This application relates to a cam liner for an pump in an integrated drive generator.
Integrated drive generators are known and often utilized in aircraft. As known, a gas turbine engine on the aircraft provides a drive input into a generator input shaft. The generator typically includes a disconnect shaft that can transmit the input into a gear differential. The gear differential selectively drives a main generator to provide electric power for various uses on the aircraft.
It is desirable that the generated power be of a desired constant frequency. However, the speed from the input shaft will vary during operation of the gas turbine engine. This would result in variable frequency.
Integrated drive generators are provided with speed trimming hydraulic units. Gears associated with the differential and, in particular, a ring gear portion, provide rotation from the differential back into the trimming unit. A carrier also rotates another portion of the trimming unit. The trimming unit is operable to result in the output speed of the differential being effectively constant, such that electric power of a desirable frequency is generated.
The generator is mounted between two housing portions and a seal plate is mounted between the two housing portions.
In addition, various accessory systems, such as various pumps, are driven by differential output ring gear through an accessory drive gear.
One of the pumps is an inversion pump. Another is a charge pump. Cam liners for these pumps raise design challenges.
A cam liner for use in an integrated drive generator has a cam liner body extending between a first end spaced from the second end by a first distance. The body has a generally cylindrical outer periphery. An outer diameter of the cam liner defines a second distance. A ratio of the first distance to the second distance is between 0.90 and 1.00.
In addition, an integrated drive generator is disclosed as is a method of replacing a cam liner in an integrated drive generator.
These and other features may be best understood from the following drawings and specification.
A gas turbine engine 22 may drive an input shaft 23 which selectively drives a disconnect assembly 26. The disconnect assembly 26, in turn, drives a carrier shaft 28, which drives a carrier in a gear differential 30.
As the carrier shaft 28 rotates, planet gears 36 and 38 are caused to rotate. Gears 38 have a gear interface 42 with a first ring gear portion 40. Gears 36 have a gear interface 48 with a second ring gear portion 46.
A gear 15 that is part of the carrier has a gear interface 16 with a gear 13 driving a shaft 14 also within the speed trimmer.
Ring gear portion 40 has a gear interface 50 with a main generator drive gear 52. When drive gear 52 is driven to rotate, it rotates a rotor 56 associated with a stator 58 of the main generator as well as an exciter rotor 60. Electric power is generated for a use 62, as known.
It is desirable that the frequency of the generated electric power be at a desired frequency. This requires the input speed to gear 52 to be relatively constant and at the desired speed. As such, the speed of the input shaft 23 is added to the speed of the speed trimmer 66 to result in a constant input speed to gear 52.
A gear 15 that is part of the carrier has a gear interface 16 with a gear 13 driving a shaft 14 also within the speed trimmer.
As known, the speed trimmer 66 includes a variable unit 72 and a fixed unit 76. The units 72 and 76 may each be provided with a plurality of pistons and a swash plate arrangement. If the input speed of the gear 13 is too high, the speed of the gear 52 will also be too high, and hence, the speed trimmer 66 acts to lower the speed of the trim gear 46 which will drop the speed of gear 52. On the other hand, if the input speed is too low, the speed trimmer will increase the trim gear speed and the speed seen by gear 52 will increase.
In essence, the variable unit 72 receives an input through gear 13 that is proportional to the speed of the input shaft 23. The variable unit 72 also receives a control input from a control monitoring the speed of the generator rotor 56. The position of the swash plate in the variable unit 72 is changed to in turn change the speed and direction of the fixed unit 76. The fixed unit 76 can change the speed, and direction of rotation of the shaft 70, and this then provides control back through the trim ring gear 46 to change the speed reaching the generator. In this manner, the speed trimmer 66 results in the frequency generated by the generator being closer to constant, and at the desired frequency.
A permanent magnet generator 32 rotates with the ring gear 40.
An accessory drive shaft 29 rotates with the ring gear 40 and drives a plurality of accessory gears 31.
The operation of the integrated drive generator 20 is generally as known in the art. A worker of ordinary skill would recognize that the desired frequency and speed at use 62 would dictate a number of design functions.
The inversion pump 100 is illustrated in
As shown in the exploded view of
A plurality of Belleville spring washers, 222, provides a bias force. As shown, the cam 206 includes a keyway 224 and the sleeve 210 includes a mating keyway (now shown). The key 228 locks the two together to prevent rotation.
The charge pump 110 has the same geared structure.
As shown in
In embodiments, d1 was 1.302 inches (3.307 cm) and d2 was 1.374 inches (3.490 cm). As also shown in
As also shown in
A ratio of d1 to d2 is between 0.90 and 1.00 in embodiments of this disclosure. In embodiments, a ratio of d1 to d3 is between 1.20 and 1.40. These dimensions should come with a tolerance range of +/−0.010 inch (0.025 cm).
A method of replacing a cam liner in an integrated drive generator includes the steps of removing an existing cam liner from one of an inversion pump and a charger pump in an integrated drive generator. The integrated drive generator has an input shaft, a gear differential including a carrier shaft to be driven by the input shaft and including a ring gear for driving a generator. The ring gear is also connected to drive an accessory drive gear, which is connected to drive the one pump through an intermediate gear. The one pump includes a driven shaft, a plurality of vanes, the existing cam liner and an outer pump sleeve. The existing cam liner is replaced with a replacement cam liner including a cam liner body extending between a first end spaced from a second end by a first distance, and the body having a generally cylindrical outer peripheral surface. An outer diameter of the cam liner defines a second distance. A ratio of the first distance to the second distance is between 0.90 and 1.00.
Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the true scope and content of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2631540 | Baugh | Mar 1953 | A |
3680980 | Bart | Aug 1972 | A |
5402569 | Maki et al. | Apr 1995 | A |
6364630 | Craft | Apr 2002 | B1 |
20100154402 | Cho | Jun 2010 | A1 |
20120156077 | Dexter et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2202395 | Jun 2010 | EP |
2441915 | Apr 2012 | EP |
2657574 | Oct 2013 | EP |
Entry |
---|
The Extended European Search Report for EP Application No. 19152489.1, dated May 6, 2019. |
Number | Date | Country | |
---|---|---|---|
20190219144 A1 | Jul 2019 | US |