This invention relates to an elevator system in which there is at least two cars in each hoistway, the assignment of calls to the cars including mitigation of delay imposed on either car in the hoistway while it waits for the completion of service by another car in the same hoistway.
The utilization of two or more elevator cars in a single hoistway provides increased elevator service capacity in contrast with traditional, single car-per-hoistway service. However, it is inevitable that either car may need to travel too closely to another car for safety, or need to travel to a point at or beyond the current position of the other car. The capacity of the elevator system is reduced whenever one of the cars is sitting idle due to the necessity for it to wait for another one of the cars to finish providing passenger service and thereafter remove itself from impeding the travel of the first one of the cars. Either car can become the one that is sitting idle, waiting for the other.
Objects of the invention include: reducing waiting time of idle cars in a hoistway having at least two cars serving passengers; improving the service capacity of an elevator system having at least two cars in a single hoistway; and improved multi-car-per-hoistway elevator service.
According to the present invention, in an elevator system in which there is more than one car in each hoistway, a factor in determining the car to which each destination call will be assigned is the amount of additional delay that the assigned car may cause to either car in the same hoistway, calls being assigned to mitigate delay imposed by one car on another, not only in the same hoistway, but among multiple hoistways serving the same elevator stops.
According to the invention in one form, those cars which have an acceptable response time to a destination call are considered as candidates to answer the call, the call being assigned to the one which will impose the least delay on either car in the same hoistway, thereby to minimize delays of cars imposed by service requirements of other cars in the same hoistway.
Additional delay is defined herein as the difference between the time that a car will normally complete its service of passengers and be able to resume additional service, such as by returning to the lobby or changing direction to service calls along the way, and the time at which it may resume other service after the other car in the hoistway is no longer in the way. The additional delay is based mainly on the times that each car in the same hoistway will complete servicing its assigned calls, with and without either car having a new call assigned to it. The delay also takes into account the number of floors of separation required between the cars for car position and car motion safety considerations.
Other objects, features and advantages of the present invention will become more apparent in the light of the following detailed description of exemplary embodiments thereof, as illustrated in the accompanying drawing.
Situations in which one car causes unnecessary delay of the other car, due to the extent of passenger service being performed by the first car, are illustrated in
In
Assume in
Another situation in which the invention reduces delay time of an elevator system 20 is illustrated among a plurality of hoistways 21-23 in
Assume now a call is entered (represented by the triangle) with a destination on the fifth floor (represented by the circle above the triangle). A determination of the response time for each of the cars to answer that call indicates that cars B, D, E and F have too long a response time, so the assignment of the call should be to either car A or car C. Either car A or car C could, in the normal course of events, deliver the passenger who has entered the call for the fifth floor at substantially the same time; however, in accordance with the invention, assigning the call to car A will cause car B to have to wait after it delivers its passenger to the 13th floor, while car A completes servicing three calls. On the other hand, assigning the fifth floor call to car C will cause car C and car D to complete their service at substantially the same time, thereby substantially eliminating any delay of one car caused by the other car. Therefore, the new call for the fifth floor is assigned to car C in accordance with the invention.
The operational strategy of the present invention is illustrated briefly in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/03145 | 2/4/2005 | WO | 8/3/2007 |