Caloric heat pump hydraulic system

Information

  • Patent Grant
  • 11015843
  • Patent Number
    11,015,843
  • Date Filed
    Wednesday, May 29, 2019
    5 years ago
  • Date Issued
    Tuesday, May 25, 2021
    3 years ago
Abstract
A refrigerator appliance includes a fresh food working fluid circuit that couples a hot side heat exchanger, a fresh food cold side heat exchanger and a fresh food regenerator. A first pair of diverter valves and a hot side reservoir are coupled to the fresh food working fluid circuit. The hot side reservoir is positioned below one or both of the first pair of diverter valves. A freezer working fluid circuit couples a freezer cold side heat exchanger and a freezer regenerator. A second pair of diverter valves and a fresh food cold side reservoir are coupled to the freezer working fluid circuit. The fresh food cold side reservoir is positioned below one or both of the second pair of diverter valves. A liquid-liquid heat exchanger is also coupled to the fresh food working fluid circuit.
Description
FIELD OF THE INVENTION

The present subject matter relates generally to caloric heat pump hydraulic systems.


BACKGROUND OF THE INVENTION

Conventional refrigeration technology typically utilizes a heat pump that relies on compression and expansion of a fluid refrigerant to receive and reject heat in a cyclic manner so as to effect a desired temperature change or transfer heat energy from one location to another. This cycle can be used to receive heat from a refrigeration compartment and reject such heat to the environment or a location that is external to the compartment. Other applications include air conditioning of residential or commercial structures. A variety of different fluid refrigerants have been developed that can be used with the heat pump in such systems.


While improvements have been made to such heat pump systems that rely on the compression of fluid refrigerant, at best such can still only operate at about forty-five percent or less of the maximum theoretical Carnot cycle efficiency. Also, some fluid refrigerants have been discontinued due to environmental concerns. The range of ambient temperatures over which certain refrigerant-based systems can operate may be impractical for certain locations. Other challenges with heat pumps that use a fluid refrigerant exist as well.


Magneto-caloric materials (MCMs), i.e. materials that exhibit the magneto-caloric effect, provide a potential alternative to fluid refrigerants for heat pump applications. In general, the magnetic moments of MCMs become more ordered under an increasing, externally applied magnetic field and cause the MCMs to generate heat. Conversely, decreasing the externally applied magnetic field allows the magnetic moments of the MCMs to become more disordered and allow the MCMs to absorb heat. Some MCMs exhibit the opposite behavior, i.e. generating heat when the magnetic field is removed (which are sometimes referred to as para-magneto-caloric material but both types are referred to collectively herein as magneto-caloric material or MCM). The theoretical Carnot cycle efficiency of a refrigeration cycle based on an MCMs can be significantly higher than for a comparable refrigeration cycle based on a fluid refrigerant. As such, a heat pump system that can effectively use an MCM would be useful.


Challenges exist to the practical and cost competitive use of an MCM, however. In addition to the development of suitable MCMs, equipment that can attractively utilize an MCM is still needed. Currently proposed equipment may require relatively large and expensive magnets, may be impractical for use in e.g., appliance refrigeration, and may not otherwise operate with enough efficiency to justify capital cost.


Accordingly, a heat pump system that can address certain challenges, such as those identified above, would be useful. Such a heat pump system that can also be used in a refrigerator appliance would also be useful.


BRIEF DESCRIPTION OF THE INVENTION

Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.


In an example embodiment, a refrigerator appliance includes a cabinet defining a fresh food chamber and a freezer chamber. A hot side heat exchanger is positioned outside of the fresh food chamber and the freezer chamber of the cabinet. A fresh food cold side heat exchanger is positioned within the cabinet at the fresh food chamber. The fresh food chamber is chillable with air from the fresh food cold side heat exchanger. A freezer cold side heat exchanger is positioned within the cabinet at the freezer chamber. The freezer chamber is chillable with air from the freezer cold side heat exchanger. A fresh food regenerator includes a first caloric material stage and a second caloric material stage. A freezer regenerator includes a first caloric material stage and a second caloric material stage. The first and second caloric material stages of the freezer regenerator are separate from the first and second caloric material stages of the fresh food regenerator. A fresh food working fluid circuit couples the hot side heat exchanger, the fresh food cold side heat exchanger and the fresh food regenerator such that a first working fluid is flowable through the hot side heat exchanger, the fresh food cold side heat exchanger and the fresh food regenerator via the fresh food working fluid circuit. A first pair of diverter valves is coupled to the fresh food working fluid circuit. The first pair of diverter valves is configured for selectively changing a flow direction of the first working fluid through the first caloric material stage and the second caloric material stage of the fresh food regenerator. A hot side reservoir is coupled to the fresh food working fluid circuit. The hot side reservoir is sized for containing a volume of the first working fluid. The hot side reservoir is positioned outside of the fresh food chamber and the freezer chamber of the cabinet. The hot side reservoir is positioned below one or both of the first pair of diverter valves. A freezer working fluid circuit couples the freezer cold side heat exchanger and the freezer regenerator such that a second working fluid is flowable through the freezer cold side heat exchanger and the freezer regenerator via the freezer working fluid circuit. A second pair of diverter valves is coupled to the freezer working fluid circuit. The second pair of diverter valves is configured for selectively changing a flow direction of the second working fluid through the first caloric material stage and the second caloric material stage of the freezer regenerator. A fresh food cold side reservoir is coupled to the freezer working fluid circuit. The fresh food cold side reservoir is sized for containing a volume of the second working fluid. The fresh food cold side reservoir is positioned within the cabinet at the fresh food chamber. The fresh food cold side reservoir is positioned below one or both of the second pair of diverter valves. A liquid-liquid heat exchanger is coupled to the fresh food working fluid circuit such that the first working fluid is flowable through the liquid-liquid heat exchanger. The liquid-liquid heat exchanger is positioned at the fresh food cold side reservoir such the liquid-liquid heat exchanger is configured for exchanging heat between the first working fluid in the liquid-liquid heat exchanger and the second working fluid in the fresh food cold side reservoir.


These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.



FIG. 1 is a refrigerator appliance in accordance with an example embodiment of the present disclosure.



FIG. 2 is a schematic view of certain components of a heat pump system positioned in the example refrigerator appliance of FIG. 1.



FIG. 3 is a schematic view of the heat pump system of FIG. 2.



FIG. 4 is a schematic view of a heat pump system according to another example embodiment of the present subject matter.



FIG. 5 is a schematic view of a heat pump system according to another example embodiment of the present subject matter.





DETAILED DESCRIPTION

Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.


The present subject matter is directed to caloric heat pump systems for heating or cooling an appliance, such as a refrigerator appliance. While described in greater detail below in the context of a magneto-caloric heat pump system, one of skill in the art using the teachings herein will recognize that other suitable caloric materials may be used in a similar manner to heat or cool an appliance, i.e., apply a field, move heat, remove the field, move heat. For example, electro-caloric material heats up and cools down within increasing and decreasing electric fields. As another example, elasto-caloric material heats up and cools down when exposed to increasing and decreasing mechanical strain. As yet another example, baro-caloric material heats up and cools down when exposed to increasing and decreasing pressure. Such materials and other similar caloric materials may be used in place of or in addition to the magneto-caloric material described below to heat or cool fluid within an appliance. Thus, caloric material is used broadly herein to encompass materials that undergo heating or cooling when exposed to a changing field from a field generator, where the field generator may be a magnet, an electric field generator, an actuator for applying mechanical stress or pressure, etc.


Referring now to FIG. 1, an example embodiment of a refrigerator appliance 10 is depicted as an upright refrigerator having a cabinet or casing 12 that defines a number of internal storage compartments or chilled chambers. In particular, refrigerator appliance 10 includes upper fresh-food compartments 14 having doors 16 and lower freezer compartment 18 having upper drawer 20 and lower drawer 22. Drawers 20, 22 are “pull-out” type drawers in that they can be manually moved into and out of freezer compartment 18 on suitable slide mechanisms. Refrigerator 10 is provided by way of example only. Other configurations for a refrigerator appliance may be used as well including appliances with only freezer compartments, only chilled compartments, or other combinations thereof different from that shown in FIG. 1. In addition, the heat pump and heat pump system of the present disclosure is not limited to refrigerator appliances and may be used in other applications as well such as e.g., air-conditioning, electronics cooling devices, and others. Thus, it should be understood that while the use of a heat pump and heat pump system to provide cooling within a refrigerator is provided by way of example herein, the present disclosure may also be used to provide for heating applications as well.



FIG. 2 is a schematic view of various components of refrigerator appliance 10, including refrigeration compartments 30 (e.g., fresh-food compartments 14 and freezer compartment 18) and a machinery compartment 40. Refrigeration compartment 30 and machinery compartment 40 include a heat pump system 100 with a hot side heat exchanger 110. Hot side heat exchanger 110 is positioned outside of refrigeration compartments 30, e.g., in machinery compartment 40 for the rejection of heat thereto. A heat transfer fluid such as e.g., an aqueous solution, flowing within hot side heat exchanger 110 rejects heat to machinery compartment 40 thereby cooling the heat transfer fluid in hot side heat exchanger 110. Air around hot side heat exchanger 110 may be circulated (e.g., with a fan 112) within machinery compartment 40 to improve the rate of heat transfer between the heat transfer fluid in hot side heat exchanger 110 and the air in machinery compartment 40.


A fresh food cold side heat exchanger 120 is positioned in fresh-food compartment 14 for the removal of heat therefrom. Heat transfer fluid such as e.g., an aqueous solution, flowing within fresh food heat exchanger 120 receives heat from fresh-food compartment 14 thereby cooling contents of fresh-food compartment 14. In particular, air around fresh food heat exchanger 120 may be circulated (e.g., with a fresh food fan 122) within fresh-food compartment 14 such that the air from fresh food heat exchanger 120 cools fresh-food compartment 14. Fresh food fan 122 may thus be used to create a flow of air across fresh food heat exchanger 120 and thereby improve the rate of heat transfer. As may be seen from the above, operation of heat pump system 100 and fresh food fan 122 allows fresh food heat exchanger 120 to cool fresh-food compartment 14, e.g., to about thirty-two degrees Fahrenheit (32° F.).


As may be seen in FIG. 2, heat pump system 100 also has a freezer cold side heat exchanger 130. Freezer heat exchanger 130 may operate in parallel with fresh food heat exchanger 120. Thus, e.g., freezer heat exchanger 130 is positioned in freezer compartment 18 for the removal of heat therefrom. Heat transfer fluid such as e.g., an aqueous solution, flowing within freezer heat exchanger 130 receives heat from freezer compartment 18 thereby cooling contents of freezer compartment 18. In particular, air around freezer heat exchanger 130 may be circulated (e.g., with a freezer fan 132) within freezer compartment 18 such that the air from freezer heat exchanger 130 cools freezer compartment 18. Freezer fan 132 may thus be used to create a flow of air across freezer heat exchanger 130 and thereby improve the rate of heat transfer. As may be seen from the above, operation of heat pump system 100 and freezer fan 132 allow chilled air from freezer heat exchanger 130 to cool freezer compartment 18, e.g., to about negative ten degrees Fahrenheit (−10° F.).


A fresh food working fluid circuit 140 connects hot side heat exchanger 110, fresh food heat exchanger 120 and other components of heat pump system 100, including a hot side reservoir 160. Thus, the heat transfer fluid within fresh food working fluid circuit 140 may flow between hot side heat exchanger 110, fresh food heat exchanger 120, hot side reservoir 160, etc. within fresh food working fluid circuit 140. Fresh food working fluid circuit 140 may include suitable conduits for fluidly connecting components, such as pipes, tubes, lines, etc. in order to allow the heat transfer fluid to flow between, inter alia, hot side heat exchanger 110, fresh food heat exchanger 120 and hot side reservoir 160.


A freezer working fluid circuit 150 connects freezer heat exchanger 130 and other components of heat pump system 100, including a fresh food cold side reservoir 170. Thus, the heat transfer fluid within freezer working fluid circuit 150 may flow between freezer heat exchanger 130 and fresh food reservoir 170, etc. within freezer working fluid circuit 150. Freezer working fluid circuit 150 may include suitable conduits for fluidly connecting components, such as pipes, tubes, lines, etc. in order to allow the heat transfer fluid to flow between, inter alia, freezer heat exchanger 130 and fresh food reservoir 170. Freezer working fluid circuit 150 may be separate from fresh food working fluid circuit 140, e.g., such that the heat transfer fluid within fresh food working fluid circuit 140 does not mix with the heat transfer fluid within freezer working fluid circuit 150.


Refrigerator appliance 10 may include a controller 80 that regulates various components of refrigerator appliance 10. Thus, controller 80 may be in operative communication with various components of refrigerator appliance 10, such as fans 112, 122, 132, a motor 102 (FIG. 3), etc. Controller 80 may include memory and one or more processing devices such as microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of refrigerator appliance 10. The memory can be non-transitory and represent random access memory such as DRAM, or read only memory such as ROM or FLASH. The processor executes programming instructions stored in the memory. The memory can be a separate component from the processor or can be included onboard within the processor. Alternatively, controller 80 may be constructed without using a microprocessor, e.g., using a combination of discrete analog and/or digital logic circuitry (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like) to perform control functionality instead of relying upon software. Controller 80 may communicate with various components of refrigerator appliance 10 via a suitable wiring harness or communications bus.



FIG. 3 is a schematic view of heat pump system 100. As may be seen in FIG. 3, heat pump system 100 includes a fresh food regenerator 180 with a first caloric material stage 182 and a second caloric material stage 184. First and second caloric material stages 182, 184 of fresh food regenerator 180 include a magneto-caloric material that exhibit the magneto-caloric effect. Thus, e.g., when first caloric material stage 182 of fresh food regenerator 180 is positioned within a magnetic field from a magnet 186, first caloric material stage 182 may increase in temperature and thereby heat transfer fluid flowing through first caloric material stage 182. Conversely, when the magnetic field from magnet 186 is removed from first caloric material stage 182 of fresh food regenerator 180, first caloric material stage 182 may decrease in temperature and heat transfer fluid flowing through first caloric material stage 182 may reject heat to first caloric material stage 182. Heat pump system 100 may include a motor, such as motor 102, coupled to fresh food regenerator 180 and/or magnet 186 to provide relative motion between fresh food regenerator 180 and magnet 186. Thus, the motor may be operable to sequentially move first and second caloric material stages 182, 184 of fresh food regenerator 180 into and out of the magnetic field from magnet 186.


Heat pump system 100 also includes a freezer regenerator 190 with a first caloric material stage 192 and a second caloric material stage 194. First and second caloric material stages 192, 194 of freezer regenerator 190 include a magneto-caloric material that exhibit the magneto-caloric effect. Thus, e.g., when first caloric material stage 192 of freezer regenerator 190 is positioned within a magnetic field from a magnet 196, first caloric material stage 192 may increase in temperature and thereby heat transfer fluid flowing through first caloric material stage 192. Conversely, when the magnetic field from magnet 196 is removed from first caloric material stage 192 of freezer regenerator 190, first caloric material stage 192 may decrease in temperature and heat transfer fluid flowing through first caloric material stage 192 may reject heat to first caloric material stage 192. Heat pump system 100 may include a motor, such as motor 102, coupled to freezer regenerator 190 and/or magnet 196 to provide relative motion between freezer regenerator 190 and magnet 196. Thus, the motor may be operable to sequentially move first and second caloric material stages 192, 194 of freezer regenerator 190 into and out of the magnetic field from magnet 196.


The one or more magneto-caloric material(s) in fresh food regenerator 180 and freezer regenerator 190 may be different. For example, the magneto-caloric materials in fresh food regenerator 180 may be selected to cool fresh-food compartment 14, e.g., to about thirty-two degrees Fahrenheit (32° F.). Conversely, the magneto-caloric materials in freezer regenerator 190 may be selected to cool freezer compartment 18, e.g., to about negative ten degrees Fahrenheit (−10° F.). In addition, while only shown with two caloric material stages in FIG. 3, it will be understood that each of fresh food regenerator 180 and freezer regenerator 190 may include three (or more) caloric material stages in alternative example embodiments.


As shown in FIG. 3, heat pump system 100 includes a first pair of diverter valves 142 coupled to fresh food working fluid circuit 140 and a second pair of diverter valves 152 coupled to freezer working fluid circuit 150. First and second diverter valves 142, 152 may be coupled to motor 102 such that motor 102 is operable to adjust first and second diverter valves 142, 152, e.g., in a synchronized manner with the relative motion between fresh food regenerator 180 and magnet 186 and/or with the relative motion between freezer regenerator 190 and magnet 196.


The first diverter valves 142 are configured for selectively changing a flow direction of the heat transfer fluid within fresh food working fluid circuit 140 through first and second caloric material stages 182, 184 of fresh food regenerator 180. In particular, a first actuation flow path through first diverter valves 142 is shown with black lines in FIG. 3, and a second actuation flow path through first diverter valves 142 is shown with dashed lines in FIG. 3. As may be seen from the above, first diverter valves 142 may flow the heat transfer fluid from hot side reservoir 160 through either the first and second caloric material stages 182, 184 of fresh food regenerator 180, e.g., depending upon which one of the first and second caloric material stages 182, 184 of fresh food regenerator 180 is within the magnetic field of magnet 186. In particular, first diverter valves 142 may be shifted to the first actuation flow path when first caloric material stage 182 of fresh food regenerator 180 is positioned outside of the magnetic field of magnet 186 and second caloric material stage 184 of fresh food regenerator 180 is positioned within the magnetic field of magnet 186. Conversely, first diverter valves 142 may be shifted to the second actuation flow path when first caloric material stage 182 of fresh food regenerator 180 is positioned within the magnetic field of magnet 186 and second caloric material stage 184 of fresh food regenerator 180 is positioned outside of the magnetic field of magnet 186.


In a similar manner, the second diverter valves 152 are configured for selectively changing a flow direction of the heat transfer fluid within freezer working fluid circuit 150 through first and second caloric material stages 192, 194 of freezer regenerator 190. In particular, a first actuation flow path through second diverter valves 152 is shown with black lines in FIG. 3, and a second actuation flow path through second diverter valves 152 is shown with dashed lines in FIG. 3. As may be seen from the above, second diverter valves 152 may flow the heat transfer fluid from fresh food reservoir 170 through either the first and second caloric material stages 192, 194 of freezer regenerator 190, e.g., depending upon which one of the first and second caloric material stages 192, 194 of fresh freezer regenerator 190 is within the magnetic field of magnet 196. In particular, second diverter valves 152 may be shifted to the first actuation flow path when first caloric material stage 192 of freezer regenerator 190 is positioned outside of the magnetic field of magnet 196 and second caloric material stage 194 of freezer regenerator 190 is positioned within the magnetic field of magnet 196. Conversely, second diverter valves 152 may be shifted to the second actuation flow path when first caloric material stage 192 of freezer regenerator 190 is positioned within the magnetic field of magnet 196 and second caloric material stage 194 of freezer regenerator 190 is positioned outside of the magnetic field of magnet 196.


A liquid-liquid heat exchanger 172 is connected to fresh food working fluid circuit 140. Thus, the heat transfer fluid within fresh food working fluid circuit 140 flows through liquid-liquid heat exchanger 172. As an example, liquid-liquid heat exchanger 172 may be positioned downstream of fresh food heat exchanger 120 and upstream of fresh food regenerator 180 on fresh food working fluid circuit 140. Liquid-liquid heat exchanger 172 is thermally coupled to fresh food reservoir 170. For example, liquid-liquid heat exchanger 172 may be submerged within the heat transfer fluid of freezer working fluid circuit 150 in fresh food reservoir 170.


Working fluid flow through fresh food working fluid circuit 140 will now be described in greater detail below. As may be seen in FIG. 3, fresh food working fluid circuit 140 connects hot side heat exchanger 110, fresh food heat exchanger 120, hot side reservoir 160 and fresh food regenerator 180. Thus, heat transfer fluid may flow between hot side heat exchanger 110, fresh food heat exchanger 120, hot side reservoir 160 and fresh food regenerator 180 through fresh food working fluid circuit 140. In particular, a pump 104 may urge the heat transfer fluid in fresh food working fluid circuit 140 to flow between hot side heat exchanger 110, fresh food heat exchanger 120, hot side reservoir 160 and fresh food regenerator 180, as described in greater detail below. Arrows are provided on fresh food working fluid circuit 140 in FIG. 3 to show the direction of heat transfer fluid flow through fresh food working fluid circuit 140.


As noted above, the heat transfer fluid within fresh food heat exchanger 120 receives heat from fresh-food compartment 14 thereby cooling contents of fresh-food compartment 14. Thus, the air in fresh-food compartment 14 may reject heat to the heat transfer fluid within fresh food heat exchanger 120. The heat transfer fluid flows out of fresh food heat exchanger 120 by fresh food working fluid circuit 140 to liquid-liquid heat exchanger 172 thermally coupled to fresh food reservoir 170. The working fluid from fresh food heat exchanger 120 within liquid-liquid heat exchanger 172 receives heat from the heat transfer fluid of freezer working fluid circuit 150 within fresh food reservoir 170. Thus, the heat transfer fluid from fresh food heat exchanger 120 receives additional heat from the heat transfer fluid of freezer working fluid circuit 150 within fresh food reservoir 170.


The heat transfer fluid then flows out of liquid-liquid heat exchanger 172 via fresh food working fluid circuit 140 to fresh food regenerator 180. In particular, the heat transfer fluid from liquid-liquid heat exchanger 172 may flow into the one of first and second caloric material stages 182, 184 of fresh food regenerator 180 that is within the magnetic field of magnet 186. Thus, the heat transfer fluid from liquid-liquid heat exchanger 172 flowing through fresh food regenerator 180 receives additional heat from magneto-caloric material (MCM) in fresh food regenerator 180. The heat transfer fluid carries this heat through fresh food working fluid circuit 140 to hot side heat exchanger 110. In hot side heat exchanger 110, the heat in the transfer fluid is released to the environment, machinery compartment 40, and/or other location external to refrigeration compartments 30.


From hot side heat exchanger 110, the heat transfer fluid flows into hot side reservoir 160. Within hot side reservoir 160, the heat transfer fluid in fresh food working fluid circuit 140 may reject heat to the environment, machinery compartment 40, etc. due to the placement of hot side reservoir 160, e.g., within machinery compartment 40. Thus, hot side reservoir 160 may assist with tight temperature control of heat transfer fluid returning to fresh food regenerator 180.


From hot side reservoir 160, the heat transfer fluid returns by fresh food working fluid circuit 140 to fresh food regenerator 180. In particular, the heat transfer fluid from hot side reservoir 160 may flow into the one of first and second caloric material stages 182, 184 of fresh food regenerator 180 that is outside of the magnetic field of magnet 186. Thus, the heat transfer fluid from hot side reservoir 160 flowing through fresh food regenerator 180 rejects heat to magneto-caloric material (MCM) in fresh food regenerator 180. The now colder heat transfer fluid flows through fresh food working fluid circuit 140 to fresh food heat exchanger 120 to receive heat from fresh-food compartment 14 and repeat the cycle as just described.


Working fluid flow through freezer working fluid circuit 150 is similar to that described above for fresh food working fluid circuit 140 and will now be described in greater detail below. As may be seen in FIG. 3, freezer working fluid circuit 150 connects freezer heat exchanger 130, fresh food reservoir 170 and freezer regenerator 190. Thus, heat transfer fluid may flow between freezer heat exchanger 130, fresh food reservoir 170 and freezer regenerator 190 through freezer working fluid circuit 150. In particular, pump 104 may urge the heat transfer fluid in freezer working fluid circuit 150 to flow between freezer heat exchanger 130, fresh food reservoir 170 and freezer regenerator 190, as described in greater detail below. Arrows are provided on freezer working fluid circuit 150 in FIG. 3 to show the direction of heat transfer fluid flow through freezer working fluid circuit 150.


As noted above, the heat transfer fluid within freezer heat exchanger 130 receives heat from freezer compartment 18 thereby cooling contents of fresh-food compartment 14. Thus, the air in freezer compartment 18 may reject heat to the heat transfer fluid within freezer heat exchanger 130. The heat transfer fluid flows out of freezer heat exchanger 130 by freezer working fluid circuit 150 to freezer regenerator 190. In particular, the heat transfer fluid from freezer heat exchanger 130 may flow into the one of first and second caloric material stages 192, 194 of freezer regenerator 190 that is within the magnetic field of magnet 196. Thus, the heat transfer fluid from freezer heat exchanger 130 flowing through freezer regenerator 190 receives additional heat from magneto-caloric material (MCM) in freezer regenerator 190. The heat transfer fluid carries this heat through freezer working fluid circuit 150 to fresh food reservoir 170. In fresh food reservoir 170, the heat in the transfer fluid is rejected to the working fluid in fresh food working fluid circuit 140 via liquid-liquid heat exchanger 172 and/or to the air within fresh-food compartment 14 due to the placement of fresh food reservoir 170 within fresh-food compartment 14. Thus, fresh food reservoir 170 may assist with tight temperature control of heat transfer fluid returning to freezer regenerator 190.


The heat transfer fluid then flows out of fresh food reservoir 170 by freezer working fluid circuit 150 to back to freezer regenerator 190. In particular, the heat transfer fluid from fresh food reservoir 170 may flow into the one of first and second caloric material stages 192, 194 of freezer regenerator 190 that is outside of the magnetic field of magnet 196. Thus, the heat transfer fluid from fresh food reservoir 170 flowing through freezer regenerator 190 rejects heat to magneto-caloric material (MCM) in freezer regenerator 190. The now colder heat transfer fluid flows through freezer working fluid circuit 150 to freezer heat exchanger 130 to receive heat from freezer compartment 18 and repeat the cycle as just described.


The flow of heat transfer fluid in heat pump system 100 described above is provided by way of example only. Other configurations of heat pump system 100 may be used as well. For example, the illustrated lines of fresh food and freezer working fluid circuits 140, 150 provide fluid communication between the various components of heat pump system 100 in FIG. 3 but other heat transfer fluid recirculation loops with different lines and connections may also be employed. Still other configurations of heat pump system 100 may be used as well.


As noted above, hot side reservoir 160 is coupled to fresh food working fluid circuit 140 and is positioned outside of refrigeration compartments 30, e.g., within machinery compartment 40. Hot side reservoir 160 is sized for containing a volume of the heat transfer fluid of fresh food working fluid circuit 140. The volume of the heat transfer fluid from fresh food working fluid circuit 140 within hot side reservoir 160 may assist with providing leak resilience and a simple system, and the size of hot side reservoir 160 may be selected to provide such benefits. For example, hot side reservoir 160 may be sized to hold no less than one hundred and fifty milliliters (150 mL) of heat transfer fluid. In particular, hot side reservoir 160 may be sized to hold no less than five hundred milliliters (500 mL) of heat transfer fluid. Such sizing is advantageous, e.g., because the heat transfer fluid within hot side reservoir 160 may dwell within machinery compartment 40 and thereby maintain a suitable temperature and/or may provide a suitable area for catching leaking fluid.


Hot side reservoir 160 may be positioned below one or both of first diverter valves 142. In particular, hot side reservoir 160 may be positioned below first diverter valves 142 to recapture leakage of the heat transfer fluid from first diverter valves 142. To assist with recapturing leakage, first diverter valves 142, hot side reservoir 160 and/or fresh food regenerator 180 may be positioned within a hermetic shell 164 (FIG. 2). In certain example embodiments, the inner surface of hermetic shell 164 may form reservoir 160.


As noted above, fresh food reservoir 170 is coupled to freezer working fluid circuit 150 and is positioned within of fresh-food compartment 14. Fresh food reservoir 170 is sized for containing a volume of the heat transfer fluid of freezer working fluid circuit 150. The volume of the heat transfer fluid from freezer working fluid circuit 150 within fresh food reservoir 170 may assist with providing leak resilience and a simple system, and the size of fresh food reservoir 170 may be selected to provide such benefits. For example, fresh food reservoir 170 may be sized to hold no less than one hundred and fifty milliliters (150 mL) of heat transfer fluid. In particular, fresh food reservoir 170 may be sized to hold no less than five hundred milliliters (500 mL) of heat transfer fluid. Such sizing is advantageous, e.g., because the heat transfer fluid within fresh food reservoir 170 may dwell within fresh-food compartment 14 and thereby maintain a suitable temperature and/or may provide a suitable area for catching leaking fluid.


Fresh food reservoir 170 may be positioned below one or both of second diverter valves 152. In particular, fresh food reservoir 170 may be positioned below second diverter valves 152 to recapture leakage of the heat transfer fluid from second diverter valves 152. To assist with recapturing leakage, second diverter valves 152, fresh food reservoir 170 and/or freezer regenerator 190 may be positioned within a hermetic shell 174 (FIG. 2). In certain example embodiments, the inner surface of hermetic shell 174 may form fresh food reservoir 170.


As shown in FIG. 3, pump 104 may be connected to fresh food working fluid circuit 140 and freezer working fluid circuit 150. Pump 104 is operable to flow heat transfer fluid through fresh food working fluid circuit 140 and to flow heat transfer fluid through freezer working fluid circuit 150. Pump 104 may include a first piston 144 coupled to fresh food working fluid circuit 140 and a second piston 154 coupled to freezer working fluid circuit 150. First and second pistons 144, 154 may be connected to motor 102 such that first and second pistons 144, 154 are drivable by a common motor, e.g., and such that reciprocation of first and second pistons 144, 154 is synchronized. In alternative example embodiments, first and second pistons 144, 154 may be driven by separate motors, e.g., such that first and second pistons 144, 154 may reciprocate independently. First piston 144 may be positioned within a double-acting cylinder 146 connected to fresh food working fluid circuit 140, and second piston 154 may be positioned within a double-acting cylinder 156 connected to freezer working fluid circuit 150. Double-acting cylinders 146, 156 may allow efficient pumping of heat transfer fluid through fresh food and freezer working fluid circuits 140, 150. In alternative example embodiments, pump 104 may include single-acting cylinders or another positive displacement pump design.



FIG. 4 is a schematic view of a heat pump system 200 according to another example embodiment of the present subject matter. Heat pump system 200 may be used in or with any suitable appliance, such as refrigerator appliance 100. Thus, heat pump system 200 is described in greater detail below in the context of refrigerator appliance 100. Heat pump system 200 include numerous common components with heat pump system 100 (FIG. 3) and operates in the same or similar manner. However, heat pump system 200 includes additional components as described below.


As shown in FIG. 4, heat pump system 200 includes a first flow damper 202 coupled to fresh food working fluid circuit 140 and a second flow damper 204 coupled to freezer working fluid circuit 150. First flow damper 202 is configured to dampen pressure and flow spikes of the heat transfer fluid in fresh food working fluid circuit 140. Similarly, second flow damper 204 is configured to dampen pressure and flow spikes of the heat transfer fluid in freezer working fluid circuit 150. Thus, e.g., first and second flow dampers 202, 204 may elastically move or deform to regulate and smooth out the flow profile of working fluid, e.g., which will have a slight pulsing quality without first and second flow dampers 202, 204. Such pulsations may disrupt the thermodynamic cycle in fresh food regenerator 180 and/or freezer regenerator 190. Each of first and second flow dampers 202, 204 may be a spring-loaded piston (as shown in FIG. 4), a flexible tube, a flexible diaphragm, etc.



FIG. 5 is a schematic view of a heat pump system 300 according to another example embodiment of the present subject matter. Heat pump system 300 may be used in or with any suitable appliance, such as refrigerator appliance 100. Thus, heat pump system 300 is described in greater detail below in the context of refrigerator appliance 100. Heat pump system 300 include numerous common components with heat pump system 100 (FIG. 3) and heat pump system 200 (FIG. 4) and operates in the same or similar manner. However, heat pump system 300 includes additional components as described below.


As shown in FIG. 5, a tray 302 of hot side reservoir 160 extends below first diverter valves 142 to recover leaks from first diverter valves 142. Similarly, a tray 304 of fresh food reservoir 170 extends below second diverter valves 152 to recover leaks from second diverter valves 152. Such trays 302, 304 may allow first and second diverter valves 142, 152 to permit small leaks, e.g., such that first and second diverter valves 142, 152 may have lower frictional losses (and lower sealing pressure) compared to diverter valves that are designed to not leak.


Heat pump system 300 also includes reversing valves 306. Reversing valves 306 may be actuated to reverse the direction of working fluid flow through fresh food and freezer regenerators 180, 190 for defrost. Thus, reversing valves 306 may allow operation of heat pump system 300 in reverse from that described above.


This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims
  • 1. A refrigerator appliance, comprising: a cabinet defining a fresh food chamber and a freezer chamber;a hot side heat exchanger positioned outside of the fresh food chamber and the freezer chamber of the cabinet;a fresh food cold side heat exchanger positioned within the cabinet at the fresh food chamber, the fresh food chamber chillable with air from the fresh food cold side heat exchanger;a freezer cold side heat exchanger positioned within the cabinet at the freezer chamber, the freezer chamber chillable with air from the freezer cold side heat exchanger;a fresh food regenerator comprising a first caloric material stage and a second caloric material stage;a freezer regenerator comprising a first caloric material stage and a second caloric material stage, the first and second caloric material stages of the freezer regenerator separate from the first and second caloric material stages of the fresh food regenerator;a fresh food working fluid circuit coupling the hot side heat exchanger, the fresh food cold side heat exchanger and the fresh food regenerator such that a first working fluid is flowable through the hot side heat exchanger, the fresh food cold side heat exchanger and the fresh food regenerator via the fresh food working fluid circuit;a first pair of diverter valves coupled to the fresh food working fluid circuit, the first pair of diverter valves configured for selectively changing a flow direction of the first working fluid through the first caloric material stage and the second caloric material stage of the fresh food regenerator;a hot side reservoir coupled to the fresh food working fluid circuit, the hot side reservoir sized for containing a volume of the first working fluid, the hot side reservoir positioned outside of the fresh food chamber and the freezer chamber of the cabinet, the hot side reservoir positioned below one or both of the first pair of diverter valves;a freezer working fluid circuit coupling the freezer cold side heat exchanger and the freezer regenerator such that a second working fluid is flowable through the freezer cold side heat exchanger and the freezer regenerator via the freezer working fluid circuit; anda second pair of diverter valves coupled to the freezer working fluid circuit, the second pair of diverter valves configured for selectively changing a flow direction of the second working fluid through the first caloric material stage and the second caloric material stage of the freezer regenerator;a fresh food cold side reservoir coupled to the freezer working fluid circuit, the fresh food cold side reservoir sized for containing a volume of the second working fluid, the fresh food cold side reservoir positioned within the cabinet at the fresh food chamber, the fresh food cold side reservoir positioned below one or both of the second pair of diverter valves; anda liquid-liquid heat exchanger coupled to the fresh food working fluid circuit such that the first working fluid is flowable through the liquid-liquid heat exchanger, the liquid-liquid heat exchanger positioned at the fresh food cold side reservoir such the liquid-liquid heat exchanger is configured for exchanging heat between the first working fluid in the liquid-liquid heat exchanger and the second working fluid in the fresh food cold side reservoir.
  • 2. The refrigerator appliance of claim 1, wherein the hot side reservoir is sized to contain no less than one hundred and fifty milliliters of the first working fluid.
  • 3. The refrigerator appliance of claim 2, wherein the hot side reservoir is sized to contain no less than five hundred milliliters of the first working fluid.
  • 4. The refrigerator appliance of claim 2, wherein the fresh food cold side reservoir is sized to contain no less than one hundred and fifty milliliters of the second working fluid.
  • 5. The refrigerator appliance of claim 4, wherein the fresh food cold side reservoir is sized to contain no less than five hundred milliliters of the second working fluid.
  • 6. The refrigerator appliance of claim 1, wherein the hot side reservoir is positioned below both of the first pair of diverter valves such that the hot side reservoir is configured to recapture leakage of the first working fluid from the first pair of diverter valves.
  • 7. The refrigerator appliance of claim 6, wherein the fresh food cold side reservoir is positioned below both of the second pair of diverter valves such that the fresh food cold side reservoir is configured to recapture leakage of the second working fluid from the second pair of diverter valves.
  • 8. The refrigerator appliance of claim 1, wherein the liquid-liquid heat exchanger is submerged within the second working fluid in the fresh food cold side reservoir.
  • 9. The refrigerator appliance of claim 1, wherein the first pair of diverter valves and the hot side reservoir are positioned within a hermetic shell.
  • 10. The refrigerator appliance of claim 1, wherein the second pair of diverter valves and the fresh food cold side reservoir are positioned within a hermetic shell.
  • 11. The refrigerator appliance of claim 1, further comprising a pump connected to the fresh food working fluid circuit and the freezer working fluid circuit, the pump operable to flow the first working fluid through the fresh food working fluid circuit and to flow the second working fluid through the freezer working fluid circuit.
  • 12. The refrigerator appliance of claim 11, wherein the pump comprises a first piston coupled to the fresh food working fluid circuit and a second piston coupled to the freezer working fluid circuit.
  • 13. The refrigerator appliance of claim 12, wherein the first piston is positioned within a double-acting cylinder.
  • 14. The refrigerator appliance of claim 12, wherein the second piston is positioned within a double-acting cylinder.
  • 15. The refrigerator appliance of claim 1, further comprising a first field generator, a second field generator and a motor, the first field generator generating a field that is selectively applied to the first and second caloric material stages of the fresh food regenerator, the second field generator generating a field that is selectively applied to the first and second caloric material stages of the freezer regenerator, the motor operable to generate relative motion between the first field generator and the fresh food regenerator, the motor also operable to generate relative motion between the second field generator and the freezer regenerator.
  • 16. The refrigerator appliance of claim 15, wherein the motor is coupled to the first and second pairs of diverter valves such that the motor is operable to actuate the first and second pairs of diverter valves.
  • 17. The refrigerator appliance of claim 15, further comprising a pump connected to the fresh food working fluid circuit and the freezer working fluid circuit, the pump operable to flow the first working fluid through the fresh food working fluid circuit and to flow the second working fluid through the freezer working fluid circuit, the motor coupled to the pump such that the motor is operable to drive the pump.
  • 18. The refrigerator appliance of claim 1, further comprising a first flow damper coupled to the fresh food working fluid circuit and a second flow damper coupled to the freezer working fluid circuit, the first flow damper configured to dampen pressure and flow spikes of the first working fluid in the fresh food working fluid circuit, the second flow damper configured to dampen pressure and flow spikes of the second working fluid in the freezer working fluid circuit.
  • 19. The refrigerator appliance of claim 18, wherein each of the first and second flow dampers is one of a spring-loaded piston, a flexible tube and a flexible diaphragm.
US Referenced Citations (284)
Number Name Date Kind
668560 Fulner et al. Feb 1901 A
1985455 Mosby Dec 1934 A
2671929 Gayler Mar 1954 A
2765633 Muffly Oct 1956 A
3618265 Croop Nov 1971 A
3816029 Bowen et al. Jun 1974 A
3844341 Bimshas, Jr. et al. Oct 1974 A
3956076 Powell, Jr. et al. May 1976 A
4037427 Kramer Jul 1977 A
4102655 Jeffery et al. Jul 1978 A
4107935 Steyert, Jr. Aug 1978 A
4197709 Hochstein Apr 1980 A
4200680 Sasazawa et al. Apr 1980 A
4259843 Kausch Apr 1981 A
4332135 Barclay et al. Jun 1982 A
4408463 Barclay Oct 1983 A
4507927 Barclay Apr 1985 A
4507928 Johnson Apr 1985 A
4549155 Halbach Oct 1985 A
4554790 Nakagome et al. Nov 1985 A
4557228 Samodovitz Dec 1985 A
4599866 Nakagome et al. Jul 1986 A
4625519 Hakuraku et al. Dec 1986 A
4642994 Barclay et al. Feb 1987 A
4735062 Woolley et al. Apr 1988 A
4741175 Schulze May 1988 A
4785636 Hakuraku et al. Nov 1988 A
4796430 Malaker et al. Jan 1989 A
5062471 Jaeger Nov 1991 A
5091361 Hed Feb 1992 A
5156003 Yoshiro et al. Oct 1992 A
5190447 Schneider Mar 1993 A
5249424 DeGregoria et al. Oct 1993 A
5336421 Kurita et al. Aug 1994 A
5351791 Rosenzweig Oct 1994 A
5465781 DeGregoria Nov 1995 A
5599177 Hetherington Feb 1997 A
5661895 Irgens Sep 1997 A
5718570 Beckett et al. Feb 1998 A
5934078 Lawton, Jr. et al. Aug 1999 A
6332323 Reid et al. Dec 2001 B1
6423255 Hoechsmann et al. Jul 2002 B1
6446441 Dean Sep 2002 B1
6467274 Barclay et al. Oct 2002 B2
6517744 Hara et al. Feb 2003 B1
6526759 Zimm et al. Mar 2003 B2
6588215 Ghoshal Jul 2003 B1
6612816 Vanden Brande et al. Sep 2003 B1
6668560 Zimm et al. Dec 2003 B2
6826915 Wada et al. Dec 2004 B2
6840302 Tanaka et al. Jan 2005 B1
6915647 Tsuchikawa et al. Jul 2005 B2
6935121 Fang et al. Aug 2005 B2
6946941 Chell Sep 2005 B2
6971245 Kuroyanagi Dec 2005 B2
7148777 Chell et al. Dec 2006 B2
7297270 Bernard et al. Nov 2007 B2
7313926 Gurin Jan 2008 B2
7481064 Kitanovski et al. Jan 2009 B2
7552592 Iwasaki et al. Jun 2009 B2
7644588 Shin et al. Jan 2010 B2
7863789 Zepp et al. Jan 2011 B2
7897898 Muller et al. Mar 2011 B2
7938632 Smith May 2011 B2
8061147 Dinesen et al. Nov 2011 B2
8069662 Albert Dec 2011 B1
8099964 Saito et al. Jan 2012 B2
8174245 Carver May 2012 B2
8191375 Sari et al. Jun 2012 B2
8209988 Zhang et al. Jul 2012 B2
8216396 Dooley et al. Jul 2012 B2
8310325 Zhang et al. Nov 2012 B2
8375727 Sohn Feb 2013 B2
8378769 Heitzler et al. Feb 2013 B2
8448453 Bahl et al. May 2013 B2
8551210 Reppel et al. Oct 2013 B2
8596084 Herrera et al. Dec 2013 B2
8616009 Dinesen et al. Dec 2013 B2
8656725 Muller et al. Feb 2014 B2
8695354 Heitzler et al. Apr 2014 B2
8729718 Kuo et al. May 2014 B2
8763407 Carroll et al. Jul 2014 B2
8769966 Heitzler et al. Jul 2014 B2
8869541 Heitzler et al. Oct 2014 B2
8875522 Watanabe Nov 2014 B2
8904806 Cramet et al. Dec 2014 B2
8935927 Kobayashi et al. Jan 2015 B2
8978391 Muller et al. Mar 2015 B2
9173415 Meillan Nov 2015 B2
9175885 Katter Nov 2015 B2
9245673 Carroll et al. Jan 2016 B2
9377221 Benedict Jun 2016 B2
9400126 Takahashi et al. Jul 2016 B2
9523519 Muller Dec 2016 B2
9534817 Benedict et al. Jan 2017 B2
9548151 Muller Jan 2017 B2
9599374 Takahashi et al. Mar 2017 B2
9599375 Choi Mar 2017 B2
9631843 Benedict Apr 2017 B2
9702594 Vetrovec Jul 2017 B2
9739510 Hassen Aug 2017 B2
9746214 Zimm et al. Aug 2017 B2
9797630 Benedict et al. Oct 2017 B2
9810454 Tasaki et al. Nov 2017 B2
9857105 Schroeder et al. Jan 2018 B1
9857106 Schroeder et al. Jan 2018 B1
9927155 Boeder et al. Mar 2018 B2
9964344 Kim May 2018 B2
9978487 Katter et al. May 2018 B2
10006674 Benedict Jun 2018 B2
10006675 Benedict Jun 2018 B2
10018385 Radermacher et al. Jul 2018 B2
10030895 Kim Jul 2018 B2
10047979 Benedict Aug 2018 B2
10047980 Schroeder Aug 2018 B2
10443585 Schroeder Oct 2019 B2
10684044 Schroeder Jun 2020 B2
20020040583 Barclay et al. Apr 2002 A1
20020066368 Zornes Jun 2002 A1
20020087120 Rogers et al. Jul 2002 A1
20030010054 Esch et al. Jan 2003 A1
20030051774 Saito Mar 2003 A1
20040093877 Wada May 2004 A1
20040182086 Chiang et al. Sep 2004 A1
20040187510 Jung Sep 2004 A1
20040187803 Regev Sep 2004 A1
20040250550 Bruck Dec 2004 A1
20050017394 Hochsmann et al. Jan 2005 A1
20050046533 Chell Mar 2005 A1
20050109490 Harmon et al. May 2005 A1
20050217278 Mongia et al. Oct 2005 A1
20050263357 Kuwahara Dec 2005 A1
20050274676 Kumar et al. Dec 2005 A1
20060130518 Kang et al. Jun 2006 A1
20060231163 Hirosawa et al. Oct 2006 A1
20060279391 Xia Dec 2006 A1
20070130960 Muller et al. Jun 2007 A1
20070220901 Kobayashi Sep 2007 A1
20080223853 Muller et al. Sep 2008 A1
20080236171 Saito et al. Oct 2008 A1
20080236175 Chaparro Monferrer et al. Oct 2008 A1
20080303375 Carver Dec 2008 A1
20090032223 Zimmerman et al. Feb 2009 A1
20090091411 Zhang et al. Apr 2009 A1
20090158749 Sandeman Jun 2009 A1
20090217674 Kaji et al. Sep 2009 A1
20090236930 Nashiki Sep 2009 A1
20090266083 Shin et al. Oct 2009 A1
20090308080 Han et al. Dec 2009 A1
20090314860 Wang et al. Dec 2009 A1
20090320499 Muller et al. Dec 2009 A1
20100000228 Wiest et al. Jan 2010 A1
20100058775 Kaji et al. Mar 2010 A1
20100071383 Zhang et al. Mar 2010 A1
20100116471 Reppel et al. May 2010 A1
20100122488 Fukai May 2010 A1
20100150747 Mehta et al. Jun 2010 A1
20100162747 Hamel et al. Jul 2010 A1
20100209084 Nelson et al. Aug 2010 A1
20100236258 Heitzler et al. Sep 2010 A1
20100276627 Mazet Nov 2010 A1
20100303917 Watson et al. Dec 2010 A1
20110000206 Aprad Jan 2011 A1
20110042608 Reesink Feb 2011 A1
20110048031 Barve Mar 2011 A1
20110048690 Reppel et al. Mar 2011 A1
20110058795 Kleman et al. Mar 2011 A1
20110061398 Shih et al. Mar 2011 A1
20110062821 Chang et al. Mar 2011 A1
20110082026 Sakatani et al. Apr 2011 A1
20110094243 Carroll et al. Apr 2011 A1
20110129363 Sakai et al. Jun 2011 A1
20110154832 Barve et al. Jun 2011 A1
20110162388 Barve et al. Jul 2011 A1
20110168363 Reppel et al. Jul 2011 A9
20110173993 Muller et al. Jul 2011 A1
20110182086 Mienko et al. Jul 2011 A1
20110192836 Muller et al. Aug 2011 A1
20110218921 Addala et al. Sep 2011 A1
20110239662 Bahl et al. Oct 2011 A1
20110284196 Zanadi Nov 2011 A1
20110302931 Sohn Dec 2011 A1
20110308258 Smith et al. Dec 2011 A1
20110314836 Heitzler et al. Dec 2011 A1
20120031108 Kobayashi et al. Feb 2012 A1
20120033002 Seeler et al. Feb 2012 A1
20120036868 Heitzler et al. Feb 2012 A1
20120045698 Shima Feb 2012 A1
20120060526 May et al. Mar 2012 A1
20120079834 Dinesen Apr 2012 A1
20120222427 Hassen Sep 2012 A1
20120222428 Celik et al. Sep 2012 A1
20120266591 Morimoto et al. Oct 2012 A1
20120266607 Morimoto et al. Oct 2012 A1
20120267090 Kruglick Oct 2012 A1
20120272665 Watanabe et al. Nov 2012 A1
20120272666 Watanabe et al. Nov 2012 A1
20120285179 Morimoto Nov 2012 A1
20120291453 Watanabe et al. Nov 2012 A1
20130019610 Zimm et al. Jan 2013 A1
20130020529 Chang et al. Jan 2013 A1
20130104568 Kuo et al. May 2013 A1
20130106116 Kuo et al. May 2013 A1
20130145573 Bizhanzadeh Jun 2013 A1
20130180263 Choi et al. Jul 2013 A1
20130186107 Shih et al. Jul 2013 A1
20130187077 Katter Jul 2013 A1
20130192269 Wang Aug 2013 A1
20130199460 Duplessis et al. Aug 2013 A1
20130200293 Zhao et al. Aug 2013 A1
20130227965 Yagi et al. Sep 2013 A1
20130232993 Saito et al. Sep 2013 A1
20130255279 Tomimatsu et al. Oct 2013 A1
20130269367 Meillan Oct 2013 A1
20130298571 Morimoto et al. Nov 2013 A1
20130300243 Gieras et al. Nov 2013 A1
20130319012 Kuo et al. Dec 2013 A1
20130327062 Watanabe et al. Dec 2013 A1
20140020881 Reppel et al. Jan 2014 A1
20140075958 Takahashi et al. Mar 2014 A1
20140116538 Tanaka et al. May 2014 A1
20140157793 Johnson et al. Jun 2014 A1
20140165594 Benedict Jun 2014 A1
20140165595 Zimm et al. Jun 2014 A1
20140190182 Benedict Jul 2014 A1
20140216057 Oezcan Aug 2014 A1
20140260373 Gerber et al. Sep 2014 A1
20140290273 Benedict et al. Oct 2014 A1
20140290275 Muller Oct 2014 A1
20140291570 Klausner et al. Oct 2014 A1
20140305137 Benedict Oct 2014 A1
20140305139 Takahashi et al. Oct 2014 A1
20140311165 Watanabe et al. Oct 2014 A1
20140325996 Muller Nov 2014 A1
20140366557 Mun et al. Dec 2014 A1
20150007582 Kim et al. Jan 2015 A1
20150027133 Benedict Jan 2015 A1
20150030483 Ryu Jan 2015 A1
20150033762 Cheng et al. Feb 2015 A1
20150033763 Saito et al. Feb 2015 A1
20150047371 Hu et al. Feb 2015 A1
20150068219 Komorowski et al. Mar 2015 A1
20150089960 Takahashi et al. Apr 2015 A1
20150096307 Watanabe et al. Apr 2015 A1
20150114007 Neilson et al. Apr 2015 A1
20150168030 Leonard et al. Jun 2015 A1
20150184903 Mun et al. Jul 2015 A1
20150211440 Joffroy Jul 2015 A1
20150260433 Choi et al. Sep 2015 A1
20150267943 Kim et al. Sep 2015 A1
20150362224 Benedict et al. Dec 2015 A1
20150362225 Schwartz Dec 2015 A1
20150369524 Ikegami et al. Dec 2015 A1
20160000999 Focht et al. Jan 2016 A1
20160025385 Auringer et al. Jan 2016 A1
20160032920 Hatami Aghdam Feb 2016 A1
20160084544 Radermacher et al. Mar 2016 A1
20160091227 Leonard et al. Mar 2016 A1
20160146515 Momen et al. May 2016 A1
20160216012 Benedict et al. Jul 2016 A1
20160238287 Benedict Aug 2016 A1
20160273811 Smith et al. Sep 2016 A1
20160282021 Zhao et al. Sep 2016 A1
20160298880 Humburg Oct 2016 A1
20160355898 Vieyra Villegas et al. Dec 2016 A1
20160356529 Humburg Dec 2016 A1
20160367982 Pennie Dec 2016 A1
20170059213 Barclay et al. Mar 2017 A1
20170059215 Watanabe et al. Mar 2017 A1
20170071234 Garg Mar 2017 A1
20170138648 Cui et al. May 2017 A1
20170176083 Sul et al. Jun 2017 A1
20170309380 Benedict et al. Oct 2017 A1
20170328603 Barclay et al. Nov 2017 A1
20170328649 Brandmeier Nov 2017 A1
20170370624 Zimm et al. Dec 2017 A1
20180005735 Scharf et al. Jan 2018 A1
20180023852 Schroeder et al. Jan 2018 A1
20180045437 Vetrovec Feb 2018 A1
20180195775 Schroeder Jul 2018 A1
20180252445 Ueno Sep 2018 A1
20180283740 Holladay et al. Oct 2018 A1
20180340715 Benedict et al. Nov 2018 A1
20190206578 Wong Jul 2019 A1
Foreign Referenced Citations (68)
Number Date Country
2893874 Jun 2014 CA
2919117 Jan 2015 CA
1977131 Jun 2007 CN
101280983 Oct 2008 CN
101495818 Jul 2009 CN
101842647 Sep 2010 CN
101979937 Feb 2011 CN
201772566 Mar 2011 CN
102165615 Aug 2011 CN
101788207 Sep 2011 CN
102345942 Feb 2012 CN
202432596 Sep 2012 CN
103090583 May 2013 CN
103712401 Apr 2014 CN
102077303 Apr 2015 CN
106481842 Mar 2017 CN
106949673 Jul 2017 CN
107003041 Aug 2017 CN
804694 Apr 1951 DE
1514388 Jun 1969 DE
102013223959 May 2015 DE
202015106851 Mar 2016 DE
0187078 Jul 1986 EP
2071255 Jun 2009 EP
2108904 Oct 2009 EP
2215955 Aug 2010 EP
2322072 May 2011 EP
2420760 Feb 2012 EP
2813785 Dec 2014 EP
3306082 Apr 2018 EP
2935468 Mar 2010 FR
59232922 Dec 1984 JP
H08166182 Jun 1996 JP
3205196 Sep 2001 JP
2002315243 Oct 2002 JP
2007147136 Jun 2007 JP
2007291437 Nov 2007 JP
2008051412 Mar 2008 JP
2010112606 May 2010 JP
2010525291 Jul 2010 JP
6212955 Dec 2014 JP
2014228216 Dec 2014 JP
5907023 Apr 2016 JP
6079498 Feb 2017 JP
6191539 Sep 2017 JP
2017207222 Nov 2017 JP
101100301 Dec 2011 KR
101238234 Mar 2013 KR
WO0133145 May 2001 WO
WO0212800 Feb 2002 WO
WO03016794 Feb 2003 WO
WO2004068512 Aug 2004 WO
WO2007036729 Apr 2007 WO
WO2007086638 Aug 2007 WO
WO2009024412 Feb 2009 WO
WO2009098391 Aug 2009 WO
WO2010119591 Oct 2010 WO
WO2011034594 Mar 2011 WO
WO2011152179 Dec 2011 WO
WO2014099199 Jun 2014 WO
WO2014170447 Oct 2014 WO
WO2014173787 Oct 2014 WO
WO2015017230 Feb 2015 WO
WO2016005774 Jan 2016 WO
WO2016035267 Mar 2016 WO
WO2017042266 Mar 2017 WO
WO2017081048 May 2017 WO
WO2017097989 Jun 2017 WO
Non-Patent Literature Citations (15)
Entry
International Search Report issued in connection with PCT Application No. PCT/US2014/042485 dated Oct. 23, 2014.
International Search Report issued in connection with PCT Application No. PCT/US2014/017431 dated May 9, 2014.
International Search Report issued in connection with PCT/US2013/070518, dated Jan. 22, 2014.
Tetsuji Okamura, Performance of a room-temperature rotary magnet refrigerator, dated Nov. 28, 2005, Elsevier.
Journal of Alloys and Compounds, copyright 2008 Elsevier B..V.
Evaluation of Ni—Mn—In—Si Alloys for Magnetic Refrigerant Application, Rahul Das, A. Perumal and A. Srinivasan, Dept of Physics, Indian Institute of Technology, Oct. 10, 2011.
Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni—Mn—In ribbons, X.Z. Zhao, C.C. Hsieh, et al Science Direct, Scripta Materialia 63 (2010).
PCT International Search Report and Written Opinion issued in connection with PCT Application No. PCT/US2013/070023 dated Feb. 27, 2014.
Barbara Pulko, Epoxy-bonded La—Fe—Co—Si magnetocaloric plates, Journal of Magnetism and Magnetic Materials, 375 (2015) 65-73.
International Search Report of PCT/US2014/047925 dated Nov. 10, 2014.
Andrej Kitanovski, Present and future caloric refrigeration and heat-pump technologies, International Journal of Refrigeration, vol. 57, Sep. 2015, pp. 288-298.
C Aprea, et al., An innovative rotary permanent magnet magnetic refrigerator based on AMR cycle, Thermal Energy Systems: Production, Storage, Utilization and the Environment, dated May 2015, Napoli, Italy, pp. 1-5.
Stefano Dall'Olio, Numerical Simulation of a Tapered Bed AMR, DTU Orbit, Netherlands, 2015, p. 1-2.
International Search Report, PCT Application No. PCT/CN2019/096188, dated Oct. 15, 2019, 5 pages.
International Search Report, PCT Application No. PCT/CN2019/096187, dated Sep. 30, 2019, 4 pages.
Related Publications (1)
Number Date Country
20200378655 A1 Dec 2020 US