-Final Office Action dated Oct. 11, 2017, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages. |
Non-Final Office Action dated Oct. 11, 2018, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 13 pages. |
Non-Final Office Action dated Mar. 12, 2020, issued in connection with U.S. Appl. No. 16/796,496, filed Feb. 20, 2020, 13 pages. |
Non-Final Office Action dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 24 pages. |
Non-Final Office Action dated Jul. 13, 2016, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 16 pages. |
Non-Final Office Action dated Mar. 13, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 20 pages. |
Non-Final Office Action dated Dec. 14, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 19 pages. |
Non-Final Office Action dated Mar. 14, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 12 pages. |
Non-Final Office Action dated May 14, 2019, issued in connection with U.S. Appl. No. 15/955,545, filed Apr. 17, 2018, 15 pages. |
Non-Final Office Action dated Oct. 14, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages. |
Non-Final Office Action dated May 15, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 17 pages. |
Non-Final Office Action dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages. |
Non-Final Office Action dated Nov. 16, 2018, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages. |
Non-Final Office Action dated Sep. 16, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 11 pages. |
Non-Final Office Action dated Aug. 18, 2020, issued in connection with U.S. Appl. No. 16/827,143, filed Mar. 23, 2020, 8 pages. |
Non-Final Office Action dated Dec. 18, 2018, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 10 pages. |
Non-Final Office Action dated Feb. 18, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 10 pages. |
Non-Final Office Action dated Jun. 18, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages. |
Non-Final Office Action dated Feb. 19, 2020, issued in connection with U.S. Appl. No. 16/665,415, filed Oct. 28, 2019, 53 pages. |
Non-Final Office Action dated Jun. 19, 2020, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages. |
Non-Final Office Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 7 pages. |
Non-Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 6 pages. |
Notice of Allowance dated Jul. 11, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 11 pages. |
Notice of Allowance dated Mar. 11, 2015, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 7 pages. |
Notice of Allowance dated Apr. 12, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 13 pages. |
Notice of Allowance dated Aug. 12, 2019, issued in connection with U.S. Appl. No. 16/416,648, filed May 20, 2019, 7 pages. |
Notice of Allowance dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 24 pages. |
Notice of Allowance dated Dec. 12, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages. |
Notice of Allowance dated Nov. 12, 2019, issued in connection with U.S. Appl. No. 15/955,545, filed Apr. 17, 2018, 9 pages. |
Notice of Allowance dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 7 pages. |
Notice of Allowance dated Sep. 12, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 8 pages. |
Notice of Allowance dated Apr. 13, 2020, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 10 pages. |
Notice of Allowance dated Feb. 13, 2017, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 8 pages. |
Notice of Allowance dated Nov. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 8 pages. |
Notice of Allowance dated Jul. 14, 2020, issued in connection with U.S. Appl. No. 16/556,297, filed Aug. 30, 2019, 11 pages. |
Notice of Allowance dated Mar. 14, 2019, issued in connection with U.S. Appl. No. 15/343,996, filed Nov. 4, 2016, 8 pages. |
Notice of Allowance dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 8 pages. |
Notice of Allowance dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 5 pages. |
Notice of Allowance dated Mar. 15, 2017, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 7 pages. |
Notice of Allowance dated May 15, 2019, issued in connection with U.S. Appl. No. 16/113,032, filed Aug. 27, 2018, 9 pages. |
Notice of Allowance dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 10 pages. |
Notice of Allowance dated Jul. 16, 2020, issued in connection with U.S. Appl. No. 16/530,324, filed Aug. 2, 2019, 9 pages. |
Notice of Allowance dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages. |
Notice of Allowance dated May 16, 2019, issued in connection with U.S. Appl. No. 16/181,213, filed Nov. 5, 2018, 10 pages. |
Notice of Allowance dated Oct. 16, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 10 pages. |
Notice of Allowance dated Oct. 16, 2019, issued in connection with U.S. Appl. No. 16/401,981, filed May 2, 2019, 8 pages. |
Notice of Allowance dated Sep. 16, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 7 pages. |
Notice of Allowance dated Dec. 17, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 5 pages. |
Notice of Allowance dated May 17, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 7 pages. |
Notice of Allowance dated Oct. 17, 2019, issued in connection with U.S. Appl. No. 16/542,433, filed Aug. 16, 2019, 9 pages. |
Notice of Allowance dated Mar. 18, 2019, issued in connection with U.S. Appl. No. 16/056,862, filed Aug. 7, 2018, 12 pages. |
Notice of Allowance dated Aug. 19, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages. |
Notice of Allowance dated Jun. 19, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 5 pages. |
Notice of Allowance dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 16 pages. |
Notice of Allowance dated Sep. 19, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 10 pages. |
Notice of Allowance dated Mar. 2, 2020, issued in connection with U.S. Appl. No. 16/213,552, filed Dec. 7, 2018, 9 pages. |
Notice of Allowance dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 11 pages. |
Notice of Allowance dated Nov. 20, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 10 pages. |
Notice of Allowance dated Sep. 20, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
Notice of Allowance dated Dec. 21, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages. |
Notice of Allowance dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages. |
Notice of Allowance dated Jul. 21, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 10 pages. |
Notice of Allowance dated Jun. 21, 2019, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 11 pages. |
Notice of Allowance dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 16/182,886, filed Nov. 7, 2018, 10 pages. |
Notice of Allowance dated Jun. 22, 2017, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages. |
Notice of Allowance dated Aug. 23, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages. |
Notice of Allowance dated Jun. 23, 2016, issued in connection with U.S. Appl. No. 14/921,781, filed Oct. 23, 2015, 8 pages. |
Notice of Allowance dated Mar. 23, 2020, issued in connection with U.S. Appl. No. 16/542,418, filed Aug. 16, 2019, 5 pages. |
Notice of Allowance dated May 23, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 8 pages. |
Notice of Allowance dated Nov. 23, 2020, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages. |
Notice of Allowance dated Oct. 23, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 16 pages. |
Notice of Allowance dated Oct. 23, 2020, issued in connection with U.S. Appl. No. 16/555,846, filed Aug. 29, 2019, 5 pages. |
European Patent Office, European Office Action dated Aug. 19, 2020, issued in connection with European Application No. 17754501.9, 6 pages. |
European Patent Office, European Office Action dated Nov. 2, 2018, issued in connection with European Application No. 18171206.8, 6 pages. |
European Patent Office, European Office Action dated Jan. 3, 2020, issued in connection with European Application No. 17703876.7, 8 pages. |
European Patent Office, European Office Action dated Feb. 4, 2019, issued in connection with European Application No. 17703876.7, 9 pages. |
European Patent Office, European Office Action dated Sep. 7, 2020, issued in connection with European Application No. 19161826.3, 6 pages. |
European Patent Office, European Office Action dated Jul. 9, 2020, issued in connection with European Application No. 19167365.6, 4 pages. |
European Patent Office, European Office Action dated May 9, 2019, issued in connection with European Application No. 18171206.8, 7 pages. |
European Patent Office, European Partial Search Report dated Jun. 7, 2019, issued in connection with European Application No. 19161826.3, 17 pages. |
European Patent Office, European Search Report dated Jun. 13, 2019, issued in connection with European Application No. 18204450.3, 11 pages. |
European Patent Office, European Search Report dated Sep. 13, 2019, issued in connection with European Application No. 19161826.3, 13 pages. |
European Patent Office, European Search Report dated Jan. 18, 2018, issued in connection with European Patent Application No. 17185193.4, 9 pages. |
European Patent Office, European Search Report dated Jul. 9, 2019, issued in connection with European Application No. 19168800.1, 12 pages. |
European Patent Office, Extended European Search Report dated Jan. 5, 2017, issued in connection with European Patent Application No. 15765555.6, 8 pages. |
European Patent Office, Extended Search Report dated Jan. 25, 2017, issued in connection with European Application No. 15765548.1, 7 pages. |
European Patent Office, Extended Search Report dated Apr. 26, 2017, issued in connection with European Application No. 15765548.1, 10 pages. |
European Patent Office, Office Action dated Nov. 12, 2018, issued in connection with European Application No. 17000460.0, 6 pages. |
European Patent Office, Office Action dated Jun. 13, 2017, issued in connection with European patent application No. 17000484.0, 10 pages. |
European Patent Office, Office Action dated Dec. 15, 2016, issued in connection with European Application No. 15766998.7, 7 pages. |
European Patent Office, Summons to Attend Oral Proceedings mailed on Nov. 15, 2018, issued in connection with European Application No. 16748186.0, 57 pages. |
European Patent Office, Summons to Attend Oral Proceedings mailed on Sep. 24, 2019, issued in connection with European Application No. 17000460.0, 5 pages. |
Ex Parte Quayle Office Action mailed on Apr. 15, 2019, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 7 pages. |
Ex Parte Quayle Office Action mailed on Dec. 26, 2019, issued in connection with U.S. Appl. No. 16/542,418, filed Aug. 16, 2019, 7 pages. |
Final Office Action dated Dec. 2, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 19 pages. |
Final Office Action dated Apr. 3, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Final Office Action dated Jul. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 31, 2015, 10 pages. |
Final Office Action dated Jun. 13, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 22 pages. |
Final Office Action dated Dec. 14, 2020, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 17 pages. |
Final Office Action dated Feb. 14, 2019, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages. |
Final Office Action dated Feb. 14, 2019, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 37 pages. |
Final Office Action dated Oct. 14, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 16 pages. |
Final Office Action dated Oct. 17, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages. |
Final Office Action dated Apr. 18, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 16 pages. |
Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/056,553 filed Feb. 29, 2016, 8 pages. |
Final Office Action dated Dec. 18, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 12 pages. |
Final Office Action dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 15 pages. |
Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 14 pages. |
Final Office Action dated Oct. 21, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages. |
Final Office Action dated Sep. 22, 2020, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages. |
Final Office Action dated Jan. 25, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 17 pages. |
Final Office Action dated Mar. 25, 2019, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 11 pages. |
Final Office Action dated Oct. 28, 2019, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 17 pages. |
Final Office Action dated Apr. 3, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 12 pages. |
Final Office Action dated Mar. 3, 2020, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 13 pages. |
Final Office Action dated Feb. 5, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 21 pages. |
Final Office Action dated Mar. 5, 2019, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 9 pages. |
Final Office Action dated Dec. 6, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 18 pages. |
Final Office Action dated Apr. 9, 2019, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 33 pages. |
First Action Interview Office Action dated Mar. 3, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 9 pages. |
First Action Interview Office Action dated Jul. 12, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
First Action Interview Office Action dated Jun. 30, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages. |
Notice of Allowance dated May 8, 2018, issued in connection with U.S. Appl. No. 15/650,386, filed Jul. 14, 2017, 13 pages. |
Notice of Allowance dated Apr. 9, 2020, issued in connection with U.S. Appl. No. 16/416,593, filed May 20, 2019, 9 pages. |
Notice of Allowance dated Jun. 9, 2020, issued in connection with U.S. Appl. No. 15/966,534, filed Apr. 30, 2018, 16 pages. |
Notice of Allowance dated May 9, 2019, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 7 pages. |
Notice of Allowance dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Papp Istvan et al. “Adaptive Microphone Array for Unknown Desired Speaker's Transfer Function”, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY vol. 122, No. 2, Jul. 19, 2007, pp. 44-49. |
Pre-Brief Appeal Conference Decision mailed on Mar. 19, 2019, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 2 pages. |
Preinterview First Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 6 pages. |
Preinterview First Office Action dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages. |
Preinterview First Office Action dated May 17, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 7 pages. |
Preinterview First Office Action dated May 25, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 7 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
PRISMIQ, Inc., “PRISMIQ Media Player User Guide,” 2003, 44 pages. |
Ross, Alex, “Wizards of Sound: Retouching acoustics, from the restaurant to the concert hall,” The New Yorker, Feb. 23, 2015. Web. Feb. 26, 2015, 9 pages. |
Supplemental Notice of Allowability dated Oct. 27, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 6 pages. |
U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Wikipedia, Server(Computing) https://web.archive.org/web/20160703173710/https://en.wikipedia.org/wiki/Server_ (computing), published Jul. 3, 2016, 7 pages. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.0 Owner's Manual; Copyright 2008, 501 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Non-Final Office Action dated Aug. 2, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 22 pages. |
Non-Final Office Action dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages. |
Non-Final Office Action dated Jul. 20, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 13 pages. |
Non-Final Office Action dated Jun. 20, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 17 pages. |
Non-Final Office Action dated Dec. 21, 2018, issued in connection with U.S. Appl. No. 16/181,213, filed Nov. 5, 2018, 13 pages. |
Non-Final Office Action dated Jun. 21, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 10 pages. |
Non-Final Office Action dated Jun. 21, 2019, issued in connection with U.S. Appl. No. 16/181,865, filed Nov. 6, 2018, 12 pages. |
Non-Final Office Action dated Nov. 21, 2014, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 20 pages. |
Non-Final Office Action dated Jun. 22, 2018, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 33 pages. |
Non-Final Office Action dated Jun. 22, 2020, issued in connection with U.S. Appl. No. 16/555,832, filed Aug. 29, 2019, 15 pages. |
Non-Final Office Action dated Oct. 22, 2019, issued in connection with U.S. Appl. No. 16/416,619, filed May 20, 2019, 12 pages. |
Non-Final Office Action dated Jan. 23, 2019, issued in connection with U.S. Appl. No. 16/113,032, filed Aug. 27, 2018, 8 pages. |
Non-Final Office Action dated May 24, 2019, issued in connection with U.S. Appl. No. 16/401,981, filed May 2, 2019, 14 pages. |
Non-Final Office Action dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 9 pages. |
Non-Final Office Action dated Sep. 26, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 25 pages. |
Non-Final Office Action dated Dec. 27, 2017, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 28 pages. |
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 19 pages. |
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 19 pages. |
Non-Final Office Action dated Jul. 27, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 11 pages. |
Non-Final Office Action dated Mar. 27, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 30 pages. |
Non-Final Office Action dated Mar. 27, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 11 pages. |
Non-Final Office Action dated Jul. 28, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages. |
Non-Final Office Action dated Nov. 28, 2017, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 7 pages. |
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/588,186, filed May 5, 2017, 12 pages. |
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/595,519, filed May 15, 2017, 12 pages. |
Non-Final Office Action dated Mar. 29, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 16 pages. |
Non-Final Office Action dated Aug. 30, 2019, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 13 pages. |
Non-Final Office Action dated May 30, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 9 pages. |
Non-Final Office Action dated May 31, 2019, issued in connection with U.S. Appl. No. 16/185,906, filed Nov. 9, 2018, 7 pages. |
Non-Final Office Action dated Mar. 4, 2020, issued in connection with U.S. Appl. No. 15/966,534, filed Apr. 30, 2018, 11 pages. |
Non-Final Office Action dated Jul. 6, 2020, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 15 pages. |
Non-Final Office Action dated Nov. 6, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 13 pages. |
Non-Final Office Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/859,311, filed Dec. 29, 2017, 9 pages. |
Non-Final Office Action dated Feb. 7, 2019, issued in connection with U.S. Appl. No. 15/865,221, filed Jan. 8, 2018, 10 pages. |
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 18 pages. |
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 8 pages. |
Notice of Allowance dated May 1, 2017, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 13 pages. |
Notice of Allowance dated Nov. 2, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages. |
Notice of Allowance dated Jun. 3, 2016, issued in connection with U.S. Appl. No. 14/921,799, filed Oct. 23, 2015, 8 pages. |
Notice of Allowance dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages. |
Notice of Allowance dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 5 pages. |
Notice of Allowance dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages. |
Notice of Allowance dated Nov. 9, 2016, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 13 pages. |
Notice of Allowance dated Feb. 1, 2018, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages. |
Notice of Allowance dated Apr. 10, 2015, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 8 pages. |
Notice of Allowance dated Aug. 10, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 6 pages. |
Notice of Allowance dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 2 pages. |
Notice of Allowance dated Jun. 10, 2020, issued in connection with U.S. Appl. No. 16/713,858, filed Dec. 13, 2019, 8 pages. |
Notice of Allowance dated Dec. 11, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 10 pages. |
Notice of Allowance dated Feb. 11, 2019, issued in connection with U.S. Appl. No. 15/588,186, filed May 5, 2017, 5 pages. |
BeoLab5 User Manual. Bang & Olufsen. Version 1.0, 20 pages [produced by Google in WDTX Case No. 6:20-cv-00881 Answer on Jan. 8, 2021]. |
Chen, Trista P. et al. VRAPS: Visual Rhythm-Based Audio Playback System. IEEE, Gracenote, Inc , 2010, pp. 721-722. |
Chinese Patent Office, Chinese Office Action and Translation dated Apr. 1, 2021, issued in connection with Chinese Application No. 201910395715.4, 8 pages. |
Chinese Patent Office, First Office Action and Translation dated Feb. 22, 2021, issued in connection with Chinese Application No. 202010187024.8, 11 pages. |
Chinese Patent Office, First Office Action and Translation dated Dec. 24, 2020, issued in connection with Chinese Application No. 201910978233.1, 15 pages. |
Chinese Patent Office, First Office Action and Translation dated Jan. 28, 2021, issued in connection with Chinese Application No. 201680054164.X, 19 pages. |
Chinese Patent Office, First Office Action and Translation dated Feb. 3, 2021, issued in connection with Chinese Application No. 202010095178.4, 15 pages. |
Co-pending U.S. Application No. 201916530324, inventor Wilberding; Dayn, filed Aug. 2, 2019. |
European Patent Office, European EPC Article 94.3 dated Apr. 30, 2021, issued in connection with European Application No. 20196286.7, 5 pages. |
European Patent Office, European Extended Search Report dated Dec. 11, 2020, issued in connection with European Application No. 20196286.7, 6 pages. |
European Patent Office, Examination Report dated Jul. 12, 2021, issued in connection with European Patent Application No. 17754501.9 6 pages. |
Excerpts from Andrew Tanenbaum, Computer Networks. 4th Edition. Copyright 2003, 87 pages [produced by Google in IPR of U.S. Pat. No. 9,219,460, IPR2021-00475 dated Feb. 5, 2021]. |
Excerpts from Morfey, Christopher L., Dictionary of Acoustics. Copyright 2001, 4 pages [produced by Google in IPR of U.S. Pat. No. 9,219,460, IPR2021-00475 dated Feb. 5, 2021]. |
Google LLC v. Sonos, Inc., Declaration of Jeffery S. Vipperman, PHD. In Support of Petition for Inter Partes Review of U.S. Pat. No. 9,219,460, IPR2021-00475, dated Feb. 2, 2021, 92 pages. |
Google LLC v. Sonos, Inc., Petition for IPR of U.S. Pat. No. 9,219,460, IPR2021-00475, dated Feb. 5, 2021, 88 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048366, filed on Aug. 27, 2019, 7 pages. |
International Bureau, International Search Report and Written Opinion dated Dec. 15, 2020, issued in connection with International Application No. PCT/US2020/045746, filed on Aug. 11, 2020, 23 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 7, 2019, issued in connection with International Application No. PCT/US2019/048366, filed on Aug. 27, 2019, 9 pages. |
Japanese Patent Office, Office Action and Translation dated Apr. 13, 2021, issued in connection with Japanese Patent Application No. 2020-048867, 4 pages. |
Lei et al. An Audio Frequency Acquision and Release System Based on TMS320VC5509, Instrumentation Technology, Editorial Department Email, Issue 02, 2007, 4 pages. |
Non-Final Office Action dated Jul. 21, 2021, issued in connection with U.S. Appl. No. 16/570,679, filed Sep. 13, 2019, 18 pages. |
Non-Final Office Action dated Feb. 11, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 39 pages. |
Non-Final Office Action dated May 28, 2021, issued in connection with U.S. Appl. No. 17/098,134, filed Nov. 13, 2020, 14 pages. |
Non-Final Office Action dated May 3, 2021, issued in connection with U.S. Appl. No. 16/564,766, filed Sep. 9, 2019, 16 pages. |
Non-Final Office Action dated Mar. 31, 2021, issued in connection with U.S. Appl. No. 16/919,467, filed Jul. 2, 2020, 10 pages. |
Non-Final Office Action dated Jan. 5, 2021, issued in connection with U.S. Appl. No. 17/078,382, filed Oct. 23, 2020, 11 pages. |
Non-Final Office Action dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 17/207,640, filed Mar. 20, 2021, 17 pages. |
Notice of Allowance dated Mar. 18, 2021, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 8 pages. |
Notice of Allowance dated Apr. 22, 2021, issued in connection with U.S. Appl. No. 16/812,618, filed Mar. 9, 2020, 12 pages. |
Notice of Allowance dated Feb. 23, 2021, issued in connection with U.S. Appl. No. 16/115,525, filed Aug. 28, 2018, 8 pages. |
Notice of Allowance dated Jan. 25, 2021, issued in connection with U.S. Appl. No. 17/129,670, filed Dec. 21, 2020, 10 pages. |
Notice of Allowance dated Mar. 3, 2021, issued in connection with U.S. Appl. No. 16/403,077, filed May 3, 2019, 6 pages. |
Notice of Allowance dated Mar. 3, 2021, issued in connection with U.S. Appl. No. 17/078,382, filed Oct. 23, 2020, 9 pages. |
Notice of Allowance dated Feb. 5, 2021, issued in connection with U.S. Appl. No. 16/827,143, filed Mar. 23, 2020, 9 pages. |
Notice of Allowance dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 17/104,466, filed Nov. 25, 2020, 8 pages. |
Sonos, Inc. v. Google LLC, WDTX Case No. 6:20-cv-00881, Google's Answer and Counterclaims; dated Jan. 8, 2021, 39 pages. |
Number | Date | Country | |
---|---|---|---|
20200359148 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16542418 | Aug 2019 | US |
Child | 16944884 | US | |
Parent | 16011402 | Jun 2018 | US |
Child | 16542418 | US | |
Parent | 15005853 | Jan 2016 | US |
Child | 16011402 | US |