The present invention relates to a call connection processing method and message transmission/reception proxy apparatus, and more particularly to a call connection processing method and message transmission/reception proxy apparatus that uses SIP protocol to perform a call connection between user terminals and a backbone network by way of an access network.
From the aspect of ease of use and cost, systems have been constructed that use IP (Internet Protocol) and other related protocols as today's communication systems. Protocol groups that are on the basis of this IP protocol are applied not only to stationary communication systems but to mobile communication systems as well. Moreover, of that protocol group, SIP (Session Initiation Protocol) is becoming the standard protocol used for call control. In next-generation network systems, attempts are being made to build an integration systems that is based on IMS (IP Multimedia Subsystem) that uses this SIP protocol, such that all stationary communication networks and mobile communication networks are connected to this integration system.
LTE/SAE System
The aGW 2a to 2c control transmission/reception of messages between the mobile terminals 4a, 4b and the IMS 5, and together with the eNB 1a to 1n form a LTE-RAN (Radio Access Network). The IASA 3, having a router-like function, connects to the IMS 5, as well as connects to a HSS (Home Subscriber Server) 6, PCRF (Policy & Charging Rule Function) 7, and PCEF (Policy & Charging Enhance Function Unit). The HSS is a server that saves profiles of subscribers, the PCRF sets bearer conditions, and the PCRF decides a decided bearer to an aGW. After an RRC connection completes, the HSS verifies a user terminal via the IASA 3 and aGW 2a to 2c, and the aGW registers with the HSS 6 that it is in charge of that user's calls. When there is a call from a mobile terminal after processing such as verification and registration is completed, the aGW 2a to 2c transmits SIP messages for controlling the call which is received from the user terminal via the eNB 1a to 1n, to a CSCF (Call Session Control Function) 8 of the IMS 5 via the IASA 3, and transmits SIP messages for controlling the call that is received from the CSCF 8 of the IMS 5 via the IASA 3 to the mobile terminal 4a, 4b via the eNB 1a to 1n. Moreover, after call connection is completed, the aGW 2a to 2c receives data from the mobile terminal via the eNB 1a to 1n and transmits that data to the router of the IMS 5, and transmits data received from the router of the IMS 5 to the user terminal 4a, 4b via the eNB 1a to 1n.
After the verification, registration and ciphering processing described above are completed, the mobile terminal 4a requests registration to the CSCF 8 of the IMS 5 in order to receive the IMS service (Register). Since the mobile terminal 4a is not registered, the CSCF 8 returns the message 401 Unauthorized. After this, the mobile terminal 4a attaches verification data and requests registration again (Register). The CSCF makes reference to that verification data and when it is proper, registers that mobile terminal 4a and sends a 200 OK message to the mobile terminal 4a indicating that it was registered. By doing this, the mobile terminal 4a can now receive the IMS service.
When a mobile terminal 4a originates a call, that mobile terminal is connected with an eNB 11a by RRC (Radio Resource Control), and after that, the mobile terminal and aGW are connected by Attach, and the aGW is notified of the unit number (ID number) of the mobile terminal. After RCC connection is completed, the HSS 6 performs verification of the mobile terminal 4a via the IASA 3 and aGW 2a. When the verification process is completed, the mobile terminal 4a sends an INVITE message to the CSCF 8, and the CSCF 8 returns a ‘100 Trying’ message indicating that the INVITE message was received. The INVITE message contains, the other party's telephone number, QoS information (for example, bi-direction communication of audio and video) desired by the mobile terminal 4a on the calling side, codec information, type of messages used, whether or not there is a confirmation response and the like. QoS is the abbreviation for Quality of Service.
After that, the CSCF 8 sends an INVITE message to the mobile terminal 14a on the signal terminating side, however when the mobile terminal and aGW are not connected, the aGW 12a performs paging all together). When the mobile terminal 14a on the called side answers this paging, RRC connection, verification and ciphering processing is performed similarly for the calling side, and when verification is completed, aGW 12a sends an INVITE message to the mobile terminal 14a. After receiving this INVITE message, the mobile terminal 14a returns a ‘100 Trying’ message indicating that the INVITE message was received, and issues a ‘183 Session Progress’ message that indicates the progress status of the session. The ‘183 Session Progress’ message comprises: QoS information for the mobile terminal 14a on the called side (for example, bi-directional communication of audio and video), codec information, type of messages used, whether or not there is a confirmation response, and the like. After receiving the ‘183 Session Progress’ message, the CSCF 8 sends the message to the mobile terminal 4a on the calling side, and after the mobile terminal 4a on the calling side receives the ‘183 Session Progress’ message, it sends a confirmation response PRACK to the mobile terminal 14a on the called side via the CSCF 8. After receiving the PRACK response, the mobile terminal 14a on the called side notifies the mobile terminal 4a on the calling side of a 200 OK message via the CSCF 8.
After the processing described above has finished, the AF (Application Function) of the CSCF 8 makes reference to the QoS information in the INVITE message and 183 Session Progress message and the contract information for each mobile terminal, and transfers the information necessary for setting the bearer to the PCRF/PCEF 7, the PCRF/PCEF 7 performs the bearer setting between each of the aGW 2a on the calling side and the aGW 12a on the called side, and each aGW 2a, 12a performs the bearer setting between the mobile terminals 4a, 14a respectively.
When the mobile terminal 4a on the calling side is updated based on the bearer setting, it sends an UPDATE to the mobile terminal 14a on the called side via the CSCF 8. In a case where the mobile terminal 14a on the called side is also updated based on the bearer setting, it sends a 200 OK message to the mobile terminal 4a on the calling side via the CSCF 8 as well as sends a calling sound generation message (Ringing). After receiving the Ringing message, the mobile terminal 4a on the calling side sends a confirmation response PRACK to the mobile terminal 14a on the called side via the CSCF 8, and the mobile terminal 14a on the called side sends a 200 OK message to the mobile terminal 4a on the calling side indicating that it received the PRACK.
In this state, when the user of the mobile terminal 14a on the called side lifts up the receiver (Off Hook), for example, the mobile terminal 14a on the called side sends a 200 OK (INVITE) to the mobile terminal 4a on the calling side via the CSCF 8, and the mobile terminal 4a on the calling side returns an ACK after reception of the 200 OK (INVITE) to the mobile terminal 14a on the called side, and by doing so, communication becomes possible between both mobile terminals 4a, 14a.
In a mobile communication system, radio communication is performed between the base station and mobile terminals, however, when compared with wired communication, the data communication speed in radio communication is generally inferior. In order to perform high-speed communication, it is necessary that many frequency bands are used for radio communication, however, the resources for radio communication are limited, and when many frequency bands are used, the number of calls (number of links) that can be made at the same time decreases accordingly. Therefore, it is necessary to reduce the number of times of signaling (number of transmitted messages) in radio communication zones, and particularly, this is desired in a public radio communication system such as that for mobile telephones. However, as is explained in
Moreover, in an Evolved 3GPP system, it is desired that during call connection, the time (call connection time) from when a call is originated until communication begins be reduced. When a lot of SIP messages flow between end to end, the call connection time becomes long, and thus the wait time until communication begins becomes long and those calls occupy the respective frequency bands for long time, resulting in use of many of the radio communication resources.
A signaling method that uses the SIP protocol has been proposed. In the first related art (refer to Japanese translation of PCT international application No. 2006-506012A) disclosed is a system that uses SIP protocol to provide an IMS service and the system attempts to set a session between a calling terminal and called terminal and prevents erroneous billing by not billing when the attempt to set the session fails.
In the second related art (refer to Japanese patent publication number 2005-64646A) the transfer of signaling is made possible without taking redundant paths to a terminal even though the terminal has moved outside of the subnet from which it acquired address.
The object of the related art described above is not to reduce the amount of signaling in the radio communication zone during call connection, and neither is to shorten the call connection time.
Taking into consideration the problems described above, the object of the present invention is to reduce the amount of signaling in the radio communication zone during call connection.
Another object of the present invention is to shorten the time for the call connection performed before beginning communication.
A first form of the present invention is a call connection processing method that uses SIP protocol to perform call connection between user terminals and a backbone network via an access network, comprising: a first step of instructing a proxy apparatus in the access network from a user terminal to send specified SIP signaling messages to the backbone network in place of the user terminal; a second step of following the instruction and not sending a certain SIP signaling message of the specified SIP signaling messages to the user terminal from the proxy apparatus during call connection, or sending another SIP signaling message to the backbone network from the proxy apparatus in place of the user terminal; and a third step of transmitting and receiving messages other than the specified SIP signaling messages between the user terminal and backbone network.
The instruction of the first step is performed by declaring using an INVITE message of the SIP protocol that said user terminal (1) does not request a reliability response, and (2) does not specify preconditions for bearer setting; and in the second step, the proxy apparatus performs in place of user terminal, transmission and reception of SIP signaling messages related to the reliability response, and transmission and reception of specified SIP messages after the bearer setting.
The call connection processing method described above further comprises a step of notifying a user terminal that the proxy apparatus will perform transmission of specified SIP signaling messages in place of the user terminal when there was no instruction from the user terminal to perform transmission and reception of specified SIP signaling messages in place of the user terminal; and a step of performing the transmission and reception of the specified SIP signaling messages in place of the user terminal.
The call connection processing method described above further comprising a step of independently proceeding on the calling side with the call connection processing sequence after a user terminal on the calling side sends an INVITE message of the SIP protocol until just before a user terminal on the called side responds with a 200 OK to the INVITE message, regardless of the connection status to the network of the user terminal on the called side; and a step of performing communication between the user terminal on the calling side and the user terminal on the called side via the backbone network after the user terminal on the calling side receives the 200 OK massage from the user terminal on the called side.
A second form of the present invention is a message transmission/reception proxy apparatus that is located in an access network configured to access a backbone network performs a call connection process between user terminals using SIP protocol, and that acts as a proxy for a user terminal during call connection to perform transmission/reception of SIP signaling messages with the backbone network, comprising: a user information storage unit that acquires and stores performance information and subscriber information of user terminals; a processing unit that performs a process of receiving and analyzing SIP signaling messages, a bearer setting process that uses the stored information, a relay process of relaying SIP signaling messages from and to a mobile terminal and base station, and a process of creating and sending SIP signaling messages in place of the mobile terminal; a transmission/reception unit that performs transmission of messages with the user terminal; and a transmission/reception unit that performs transmission and reception of messages with the backbone network.
By reducing the number of SIP protocol messages between mobile terminals and the IMS, the present invention reduces the amount of data in a radio communication zone and reduces the amount of time the frequency bands are occupied. Moreover, an intermediate node performs the connection process before calling the mobile terminal on the called side, and the present invention reduces the number of nodes that messages pass, and by doing so it is capable of shortening the call connection time.
The IMS (backbone network) side is set so that unless SIP messages that are decided according to specification are not transmitted, call control cannot be performed. Therefore, it is not possible to reduce the number of messages that arrive at the IMS or to reduce the number of messages that are sent from the IMS. However, in the present invention, the transmission and reception of some of the SIP messages that were originally transmitted between the IMS and a mobile terminal UE (User Equipment) are performed in behalf of the mobile terminal by an intermediate node (referred to as proxy apparatus) which exists between the IMS and base station eNB that perform radio communication. This makes it possible to keep the SIP messages that are sent to a mobile terminal and that are received from a mobile terminal to the necessary minimum, and thus makes it possible to reduce the number of messages in the radio communication zone. A proxy apparatus can be a base station eNB, however in the embodiments, the aGW functions as a proxy apparatus.
Furthermore, construction is such that part of the transmission of SIP messages that were originally transmitted between the CSCF 8 and mobile terminal on the called side can be performed by an aGW on the called side (not illustrated in the figure). In this way, it is possible to proceed with the call connection sequence on the calling side while connection is being performed between the aGW on the called side and a mobile terminal on the called side, and thus it is possible to shorten the call connection time.
The IMS 5 comprises a CSCF 8 and AF (Application Function) 9 on the calling side for performing the call connection sequence, and comprises a CSCF 18a and AF 19a on the called side. During call connection, the CSCF performs a call connection sequence process that will be described later, and the AF analyzes information that is necessary for the bearer setting that is provided from the CSCF, and gives instruction to the PCRF/PCEF to perform the bearer setting. After the call connection is complete, the IMS 5 transmits data between the calling side and called side via a router (not illustrated in the figure).
The aGW 2a on the calling side comprises: a user information storage unit 51 that acquires and stores terminal information and subscriber information for each of the mobile terminals; a processing unit 52 that performs a process MAL of receiving and analyzing SIP signaling messages, a bearer setting process BST that uses the stored information, a relay process MRL that relays SIP signaling messages from and to the mobile station and base station, and a process SAP of creating and sending SIP signaling messages in place of the mobile terminal; a transmission/reception unit 53 that performs transmission and reception of messages with the mobile terminal; and transmission/reception unit 54 that performs transmission and reception of messages with the backbone network side. The aGW 12a on the called side has similar construction.
As the IMS terminals, there are IMS terminals that are mounted with SIP that has been improved for Evolved 3GPP, and IMS terminals that are not mounted with that improved SIP, where the respective call connection sequence processing is different for each.
In the verification process that is performed at the start of call connection (step 101), the aGW 2a determines whether the mobile terminal is an IMS terminal that is mounted with improved SIP for Evolved 3GPP (step 102), and when it is (YES), executes a first sequence process (for example the sequence process illustrated in
After RRC connection is complete, the HSS 6 performs verification of the mobile terminal 4a via the IASA 3 and aGW 2a, and the aGW 2a registers with the HSS 6 that aGW 2a is in charge of the mobile terminal 4a. Moreover, in addition to the terminal information (media information, codec information) that the aGW 2a was notified of, the aGW 2a stores subscriber information (for example, subscriber service information) that was acquired from the HSS 6 in connection with the mobile terminal. By doing so, the aGW 2a is able to identify the QoS that is supposed to be set for the mobile terminal on the calling side during call connection.
After the verification, registration and ciphering processing described above is finished, in order to receive the IMS service, the mobile terminal 4a requests to be registered in the CSCF 8 of the IMS 5 (Register). Since the mobile terminal 4a is unregistered, the CSCF 8 returns a 401 Unauthorized message. The mobile terminal 4a then attaches verification data and requests for registration again (Register). The CSCF 8 make reference to that verification information, and if it is proper, registers that mobile terminal 4a and sends a 200 OK message to the mobile terminal 4a indicating that it was registered. From this, the mobile terminal 4a can now receive the IMS service.
(b) First Embodiment of a Call Connection Service
When the mobile terminal 4a originates a call, the mobile terminal 4a and eNB 11a are connected by RRC, then after that, the mobile terminal 4 and aGW are connected by Attach and the aGW is notified of the unique number (terminal ID) of the mobile terminal. After the RRC connection is complete, the HSS 6 performs verification of the mobile terminal 4a via the IASA 3 and aGW 2a. After verification is complete, the mobile terminal 4a sends an INVITE message to the CSCF 8, 18. The aGW 2a on the calling side interprets/relays the INVITE message. The INVITE message normally comprises contents as illustrated in Table 1.
In the INVITE message, the “Require: precondition” is an instruction which instructs to follow the QoS precondition in the INVITE message during bearer setting.
“a=curr.qos local none
a=curr.qos remote none
a=des.qos mandatory local sendrecv
a=des.qos mandatory remote sendrecv”
specifies the QoS preconditions. In the INVITE massage there are two QoS preconditions, where the first QoS precondition is related to video and means that the QoS is not currently set for the local terminal or remote terminal, however, there is a desire for bi-directional communication; and the second QoS precondition is related to audio and means that the QoS is not currently set for the local terminal or remote terminal, however, there is a desire for bi-directional communication.
“Supported:100rel” indicates that a confirmation response is necessary, and “Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE” are SIP messages that the mobile terminal 4a uses.
A normal IMS mobile terminal generates the INVITE message illustrated in Table 1, however, the INVITE message that is generated by a mobile terminal 4a that is mounted with improved SIP for Evolved 3GPP does not include the underlined messages in Table 1. That “precondition” is not included in the INVITE message means that the mobile terminal 4a does not specify any QoS preconditions; that “Supported:100rel” is not included in the INVITE message means that the mobile terminal 4a does not require a confirmation response; and that PRACK and UPDATE are not included means that the mobile terminal does not use PRACK and UPDATE.
Therefore, when performing the following bearer setting, the aGW 2a performs the bearer setting based on pre-registered terminal information and subscriber information rather than making reference to preconditions in the INVITE message. Moreover, the aGW 2a issues a PRACK and UPDATE in place of the mobile terminal 4a without sending a confirmation response to the mobile terminal 4a.
Returning to
In the 183 Session Progress message, “Require:100rel” indicates that a confirmation response is necessary, and “Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE” are SIP message that the mobile terminal 14a can use. Furthermore,
“a=curr.qos local none
a=curr.qos remote none
a=des.qos mandatory local sendrecv
a=des.qos mandatory remote sendrecv”
specifies the QoS preconditions. In the 183 Session Progress message there are two QoS preconditions, where the first QoS precondition is related to video and means that the QoS is not currently set for the local terminal or remote terminal, however, there is a desire for bi-directional communication; and the second QoS precondition is related to audio and means that the QoS is not currently set for the local terminal or remote terminal, however, there is a desire for bi-directional communication.
A normal IMS mobile terminal generates a 183 Session Progress message as illustrated in Table 1, however, the 183 Session Progress message that is generated by the mobile terminal 14a that is mounted with improved SIP for Evolved 3GPP does not included the underlined messages in Table 2. That “Require: 100rel” is not included in 183 Session Progress message means that the mobile terminal 14a does not require a confirmation response; that PRACK and UPDATE are not included means that the mobile terminal 14a does not use PRACK and UPDATE; and that QoS preconditions are not included means that the mobile terminal 14a does not specify QoS preconditions in the 183 Session Progress message.
Therefore, when performing the following bearer setting, the aGW 12a performs the bearer setting based on pre-registered terminal information and subscriber information without making reference to preconditions in the 183 Session Progress message. Moreover, the aGW 12a issues PRACK and UPDATE in place of the mobile terminal 14a without sending a confirmation response to the mobile terminal 14a.
Returning to
After receiving the 200 OK, the AF of the CSCF 8, 18 decides the necessary information for bearer settings of the terminals 4a, 14a based on pre-registered terminal information and subscriber information, then transfers that information to the PCRF/PCEF 7, 17, after which each of the PCRF/PCEF 7, 17 performs bearer settings between each of the aGW 2a on the calling side and the aGW 12a on the called side, and each of the aGW 2a on the calling side and each of the aGW 12a on the called side performs bearer settings between each of the mobile terminals 4a, 14a.
After the bearer settings are completed, the aGW 2a on the calling side sends an UPDATE in place of the mobile terminal 4a on the calling side to the aGW 12a on the called side via the CSCF 8, 18. After receiving the UPDATE, the aGW 12a on the called side does not send that UPDATE to the mobile terminal 14a on the called side. Thereafter, in a case where the bearer setting with the mobile terminal 14a is completed, the aGW 12a on the called side sends a 200 OK message in place of that mobile terminal 14a to the aGW 2a on the calling side via the CSCF 8, 18. Even though the aGW 2a on the calling side receives the 200 OK message, it does not send the message to the mobile terminal 4a.
When the bearer setting is completed the mobile terminal 14a on the called side generates a call sound and sends a Ringing message to the mobile terminal 4a on the calling side via the aGW 12a on the called side, CSCF 8, 18 and aGW 2a on the calling side. After the aGW 2a on the calling side sends a Ringing message to the mobile terminal 4a on the calling side, it sends a PRACK in place of the mobile terminal 4a to the aGW 12a on the called side via the CSCF 8, 18, and even though the aGW 12a on the called side receives the PRACK, the aGW 12a on the called side immediately sends a 200 OK in place of the mobile terminal 14a without sending the PRACK to the mobile terminal 14a on the called side.
In this state, when the user of the mobile terminal 14a on the called side lifts up the receiver (Off Hook), the mobile terminal 14a on the called side sends a 200 OK (INVITE) to the mobile terminal 4a on the calling side via the aGW 12a on the called side, CSCF 8, 18 and aGW 2a on the calling side, and after receiving the 200 OK (INVITE), the mobile terminal 4a on the calling side returns an ACK to the mobile terminal 14a in the called side. This makes communication between both mobile terminals 4a, 14a possible.
With this first embodiment, the number of messages during call connection in the radio communication zone on the calling side is reduced in half from 12 to 6, and the number of messages during call connection in the radio communication zone on the receiving side is also reduced in half from 12 to 6. Since it is possible to reduce the amount of signaling in the radio communication zone in this way, high-speed communication becomes possible as well as a large number of simultaneous call connections.
There may be cases where, depending on the terminal information or subscriber information of the mobile terminal 14a on the called side, it is not possible to properly select the media or QoS desired by the mobile terminal 4a on the calling side. In that case, the aGW 12a on the called side or the CSCF 8, 18 does not send a 200 OK, but sends NG to indicate an error has occurred. Therefore, after receiving a 200 OK, the aGW 2a on the calling side sends a 183 Session Progress message to the mobile terminal 4a on the calling side, and when an NG is received, notifies the mobile terminal 4a on the calling side that an error occurred. By doing this, it is possible to send a 183 Session Progress response to a terminal after confirming that the media or QoS could be selected properly. Moreover, even though it is not possible to properly select the media or QoS and some kind of error occurs, it is possible for the mobile terminal 4a on the calling side to receive the error message before receiving the 183 Session Progress message. Thereby, it is possible to make the order of messages received by the mobile terminal 4a identical with the order of messages received by the mobile terminal 4a at the time of normal error generation.
(d) Call Connection Sequence of a Second Embodiment that Shortens the Call Connection Time
This sequence differs from the call connection sequence illustrated in
(1) the aGW 12a on the called side issues a 183 Session Progress message while connection control (RCC connection, verification processing, etc.) is being performed between the aGW 12a on the called side and the mobile terminal 14a on the called side due to paging;
(2) after that, regardless of the mobile terminal 14a on the called side, the calling side performs the call connection process 500 up to the 200 OK (INVITE) that indicates that connection is completed and communication starts; and
(3) after the connection between the aGW 12a in the called side and the mobile terminal 14a on the called side is completed, the call connection sequence is performed up to the 200 OK (INVITE) independently between the aGW 12a on the called side and mobile terminal 14a on the called side.
When the user of the mobile terminal 14a on the called side picks up the receiver, for example, after the mobile terminal 14a on the called side sends Ringing (Off Hook), the mobile terminal 14a on the called side sends a 200 OK (INVITE) to the mobile terminal 4a on the calling side via the aGW 12a on the called side, CSCF 8, 18 and aGW 2a on the calling side, and after receiving the 200 OK (INVITE), the mobile terminal 4a on the calling side returns an ACK to the mobile terminal 14a on the called side. From this, communication between both mobile terminals 4a, 14a becomes possible.
With this second embodiment of the invention, the call connection sequence is performed by the calling side up to the 200 OK (INVITE) before the connection control between the aGW 12a on the called side and the mobile terminal 14a on the called side is completed. Thereby, it is possible to shorten the call connection time.
There may be cases in which, depending on the terminal information or subscriber information of the mobile terminal 14a on the called side, it may not be possible to properly select the media or QoS desired by the mobile terminal 4a on the calling side. In that case, neither the aGW 12a on the called side nor the CSCF 8, 18 output a 200 OK, but output an NG and an error occurs. Therefore, the aGW 2a on the calling side sends a 183 Session Progress message to the mobile terminal 4a on the calling side after confirming that the media or QoS could be properly selected. Moreover, even when it is not possible to properly select the media or QoS and an error occurs, the mobile terminal 4a on the calling side can receive an error message before receiving the 183 Session Progress message. Thereby it is possible to make the order of messages received by the mobile terminal 4a identical with the order of messages received by the mobile terminal 4a at the time of normal error generation.
The registration procedure for a normal IMS terminal 4a that is not mounted with improved SIP for Evolved 3GPP is the same as for the conventional example illustrated in
When the mobile terminal 4a originates a call, that mobile terminal and the eNB 11a are connected by RRC (Radio Resource Control), after which the mobile terminal and aGW are connected by Attach, and the aGW is notified of the unique number (terminal ID) of the mobile terminal. After RRC connection is completed, the HSS 6 performs verification of the mobile terminal 4a via the IASA 3 and aGW 2a. After the verification process is completed, the mobile terminal 4a sends an INVITE message to the CSCF 8, 18. The INVITE message that is sent by a normal IMS mobile terminal 4a comprises contents as illustrated in Table 1.
The aGW 2a on the calling side interprets and relays the INVITE message and sends it to the CSCF 8, 18, after which the CSCF 8, 18 returns a 100 Trying message to the mobile terminal 4a indicating that the INVITE message was received. Moreover, the CSCF 8, 18 sends the INVITE message to the mobile terminal 14a on the called side, however, when the mobile terminal on the called side is not connected with the aGW, the aGW 12a performs paging all together. When the mobile terminal 14a on the called side responds to this paging, RRC connection, verification and privacy processing are performed as on the calling side, and after verification is complete, the aGW 12a on the called side sends an INVITE to the mobile terminal 14a on the called side. After receiving the INVITE message, the mobile terminal 14a returns a 100 Trying message that indicates that the message was received, and sends a 183 Session Progress message that indicates the status of the session progress to the CSCF 8, 18. The 183 Session Progress message comprises the contents illustrated in Table 2.
The aGW 12a on the called side relays and interprets the 183 Session Progress message, and sends it to the CSCF 8, 18, after which the CSCF 8, 18 sends the 183 Session Progress message to the mobile terminal 4a on the calling side. After receiving the 183 Session Progress message, the aGW 2a on the calling side deletes items from the 183 Session Progress message that are related to a reliability response, and notifies the mobile terminal 4a on the calling side of the 183 Session Progress message. The items that are related to a reliability response are “Require:100rel” and “PRACK”. By doing this, the mobile terminal 4a on the calling side does not send a PRACK even though the 183 Session Progress message is received.
After sending the 183 Session Progress message to the mobile terminal 4a on the calling side, the aGW 2a on the calling side, in place of the mobile terminal 4a on the calling side, sends a PRACK, which is a confirmation response to the 183 Session Progress message, to the mobile terminal 14a on the called side via the CSCF 8, 18 and the aGW 12a on the called side. After receiving the PRACK, the mobile terminal 14a on the called side sends a 200 OK message to the aGW 2a on the calling side via the CSCF 8, 18. Even though the aGW 2a on the calling side receives the 200 OK message, it does not send the 200 OK message to the mobile terminal 4a on the calling side.
After finishing the processing described above, the AF of the CSCF 8, 18 makes reference to the QoS information and contract information for each mobile terminal in the INVITE message and 183 Session Progress message, then gives information that is necessary for the bearer setting to the PCRF/PCEF 7, 17, after which each of the PCRF/PCEF 7, 17 performs the bearer setting between each of the aGW 2a on the calling side and the aGW 12a on the called side, and, each aGW 2a, 12a performs the bearer setting between each of the mobile terminals 4a, 14a.
When the mobile terminal 4a on the calling side is updated based on the bearer setting, it sends an UPDATE to the mobile terminal 14a on the called side via the aGW 2a on the calling side, the CSCF 8, 18, and aGW 12a on the called side. Also, thereafter, when update of the mobile terminal 14a on the called side has been completed based on the bearer setting, it sends a 200 OK message to the mobile terminal 4a on the calling side via the aGW 12a on called side, CSCF 8, 18 and aGW 2a on the calling side, as well as sends a call sound generation message (Ringing).
After receiving the Ringing message, the aGW 2a on the calling side deletes the items from the Ringing message that are related to a reliability response and notifies the mobile terminal 4a on the calling side. By doing this, the mobile terminal 4a on the calling side does not send a PRACK even though a Ringing message has been received.
After sending the Ringing message to the mobile terminal 4a on the calling side, the aGW 2a on the calling side, in place of the mobile terminal 4a on the calling side, sends a PRACK, which is a confirmation response, to the mobile terminal 14a on the called side via the CSCF 8, 18 and aGW 12a on the called side. When the mobile terminal 14a on the called side receives the PRACK, it sends a 200 OK message to the mobile terminal 4a on the calling side via the CSCF 8, 18. Even though the aGW 2a on the calling side receives the 200 OK message, it does not send that 200 OK message to the mobile terminal 4a on the calling side.
In this state, when the user of the mobile terminal 14a on the called side picks up the receiver, for example (Off Hook), the mobile terminal 14a on the called side sends a 200 OK (INVITE) to the mobile terminal 4a on the calling side via the CSCF 8, 18, and the mobile terminal 4a on the calling side returns an ACK to the mobile terminal 14a on the called side after receiving the 200 OK (INVITE), Thereby communication becomes possible between both mobile terminals 4a, 14a.
With this first embodiment, the number of messages sent during call connection in the radio communication zone on the calling side is reduced from 12 to 8. Since it is possible to reduce the amount of signaling in the radio communication zone in this way, high-speed communication becomes possible even with a normal IMS terminal, and a larger number of simultaneous call connections become possible.
There may be cases, depending on the terminal information or subscriber information of the mobile terminal 14a on the called side, in which it is not possible to properly select the media or QoS desired by the mobile terminal 4a on the calling side. In that case, the aGW 12a on the called side and CSCF 8, 18 do not send a 200 OK, but output an NG and an error occurs. Therefore, the aGW 2a on the calling side sends the 183 Session Progress message to the mobile terminal 4a on the calling side after receiving a 200 OK, and when a NG is received, notifies the mobile terminal 4a on the calling side. By doing so, it is possible to send a 183 Session Progress response to a terminal after confirming that the media or QoS could be properly selected. Moreover, even though it is not possible to properly select the media or QoS and various errors occur, as seen from the mobile terminal 4a on the calling side can receive an error message before receiving the 183 Session Progress message. Thereby it is possible to make the order of messages received by the mobile terminal 4a identical with the order of messages received by the mobile terminal 4a at the time of normal error generation.
(d) Call Connection Sequence of a Second Embodiment that Shortens the Call Connection Time.
This sequence differs from the call connection sequence illustrated in
(1) the aGW 12a on the called side issues a 183 Session Progress message in place of the mobile terminal 14a while performing connection control (RRC connection, verification processing, etc.) between the aGW 12a on the called side and the mobile terminal 14a on the called side in response to paging;
(2) after that, regardless of the mobile terminal 14a on the called side, the call connection sequence process 501 is performed by the calling side up to a 200 OK that indicates that connection is completed and communication starts; and
(3) after connection between the aGW 12a on the called side and the mobile terminal 14a on the called side is completed, the call connection sequence process is performed independently between the aGW 12a on the called side and the mobile terminal 14a on the called side until generation of a 200 OK (INVITE).
After the mobile terminal 14a on the called side sends Ringing, when the user of the mobile terminal 14a on the called side picks up the receiver for example (Off Hook), the mobile terminal 14a on the called side sends a 200 OK (INVITE) to the mobile terminal 4a on the calling side via the aGW 12a on the called side, the CSCF 8, 18, and aGW 2a on the calling side, after which the mobile terminal 4a on the calling side returns an ACK of receiving the 200 OK (INVITE) to the mobile terminal 14a on the called side. This makes communication between both mobile terminals 4a, 14a possible.
With this second embodiment, since the call connection sequence process is performed by the calling side up to the 200 OK (INVITE) before connection control between the aGW 12a on the called side and the mobile terminal 14a on the called side is complete, it becomes possible to perform the call connection process in a short time.
With the invention described above, it is possible to reduce the amount of signaling in the radio communication zone while enjoying various services, and simultaneous communication over more links becomes possible. Moreover, by reducing the number of SIP messages that flow between ends, it is possible to shorten the call connection time, and thus radio communication resources can be more effectively used without occupying frequency bands.
This application is a continuation application of international PCT application No. PCT/JP2006/319958 filed on Oct. 5, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2006/319958 | Oct 2006 | US |
Child | 12416574 | US |