Cam-drive engine and cylinder assembly for use therein

Information

  • Patent Grant
  • 6725815
  • Patent Number
    6,725,815
  • Date Filed
    Monday, May 6, 2002
    22 years ago
  • Date Issued
    Tuesday, April 27, 2004
    20 years ago
Abstract
A cam-drive engine having one or more cylinder assemblies detachably affixed to an engine core that does not include a cylinder block per se. Each cylinder assembly can be attached to or detached from the engine core without the need for disassembly of the cylinder assembly unit. This allows cylinder assemblies to be easily removed or replaced for repair or cylinder assemblies to be easily added to an existing engine. The cylinder assemblies can include cylinder pressure and solenoid actuated intake and exhaust valves that facilitate attachment. The engine can further include a catalytic converter contained in a central hub proximate to the cylinder assemblies thereby facilitating rapid warm-up of the catalyst.
Description




FIELD OF INVENTION




The present invention relates to engines and in particular to a detachable cylinder assembly for use in a cam-drive engine and to solenoid operated valves and a catalytic converter for use in this type of engine.




BACKGROUND




Operable configurations of the reciprocating-piston internal combustion engine have been known for more than a century. In that time substantial developments have occurred that have resulted in ever higher levels of efficiency and reliability in engines being produced commercially. Despite this long legacy of improvement, these engines are still subject to wear and degraded operation with extended use. Once they have achieved long operating lives these engines commonly require internal repairs in the form of cylinder wall boring or honing and piston ring replacement.




Today most reciprocating-piston internal combustion engines are built around a cylinder block housing into which are machined either the cylinder bores directly or receivers for cylinder liners. In either case, the previously mentioned internal repairs require substantial disassembly of the engine and often removal of the entire engine from its operating environment. This holds true even when the repairs are to be carried out on only one or a small number of the cylinders in a multi-cylinder engine. The removal from service and the total labor required to carry out the repairs represents a substantial cost to the engine's user in particular where the engine is being used in a commercial application.




There exists a class of engines known as “cam-drive” or “swash plate” engines. These engines are often described as ‘barrel’ engines because many have a cylinder block that is substantially the shape of a large diameter, short cylinder. Although, it is well known that the “cam-drive” or “swash plate” engines have a number of benefits, the barrel configuration of the cylinder block common to this type of engine can cause difficulty in performing some maintenance or repair operations on these engines. In particular, in many implementations of the “cam-drive” or “swash plate” engine the cylinder block is a large mono-block or split-block which can require significant and complex disassembly in order to remove the pistons or to gain access to the inner cylinder walls as exemplified by the engine in U.S. Pat. No. 4,492,188 issued Jan. 8, 1985. For many of these engines it is difficult to imagine how they could receive cylinder maintenance (such as piston or ring replacement, cylinder boring or honing; etc.) without the complete removal of the engine assembly from its operating environment. Therefore, although “cam-drive” or “swash plate” engines are known to have numerous operating advantages over the more common crank-drive engines they are not superior in terms of ease of internal engine repair.




Growing concerns over environmental issues has led to the widespread adoption of legislation limiting exhaust emissions from internal combustion engines. One of the most significant technologies that has been adopted to help meet these emissions restrictions is the use of catalytic converters. Although catalytic converts have proven effective at reducing emissions in normal operation they do suffer from a significant shortcoming. That is, they are relatively ineffective until a minimum operating temperature has been achieved. This has led to the introduction of numerous ancillary solutions (e.g. supplemental fast warm-up converters, heating elements in the converters, etc.) which address the period of time between engine start-up and attainment of a sufficient operating temperature in the catalytic converter. These solutions add significant cost, complexity and weight to the emissions control systems.




SUMMARY OF INVENTION




The cam-drive engine and the cylinder assembly of the present invention are structured to permit installation and removal of the cylinder assembly to/from the engine without requiring disassembly of the cylinder assembly. The solenoid and cylinder pressure operated valves of the present invention facilitate the installation and removal of the cylinder assembly by eliminating the need for mechanical valve actuation. The catalytic converter of the present invention provides for fast warm-up of the catalyst by placing the converter proximate to the cylinder assembly.




In accordance with one aspect of the present invention, a cylinder assembly for detachable mounting on a cam-drive engine core having a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a cylinder connecting rod connected to said power plate, and a cylinder assembly mounting position connected to said power plate housing, said cylinder assembly comprising: a cylinder housing with attachment apparatus for detachably mounting at said mounting position, a cylinder head assembly affixed to an end of said cylinder housing, a piston positioned inside of said cylinder housing, a piston connecting pin connected to said piston, and an aperture in said cylinder housing through which said piston connecting pin is accessible for detachable connection to said cylinder connecting rod; wherein said cylinder assembly can be attached or detached to said engine core as an assembled unit.




In accordance with another aspect of the present invention, a cylinder assembly for detachable mounting on a cam-drive engine core having a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a cylinder connecting rod connected to said power plate, and a cylinder assembly mounting position connected to said power plate housing, said cylinder assembly comprising: a cylinder housing with attachment apparatus for detachably mounting at said mounting position, first and second cylinder head assemblies, one affixed to each end of said cylinder housing, first and second pistons positioned inside of said cylinder housing, a piston connecting rod connected at one end to said first piston and at another end to said second piston, a piston connecting pin connected to said piston connecting rod, and an aperture in said cylinder housing through which said piston connecting pin is accessible for detachable connection to said cylinder connecting rod, wherein said cylinder assembly can be attached or detached to said engine core as an assembled unit.




In accordance with a further aspect of the present invention, a cam-drive engine core for detachable mounting of a cylinder assembly having a cylinder housing with attachment apparatus for detachable mounting, a head assembly affixed to an end of said cylinder housing, a piston positioned inside of said cylinder housing, a piston connecting pin connected to said piston, and an aperture in said cylinder housing through which said piston connecting pin is accessible, said engine core comprising: a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a cylinder connecting rod, connected to said power plate, for detachable connection to said piston connecting pin, and a cylinder assembly mounting position, for detachably receiving said cylinder assembly attachment apparatus, connected to said power plate housing; wherein said cylinder assembly can be attached or detached to said engine core as an assembled unit.




In accordance with yet another aspect of the present invention, a cam-drive engine comprising: an engine core having a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a cylinder connecting rod connected to said power plate, and a cylinder assembly mounting position connected to power plate housing, and a cylinder assembly having a cylinder housing with attachment apparatus for detachable mounting at said mounting position, a head assembly affixed to an end of said cylinder housing, a piston positioned inside of said cylinder housing, a piston connecting pin connected to said piston, and an aperture in said cylinder housing through which said piston connecting pin is accessible for connection to said cylinder connecting rod; wherein said cylinder assembly can be attached or detached to said engine core as an assembled unit.




In accordance with still another aspect of the present invention, a cam-drive engine comprising: an engine core having a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a plurality of cylinder connecting rods connected to said power plate, and a plurality of cylinder assembly mounting positions connected to power plate housing, and a plurality of cylinder assemblies each having a cylinder housing with attachment apparatus for detachable mounting at one of said plurality of mounting positions, a head assembly affixed to an end of said cylinder housing, a piston positioned inside of said cylinder housing, a piston connecting pin connected to said piston, and an aperture in said cylinder housing through which said piston connecting pin is accessible for connection to one of said plurality of cylinder connecting rod; wherein each of said plurality of cylinder assemblies can be individually attached or detached to said engine core as an assembled unit.




In accordance with yet a further aspect of the present invention, a solenoid operated intake valve comprising: a gas flow port, a plunger, a resilient means biasing said plunger into a closed position sealing-off said gas flow port, means for locking said plunger in said closed position, and a solenoid for driving said plunger into an open position exposing said gas flow port.




In accordance with still a further aspect of the present invention, a pressure differential and solenoid operated exhaust valve comprising: a gas flow port, a plunger, a resilient means damping said plunger as it is driven in to an open position, exposing said gas flow port, by a pressure differential across said plunger, a solenoid for driving said plunger into a closed position sealing-off said gas flow port, and means for locking said plunger in said closed position.




In accordance with still another aspect of the present invention, a catalytic converter for proximate location to a cylinder assembly comprising: a substantially cylindrical inner body, a substantially cylindrical outer body whose radius is greater than that of said inner body, a cylinder assembly mounting position, to which said cylinder assembly can be affixed, disposed on the outer surface of said outer body, a plurality of supporting webs that extend from the inner body to the outer body, a catalytic carrier disposed within a cavity formed between said inner body, said outer body and said supporting webs, a catalyst disposed on said catalyst carrier, a first end cap sealing a first end of said cavity, an entry port in said first end cap to admit exhaust gases from said cylinder assembly to said cavity, via a exhaust runner; a second end cap sealing a second end of said cavity, an exit port connecting said cavity to the interior of said inner body, and an exhaust port in said first end cap through which exhaust gases in said inner body can flow; whereby the catalyst is effective at reducing the emissions of exhaust gases from said cylinder assembly circulated via said entry port, through said cavity to said exit port.




Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.











BRIEF DESCRIPTION OF DRAWINGS




The present invention will be described in conjunction with the drawings in which:





FIG. 1

represents a side plan of the engine of the present invention.





FIGS. 2



a-b


represent side plans of alternative embodiments of the cylinder assembly of the present invention.





FIG. 3

represents a schematic perspective of a multi-cylinder embodiment of the engine of the present invention.





FIG. 4

represents a plan projection of the power plate cam and cylinders of the present invention.





FIGS. 5



a-b


represent side plans of the valves of the present invention in the closed and open positions.





FIG. 6

represents a side plan of the cylinder assembly of the present invention with details of the oil cooling system.





FIGS. 7



a-c


represent side plans of the engine of the present invention in stages of disassembly.





FIG. 8

represents a perspective view of the catalytic converter of the present invention.











DETAILED DESCRIPTION





FIGS. 1

,


7




c


and the associated description represent an exemplary embodiment of an engine


20


, including a detachable cylinder assembly


50


, of the present invention. The engine


20


comprises an engine core


90


and a cylinder assembly


50


. The engine core


90


comprises a power plate assembly


40


, a hub


30


connected to the power plate assembly


40


and a cylinder connecting rod


66


. The cylinder assembly is connected to the hub


30


and to the power plate assembly


40


via the cylinder connecting rod


66


. The power plate assembly


40


comprises a drive shaft


42


, a power plate


44


affixed to the shaft and a housing


46


substantially supporting the other components. The power plate


44


may take on many forms that are well known for use in “cam-drive” or “swash plate” engines. In particular the power plate


44


can be a canted disc or a cam adapted to cooperatively transform reciprocating motion to rotational torque and therefore rotational motion of the drive shaft


42


.




The hub


30


attaches to the power plate assembly


40


and provides support for the cylinder assembly


50


relative to the power plate assembly


40


. The hub


30


can, for example, be substantially cylindrical having mounting positions


33


for attaching the cylinder assemblies disposed circumferentially on its outer surface. The hub


30


can be configured to provide mounting positions for one or more cylinder assemblies. Other configurations of the engine may not include a hub


30


. The cylinder assemblies can alternatively be affixed and supported in other ways including, but not limited to, direct connection to the power plate assembly


40


or through another mounting structure which is not a hub


30


per se.




It will be understood by those ordinarily skilled in the art that although the figures and descriptions of the various embodiments of the present invention focus primarily on the major structural components of the engine, the engine of the present invention would include appropriate ancillary systems (e.g. induction, exhaust, fuel delivery, ignition, lubrication, cooling and other similar systems) in order to create a running engine. These systems, except where otherwise noted, comprise well know apparatus and methods in common use.





FIG. 2



a


represents the detachable cylinder assembly


50


which comprises a cylinder housing, head assemblies


54


at each of the two ends of the cylinder housing


52


, two pistons


56


mounted in the cylinder housing


52


, a piston connecting rod


58


connecting the two pistons


56


and a piston connecting pin


60


connected to the piston connecting rod


58


and extending through an aperture


62


in the cylinder housing


52


. The aperture


62


in the cylinder housing


52


is in a portion of the cylinder housing


52


that is not swept by the compression or oil-control rings


64


of the pistons


56


in normal operation. The end of the piston connection pin that extends through the aperture


62


in the cylinder housing


52


is connected to one end of a cylinder connecting rod


66


. The other end of the cylinder connecting rod


66


is connected to power transfer mechanism


68


coupled to the power plate


44


. The power transfer mechanism can, for example, take the form of opposed roller bearings with a load receiving portion of the power plate


44


(e.g. cam lobe) passing between the opposed roller bearings as the power plate


44


rotates. The power transfer mechanism can alternatively take on any of a number of forms well know for use in “cam-drive” or “swash plate” engines. The power transfer mechanism in conjunction with the power plate


44


translates the reciprocating motion of the connecting rod


66


to rotating motion of the drive shaft


42


. Reciprocating motion is imparted to the cylinder connecting rod


66


from the reciprocating motion of the pistons


56


in the cylinder housing


52


.




The two pistons


56


in conjunction with the other components in the cylinder assembly


50


form two combustion chambers


70


. The two pistons


56


and the piston connecting rod


58


may be constructed in a variety of ways including: as a single unit, or as a combination of parts or assemblies. In another embodiment, the cylinder assembly


50


can comprise only a single piston


56


and a single cylinder head assembly


54


thereby forming a single combustion chamber


70


. In this configuration the piston connecting rod


58


would connect to only the one piston


56


or alternatively the piston connecting rod


58


could be deleted and the piston connecting pin


60


would connect directly to the piston


56


as represented in

FIG. 2



b.






The present invention provides an alternative cylinder block arrangement to the ‘barrel’ arrangement used in most “cam-drive” or “swash plate” engines. In the present invention each cylinder comprises part of a detachable cylinder assembly


50


that is not incorporated into a cylinder block per se. The cylinder assembly


50


is rather a “stand-alone” assembly that can be detachably affixed to the other components of the engine (i.e. the engine core


90


) without the benefit of a cylinder block. The cylinder assembly


50


can, for example, be affixed via a hub


30


. In a further alternative embodiment, represented in

FIG. 3

, multiple cylinder assemblies can be affixed to the other components of the engine.




With reference to

FIG. 1

, the hub


30


is substantially cylindrical having mounting positions


33


, for attaching one or more cylinder assemblies, disposed circumferentially on its outer surface. The mounting positions


33


can, for example, take the form of a registration slot


32


in the hub


30


and provision for mechanical fasteners


34


to secure the cylinder assembly


50


. The cylinder assembly


50


is provided with complementary mechanism such as a registration guide


72


, see also

FIGS. 2



a


and


2




b


, which mates with the registration slot


32


to provide alignment of the cylinder assembly relative to the power plate and provision for the complementary aspect


74


of the mechanical fasteners


34


to provide mechanical retention of the cylinder assembly. This permits engines of various configurations to be created by affixing one or more cylinder assemblies to the engine core


90


. This design would also permit an engine to be ‘upgraded’ (i.e. have its horsepower or torque generating capacity increased) through the addition of cylinder assemblies.




When multiple cylinders assemblies are used, they will be attached at different locations on the outer surface of the hub


30


.

FIG. 4

represents a multi-cylinder configuration where the periphery of the power plate's


44


cam lobe


80


is projected in a flat plane. An example of the relative positions of the cylinders are also presented in the flat plane projection. At any given point in the rotation of the cam


80


, the point in the combustion cycle in which each cylinder is found is a function of where the cylinder is connected to the cam


80


. In this embodiment of a cam


80


with two cycles per revolution and cylinders with a four-stroke combustion cycle, each of the four inclined faces


85




a


,


85




b


on each side of the cam relates to one of the four combustion cycle strokes in sequence order (i.e. intake, compression, power and exhaust). In this example with two pistons


56


per cylinder


50


, the combustion cycle stroke represented by a given cam face


85


will be different for the upper cam face


85




a


than for its corresponding lower cam face


85




b


and therefore different for the upper piston


87


than for the lower piston


88


. This relationship is however constant. Understanding this relationship, the relative placement of multiple cylinders can be determined to meet appropriate operating considerations (e.g. balanced power delivery). To facilitate configuration of multi-cylinder engines the cylinder assembly mounting positions


33


can be located on the hub


30


at fixed intervals (e.g. spaced 5 degrees of arc apart).




It will be understood that the structure of the modular engine described herein can facilitate eventual repairs that may be necessary to the pistons


56


, pistons rings


64


, inner surfaces of the cylinders or other similar components of the engine. The mechanisms that allow a cylinder assembly


50


to be readily affixed to the engine core


90


as an assembled unit also allow it to be readily detached as an assembled unit. This permits repairs by either: removing the cylinder assembly


50


, repairing its components and replacing the cylinder assembly


50


; or by removing the cylinder assembly


50


and completely substituting it with a replacement cylinder assembly


50


. This approach applies individually to each cylinder assembly


50


in an engine with multiple cylinder assemblies. Thereby only those cylinder assemblies that require repair are directly affected in the repair operation. It will be possible in some installations to remove and replace one or more cylinder assemblies without having to remove the entire engine from its operating environment. A further possibility exists that in some engine configurations it may be possible to resume operation of the engine with one or more cylinder assemblies removed during the time the repairs are carried out.




In addition, a manufacturer of the engine could design a set of components such that a single hub


30


configuration and a single power-plate housing


46


configuration and its associated components (i.e. a single engine core


90


configuration) could be used in engines with a variety of different cylinder assembly configurations (not illustrated). The cylinder assembly


50


configurations could vary in terms of cylinder displacement, operating cycle (e.g. two- or four-stroke), ignition/combustion type (e.g. Otto or Diesel) and other similar variations. Engines of various characteristics could be created by connecting cylinder assemblies


50


, selected from the different configurations, to engine cores


90


of a common configuration.




In order to facilitate installation and removal of the cylinder assembly intake and exhaust valves that do not require direct mechanical actuation via camshaft or push-rod can be used. Valves that operate on cylinder pressure or via solenoid actuation would be suitable. Each valve


100


uses a plunger


110


to seal-off (close), as represented in

FIG. 5



a


, or expose (open), as represented in

FIG. 5



b


, a gas flow port


120


. The valves


100


can, for example, be mounted in the cylinder head assembly


54


as represented in

FIG. 5



a.






The intake valve


100


uses an electrical solenoid


170


to draw the plunger


110


into the open position. A return spring


180


is used to drive the plunger


110


into the closed position. Closing of the valve


100


can be assisted by the pressure differential between the combustion chamber


70


and pressure acting on the backside of the plunger


112


or by a second solenoid (not shown) driven opposite to the opening solenoid


170


. The pressure on the backside of the plunger


112


can be tailored using a number of mechanisms including use of a return spring


180


biased to closing the plunger


110


, sealing or venting of the cavity behind the plunger


110


, application of lubricating oil pressure or other similarly well know methods. When the valve


100


is in the closed position, a check ball


130


is used to lock it into position thereby preventing elevated combustion chamber


70


pressures from pushing the valve


100


open. The check ball


130


is driven into a locking race


135


in the plunger


110


by a locking solenoid


140


. The locking solenoid


140


acts on the check ball


130


via a locking block


145


. The locking block


145


is of a ramped design so that forces acting to push the check ball


130


out of the locked position will cause the check ball


130


to ride up the ramp and bind the check ball


130


in its ball run


138


. A biasing pressure provided by the flow of lubricating oil through the valve assembly pushes the check ball


130


out of the locked position when the locking solenoid


140


releases the check ball


130


. The lubricating oil supply


150


pressurizes the plunger side of the check ball


130


while oil return


155


occurs on the locking block


145


side of the check ball


130


thereby creating a pressure differential across the check ball


130


. The plunger


110


is equipped with oil control seals


160


to prevent oil leakage into the combustion chamber


70


. The plunger


110


is also equipped with pressure control seals


165


to prevent pressure leaks from or to the combustion chamber


70


when the valve


100


is closed.




The exhaust valve has a similar structure but different operation from the intake valve. Exhaust valve


100


is driven open by the pressure differential between the combustion chamber


70


and pressure acting on the backside of the plunger


112


. The pressure on the backside of the plunger


112


can be tailored using methods as described for the intake valve


100


. The pressure on the backside of the plunger


112


can be used to damp or control the speed at which the exhaust valve plunger


110


is driven open. An electrical solenoid


170


is used to drive the plunger


110


into the closed position. The plunger


110


is locked into the closed position using a check ball


130


as described for the intake valve. The plunger


110


is also equipped with oil control seals


160


and pressure control seals


165


similar to the intake valve


100


. It will be understood that other well know mechanisms (e.g. pneumatic actuators) can be substituted for the electrical solenoids described in the intake and exhaust valves


100


.




Use of valves


100


that operate on cylinder pressure or via solenoid


170


actuation can facilitate modular operation of the engine. Modular operation refers to the technique of temporarily “turning-off” or disabling one or more cylinders in a multi-cylinder engine under certain operating conditions such as partial load situations. The engine of the present invention can be configured for modular operation using well known methods for controlling ignition, fuel delivery and intake and exhaust valve operation on a selective basis. The valves


100


of the present invention lend themselves well to use in modular operation compared to traditional camshaft or push-rod actuated valves.




In a further embodiment of the present invention, represented in

FIG. 6

, that can facilitate the installation and removal of the cylinder assembly


50


, lubricating oil is used to cool the pistons


56


and cylinder assembly


50


. Each piston


56


is provided with a substantially annular cooling cavity


200


between top and bottom oil control rings


64


. Pressurized lubricating oil enters the cooling cavity


200


through an entry passage


210


in the cylinder housing


52


, circulates around the piston


56


and exits via an exit passage


220


in the cylinder housing


52


. Cooling is achieved by heat conduction to the oil from the piston


56


body and the walls of the cylinder housing


52


. The cooling capacity can be increased by increasing the surface area of the piston


56


exposed to the oil. This can be achieved, for example, by the provision of cooling fins


230


on the piston


56


in the cooling cavity


200


. The oil also lubricates through contact with the walls of the cylinder housing


52


and the piston rings


64


. Oil control rings


64


on the pistons


56


prevent or minimize oil leaks into the combustion chamber


70


or into the portion of the cylinder housing


52


containing the aperture


62


for the piston connecting pin


60


. The use of lubricating oil for piston


56


and cylinder assembly


50


cooling eliminates the need for a separate cooling system (e.g. a water jacket based system using a water/glycol coolant) and the associated components and connections. This simplifies the installation and removal of the cylinder assemblies


50


by reducing the number of couplings required.




Engine oil is supplied from an oil pump


240


located, for example, in the power plate assembly


40


. Oil from the pump


240


is routed to the cylinder assembly


50


via an oil supply runner


250


—e.g. a pressure resistant tube. The oil supply runner


250


is connected to an oil entry passage


210


in the cylinder assembly


50


via a detachable coupling


255


. Similarly the return oil from the cylinder assembly


50


is routed via an oil return runner


260


to the oil sump


270


which can be located, for example, in the power plate assembly


40


. The oil return runner


260


is connected to an oil exit passage


220


in the cylinder assembly


50


via a detachable coupling


255


.




Removal of the cylinder assembly


50


begins with the de-coupling of the ancillary systems as represented in

FIG. 7



a


. This includes disconnecting the oil supply


250


and oil return


260


runners from the cylinder assembly


50


via their detachable couplings


255


. Electrical voltage supply and grounding


300


for systems such as spark ignition or glow plugs, fuel injectors and solenoid operated valves, which may be provisioned on the cylinder assembly


50


depending on the specific configuration, are disconnected via detachable electrical connectors


305


. Disconnection of the exhaust system can be facilitated by equipping the exhaust runner


310


connecting the exhaust port of the cylinder head assembly


54


with the downstream exhaust system (manifold, catalytic converter, header pipe, etc.) with an easily detachable gas tight coupling


320


such as a flare fitting. A similar approach can be used to attached the intake runner


330


, which is feed from the upstream intake system, to the intake port in the cylinder head assembly


54


.




Once the various ancillary systems have been disconnected, as represented in

FIG. 7



b


, the next step in the removal of the cylinder assembly


50


is disconnection of the mechanical components. The cylinder connecting rod


66


can be released from the piston connecting pin


60


via a rod end, spherical or similar joint that connects the two. The other end of the cylinder connecting rod


66


can be left attached. Alternatively, if desired, the connecting rod


66


can be disconnected from the power plate


44


by freeing the guide bearings


350


, that support the cylinder connecting rod


66


, attached to the power plate housing


46


and then releasing the power transfer mechanism


68


at the end of the cylinder connecting rod


66


from the power plate


44


. Removal of the cylinder assembly


50


proper is accomplished by removing the mechanical fasteners


34


that hold the cylinder assembly


50


at the mounting positions


33


on the outer surface of the hub


30


and extracting the cylinder assembly


50


. The separated components are represented in

FIG. 7



c


. Thus removal and in the reverse process—installation—of the cylinder assembly


50


is accomplished with the cylinder assembly


50


as an assembled unit. It is not necessary to disassembly the cylinder assembly


50


in order to install it in or remove it from the engine.




In another embodiment of the present invention, the hub


30


can house a catalytic converter for use in reducing exhaust gas emissions.

FIG. 8

represents a hub


30


which comprises a substantially cylindrical inner body


410


, a substantially cylindrical outer body


420


and a series of supporting webs


430


extending radially from the inner body to the outer body. The webs enclose cavities


440


between the inner


410


and outer


420


bodies. One or more of these cavities


440


can contain a catalytic carrier


460


and a catalyst


465


. Exhaust from the cylinder assembly


50


, via an exhaust runner


310


, enters the cavity


440


through a port


455


in an end cap


450


otherwise sealing the cavities


440


at one end of the hub


30


. The other end of the hub


30


is sealed with another cap


460


without a port to the cavity. Exhaust gases having entered via the port


455


and having been exposed to the catalyst


465


exit via a port or ports


415


in the inner body


410


. Exhaust gases leave the inner body


410


via an exhaust port


400


in end cap


450


to the downstream exhaust system (not illustrated). It will be understood that the exhaust gas flow could alternatively follow the reverse path—entering the inner body


410


via port


460


, then flowing to the cavity


440


via a port or ports


415


in the inner body


410


and exiting via the port


455


in the end cap


450


to the downstream exhaust system. In alternate embodiments there could be multiple ports


455


in the end cap, there could be ports


455


,


400


in both of the end caps


450


,


460


or the ports


455


could alternatively be in the outer body


420


. Depending on the size of the cavity


440


, one or more cylinders could exhaust into the same cavity


440


or one cylinder could exhaust into more than one cavity


440


. In this embodiment the close proximity of the catalytic converter in the hub


30


to the cylinder assembly


50


may allow the elimination of certain ancillary emissions control systems which are directed to dealing with the catalyst warm-up issue. The catalyst


465


in the hub


30


will achieve operating temperature more quickly than will the catalyst in a converter mounted substantially downstream in the exhaust system as is typically the case.




It will be apparent to one skilled in the art that numerous modifications and departures form the specific embodiments described herein may be made without departing from the spirit and scope of the invention.



Claims
  • 1. A cylinder assembly for detachable mounting on a cam-drive engine core having a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a cylinder connecting rod connected to said power plate, and a cylinder assembly mounting position connected to said power plate housing, said cylinder assembly comprising:a cylinder housing with attachment apparatus for detachably mounting at said mounting position; a cylinder head assembly, affixed to an end of said cylinder housing; a piston positioned inside of said cylinder housing; a piston connecting pin connected to said piston; and an aperture in said cylinder housing through which said piston connecting pin is accessible for detachable connection to said cylinder connecting rod; wherein said cylinder assembly can be attached or detached to said engine core as an assembled unit.
  • 2. The cylinder assembly of claim 1, the attachment apparatus further comprising:a registration guide which mates with a cooperating registration slot in said mounting position; and mechanical fastening components which connect to cooperating fastening components in said mounting position wherein said registration guide provides alignment of said cylinder assembly and said fastening components provide mechanical retention of said cylinder assembly.
  • 3. The cylinder assembly of claim 1 further comprising:oil control rings mounted proximate each end of said piston; an cooling cavity defined between said piston, the interior of said cylinder housing and said oil control rings; and an oil entry passage and an oil exit passage in said cylinder housing accessing said cooling cavity; wherein oil circulating within said cooling cavity from said entry passage to said exit passage cools said piston and said cylinder housing.
  • 4. The cylinder assembly of claim 1 further comprising:a solenoid operated intake valve; and a pressure differential and solenoid operated exhaust valve.
  • 5. The cylinder assembly of claim 4, the intake valve further comprising:a gas flow port; a plunger; a resilient means biasing said plunger into a closed position sealing-off said gas flow port; means for locking said plunger in said closed position; and a solenoid for driving said plunger into an open position exposing said gas flow port.
  • 6. The cylinder assembly of claim 4, the exhaust valve further comprising:a gas flow port; a plunger; a resilient means damping said plunger as it is driven into an open position, exposing said gas flow port, by a pressure differential across said plunger; a solenoid for driving said plunger into a closed position sealing-off said gas flow port; and means for locking said plunger in said closed position.
  • 7. The cylinder assembly of claim 5, the means for locking further comprising:a locking race in said plunger; a check ball; a substantially ramp shaped locking block; a locking solenoid acting on said locking block to drive said check ball into said locking race to lock said plunger in said closed position; oil control seals on said plunger; a lubricating oil supply passage for oil pressurizing the plunger side of the check ball; and a lubricating oil return passage on the locking block side of the check ball; wherein a pressure differential created between said oil supply and said oil return passages biases said check ball out of said locking race when said locking solenoid is not acting on said locking block.
  • 8. The cylinder assembly of claim 6, the means for locking further comprising:a locking race in said plunger; a check ball; a substantially ramp shaped locking block; a locking solenoid acting on said locking block to drive said check ball into said locking race to lock said plunger in said closed position; oil control seals on said plunger; a lubricating oil supply pressurizing the plunger side of the check ball; and a lubricating oil return on the locking block side of the check ball; wherein a pressure differential created between said oil supply and said oil return biases said check ball out of said locking race when said locking solenoid is not acting on said locking block.
  • 9. A cylinder assembly for detachable mounting on a cam-drive engine core having a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a cylinder connecting rod connected to said power plate, and a cylinder assembly mounting position connected to said power plate housing, said cylinder assembly comprising:a cylinder housing with attachment apparatus for detachably mounting at said mounting position; first and second cylinder head assemblies, one affixed to each end of said cylinder housing; first and second pistons positioned inside of said cylinder housing; a piston connecting rod connected at one end to said first piston and at another end to said second piston; a piston connecting pin connected to said piston connecting rod; and an aperture in said cylinder housing through which said piston connecting pin is accessible for detachable connection to said cylinder connecting rod; wherein said cylinder assembly can be attached or detached to said engine core as an assembled unit.
  • 10. A cam-drive engine core for detachable mounting of a cylinder assembly having a cylinder housing with attachment apparatus for detachable mounting, a head assembly affixed to an end of said cylinder housing, a piston positioned inside of said cylinder housing, a piston connecting pin connected to said piston, and an aperture in said cylinder housing through which said piston connecting pin is accessible, said engine core comprising:a drive shaft; a power plate affixed to said drive shaft; a power plate housing substantially supporting said drive shaft and said power plate; a cylinder connecting rod, connected to said power plate, for detachable connection to said piston connecting pin; and a cylinder assembly mounting position, for detachably receiving said cylinder assembly attachment apparatus, connected to said power plate housing; wherein said cylinder assembly can be attached or detached to said engine core as an assembled unit.
  • 11. The cam-drive engine core of claim 10 for detachable mounting of a plurality of said cylinder assemblies further comprising;a plurality of cylinder assembly mounting positions, for detachably receiving said cylinder assembly attachment apparatus, connected to said power plate housing; and a plurality of cylinder connecting rods, connected to said power plate, each for detachable connection to one of said piston connecting pins; wherein each of said plurality of cylinder assemblies can be individually attached or detached to said engine core as an assembled unit.
  • 12. The cam-drive engine core of claim 10 further comprising:a substantially cylindrical hub, with said cylinder assembly mounting position disposed on its outer surface, connected to said power plate housing; wherein said hub supports said cylinder assembly relative to said power plate.
  • 13. The cam-drive engine core of claim 12, said hub further comprising:a substantially cylindrical inner body; a substantially cylindrical outer body whose radius is greater than that of said inner body; a plurality of supporting webs that extend from the inner body to the outer body; a catalytic carrier disposed within a cavity formed between said inner body, said outer body and said supporting webs; a catalyst disposed on said catalyst carrier; a first end cap, having an entry port, sealing a first end of said cavity; a second end cap sealing a second end of said cavity; an exit port connecting said cavity to the interior of said inner body; and an exhaust port in said first end cap through which exhaust gases in said inner body can flow; whereby the catalyst is effective at reducing the emissions of exhaust gases circulated from said entry port, through said cavity to said exit port.
  • 14. A cam-drive engine comprising:an engine core having a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a cylinder connecting rod connected to said power plate, and a cylinder assembly mounting position connected to power plate housing; and a cylinder assembly having a cylinder housing with attachment apparatus for detachable mounting at said mounting position, a head assembly affixed to an end of said cylinder housing, a piston positioned inside of said cylinder housing, a piston connecting pin connected to said piston, and an aperture in said cylinder housing through which said piston connecting pin is accessible for connection to said cylinder connecting rod; wherein said cylinder assembly can be attached or detached to said engine core as an assembled unit.
  • 15. A cam-drive engine comprising:an engine core having a drive shaft, a power plate affixed to said drive shaft, a power plate housing substantially supporting said drive shaft and said power plate, a plurality of cylinder connecting rods connected to said power plate, and a plurality of cylinder assembly mounting positions connected to power plate housing; and a plurality of cylinder assemblies each having a cylinder housing with attachment apparatus for detachable mounting at one of said plurality of mounting positions, a head assembly affixed to an end of said cylinder housing, a piston positioned inside of said cylinder housing, a piston connecting pin connected to said piston, and an aperture in said cylinder housing through which said piston connecting pin is accessible for connection to one of said plurality of cylinder connecting rod; wherein each of said plurality of cylinder assemblies can be individually attached or detached to said engine core as an assembled unit.
  • 16. A catalytic converter for proximate location to a cylinder assembly comprising:a substantially cylindrical inner body; a substantially cylindrical outer body whose radius is greater than that of said inner body; a cylinder assembly mounting position, to which said cylinder assembly can be affixed, disposed on the outer surface of said outer body; a plurality of supporting webs that extend from the inner body to the outer body; a catalytic carrier disposed within a cavity formed between said inner body, said outer body and said supporting webs; a catalyst disposed on said catalyst carrier; a first end cap sealing a first end of said cavity; an entry port in said first end cap to admit exhaust gases from said cylinder assembly to said cavity, via a exhaust runner; a second end cap sealing a second end of said cavity; an exit port connecting said cavity to the interior of said inner body; and an exhaust port in said first end cap through which exhaust gases in said inner body can flow; whereby the catalyst is effective at reducing the emissions of exhaust gases from said cylinder assembly circulated via said entry port, through said cavity to said exit port.
US Referenced Citations (11)
Number Name Date Kind
1698102 Michell Jan 1929 A
4455543 Pischinger et al. Jun 1984 A
4492188 Palmer et al. Jan 1985 A
4834033 Larsen May 1989 A
4869212 Sverdlin Sep 1989 A
4974555 Hoogenboom Dec 1990 A
5386696 Prigent et al. Feb 1995 A
5437251 Anglim et al. Aug 1995 A
5813372 Manthey Sep 1998 A
6158406 Sunnarborg Dec 2000 A
6202606 Anttila Mar 2001 B1