Cam and crank sensor with current limiting open collector output for conducted emissions improvement

Information

  • Patent Application
  • 20070277587
  • Publication Number
    20070277587
  • Date Filed
    June 02, 2006
    18 years ago
  • Date Published
    December 06, 2007
    17 years ago
Abstract
A sensor apparatus and method include a sensor configured on an integrated circuit, which includes a current limiting open collector output stage configured in association with the integrated circuit. The current limiting open collector output stage reduces a fall time and a di/dt associated with an output signal of the sensor and a ringing produced thereof in order to improve EMC and conducted emissions required of the sensor.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the present invention and, together with the detailed description of the invention, serve to explain the principles of the present invention.



FIG. 1 illustrates a side view of a rotary/angular position sensor system, which can be adapted for use in accordance with a preferred embodiment;



FIG. 2 illustrates a front view of the rotary/angular position sensor system depicted in FIG. 1 in accordance with a preferred embodiment;



FIG. 3 illustrates a schematic diagram of an electrical circuit that can be implemented in accordance with a preferred embodiment; and



FIGS. 4-7 respectively illustrates graphs that demonstrate the baseline CE Results and the improvement of using the current limiting open collector output (Current Mirror) circuit disclosed in FIG. 3.





DETAILED DESCRIPTION OF THE INVENTION

The particular values and configurations discussed in these non-limiting examples can be varied and are cited merely to illustrate at least one embodiment of the present invention and are not intended to limit the scope of the invention.



FIG. 1 illustrates a side view of a rotary/angular position sensor system 100, which can be adapted for use in accordance with a preferred embodiment. FIG. 2 illustrates a front view of the rotary/angular position sensor system 100 depicted in FIG. 1 in accordance with a preferred embodiment. System 100 generally includes a shaft 102 connected to a rotatable plate 106. A rotary/angular position sensor 104 is located on or proximate to shaft 102 or rotatable plate 106 in order to detect the rotation and/or angular position of shaft 102 or rotatable plate 106. Sensor 104 may be provided as a camshaft sensor or a crankshaft sensor.



FIG. 3 illustrates a schematic diagram of an apparatus or electrical circuit 300 that can be implemented in accordance with a preferred embodiment. Circuit 300 can be utilized in association with the system 100 depicted in FIGS. 1-2. Circuit 300 generally functions as a current limiting open collector output stage and is configured on or in the context of an integrated circuit. A sensor signal 304 can be output from the rotary/angular position sensor 104 depicted in FIGS. 1-2 and provided to circuit 100 at node A. A resistor 306 is also generally connected to node A for fall time and a di/dt adjustment. Sensor supply voltage 302 (i.e., sensor B+) is connected to resistor 306, while a sensor ground 309 (i.e., sensor RTN) is connected to ground GND. Two transistors 308 and 310 are also provided as a part of circuit 300 and are both also connected to ground in addition to the resistor 306 at node A. A sensor signal can then be output from the circuit at node B and sent to an ECM load.


Circuit 300 can be implemented in the context of an Integrated Circuit (IC). The configuration of circuit 300 can be applied by integrating a current limiting open collector output stage on an IC or adding the circuit 300 to an IC and using appropriate RC (Resistor-Capacitor) filter components. Circuit 300 generally meets and exceed required EMC and radiated emissions testing capabilities by using a current limiting open collector output configuration that slows down the fall time of sensor 104 and reducing di/dt and ringing produced on the output signal (i.e., sensor signal 304 provided to circuit 300 and output from sensor system 100). In slowing down the fall time and reducing di/dt and ringing on the line, conducted emissions (CE) capabilities are improved to the point of meeting necessary EMC testing requirements.



FIGS. 4-7 respectively illustrates graphs 400, 500, 600, 700 that demonstrate the baseline CE Results and the improvement of using the current limiting open collector output (Current Mirror) circuit 300 disclosed in FIG. 3. Graphs 400, 500, 600, 700 generally plot data indicative of amplitude versus frequency and are provided herein for illustrative purposes only and are not considered limiting features of the embodiments.


It is contemplated that the use of the present invention can involve components having different characteristics. It is intended that the scope of the present invention be defined by the claims appended hereto, giving full cognizance to equivalents in all respects.

Claims
  • 1. A sensor enhancement system, comprising: a sensor configured on an integrated circuit;a current limiting open collector output stage configured in association with said integrated circuit, wherein said current limiting open collector output stage reduces a fall time and a di/dt associated with an output signal of said sensor and a ringing produced thereof in order to improve EMC and conducted emissions required of said sensor.
  • 2. The system of claim 1 wherein said sensor comprises a rotary position sensor.
  • 3. The system of claim 1 wherein said sensor comprises an angular position sensor.
  • 4. The system of claim 1 wherein said sensor comprises a camshaft sensor.
  • 5. The system of claim 1 wherein said sensor comprises a crankshaft sensor.
  • 6. The system of claim 1 wherein said current limiting open collector output stage comprises: a first transistor connected to a second transistor, wherein said first and second transistors are connected to a ground;a resistor connected to said first and second transistor, wherein said output signal provided by said sensor is fed to a node coupled to said first transistor and said resistor, such that said output signal is output from said second transistor.
  • 7. The system of claim 6 further comprising: a sensor supply voltage connected to said resistor; anda sensor ground connected to said first and second transistors and said ground.
  • 8. A sensor enhancement system, comprising: a rotary/angular sensor configured on an integrated circuit;a current limiting open collector output stage configured in association with said integrated circuit, wherein said current limiting open collector output stage reduces a fall time and a di/dt associated with an output signal of said rotary/angular sensor and a ringing produced thereof in order to improve EMC and conducted emissions required of said rotary/angular sensor.
  • 9. The system of claim 8 wherein said rotary/angular sensor comprises a camshaft sensor.
  • 10. The system of claim 8 wherein said rotary/angular sensor comprises a crankshaft sensor.
  • 11. The system of claim 8 wherein said current limiting open collector output stage comprises: a first transistor connected to a second transistor, wherein said first and second transistors are connected to a ground;a resistor connected to said first and second transistor, wherein said output signal provided by said sensor is fed to a node coupled to said first transistor and said resistor, such that said output signal is output from said second transistor.
  • 12. The system of claim 11 further comprising: a sensor supply voltage connected to said resistor.
  • 13. The system of claim 12 further comprising: a sensor ground connected to said first and second transistors and said ground.
  • 14. A method for enhancing a sensor, comprising: configuring a sensor on an integrated circuit;associating a current limiting open collector output stage with said integrated circuit, wherein said current limiting open collector output stage reduces a fall time and a di/dt associated with an output signal of said sensor and a ringing produced thereof in order to improve EMC and conducted emissions required of said sensor.
  • 15. The method of claim 14 wherein said sensor comprises a rotary position sensor.
  • 16. The method of claim 14 wherein said sensor comprises an angular position sensor.
  • 17. The method of claim 14 wherein said sensor comprises a camshaft sensor.
  • 18. The method of claim 14 wherein said sensor comprises a crankshaft sensor.
  • 19. The method of claim 14 further comprising configuring said current limiting open collector output stage to comprise: a first transistor connected to a second transistor, wherein said first and second transistors are connected to a ground;a resistor connected to said first and second transistor, wherein said output signal provided by said sensor is fed to a node coupled to said first transistor and said resistor, such that said output signal is output from said second transistor.
  • 20. The method of claim 19 further comprising: connecting a sensor supply voltage to said resistor; andconnecting a sensor ground to said first and second transistors and said ground.