Information
-
Patent Grant
-
6571776
-
Patent Number
6,571,776
-
Date Filed
Friday, September 8, 200024 years ago
-
Date Issued
Tuesday, June 3, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Rowold, Esq.; Carl
- Mora, Esq.; Enrique J.
- Beusse, Brownlee, Bowdoin & Wolter, PA
-
CPC
-
US Classifications
Field of Search
US
- 123 500
- 123 501
- 123 436
- 123 419
- 123 17917
- 123 357
- 123 476
-
International Classifications
-
Abstract
A method for controlling start of a compression ignition engine having a plurality of cylinders is provided without a cam sensor is provided. Each cylinder includes a respective piston reciprocally movable between respective top and bottom positions along a cylinder longitudinal axis. The method comprises proving a respective fuel delivery assembly for each cylinder. In one embodiment the method further comprises retrieving from memory a set of fuel delivery assembly firing rules and then processing the firing rules so that a firing signal is delivered to each fuel delivery assembly on every crank revolution during a cranking mode of operation. The fuel delivery assembly is arranged to be responsive to any firing signal received during an injection window leading to the top position along the longitudinal axis so as to supply fuel to each cylinder during the injection window. The fuel delivery assembly is further arranged to be insensitive to any firing signal received during an exhaust stroke leading to the top position along said longitudinal axis so that no fuel is delivered to each cylinder during that exhaust stroke.
Description
BACKGROUND OF THE INVENTION
The invention relates generally to control of compression-ignition engines, and more particularly to cam sensor elimination in four stroke compression-ignition engines having cylinders with large displacement volumes, such as locomotive or marine type engines.
Although various techniques for eliminating cam sensors have been provided in the context of relatively small spark-ignition engines, these type of techniques are believed not to be suited to the unique designs of larger compression-ignition engines, such as diesel engines. For example, the single cylinder displacement for a large sixteen cylinder locomotive diesel engine may be on the order of 11 liters whereas the single cylinder displacement for a typical diesel truck may be on the order of only 2 liters per cylinder. Therefore a single cylinder for a large locomotive engine may easily be more than five times larger than that of a large diesel truck. In addition, a typical truck engine has 6 or 8 cylinders as opposed to 12 or 16 for a typical locomotive engine, thus each cylinder contributes a smaller portion of the total power. This generally translates into very different design constraints since high injection pressure levels (on the order of 10-20 k.p.s.i.) are required in conjunction with much higher volume fuel flow rate ranges (100-1600 mm<3>/stroke) to effectuate proper combustion in the larger locomotive engine.
Other differences also impact the type of fuel injection system which may be employed on larger compression ignition engines. For example, locomotive engines are typically designed to maintain governor stability e.g., provide a relatively constant speed output to provide a steady power generating source for large traction motors used to propel the wheels. Also, large locomotive engines encounter radical load changes due to switching of large auxiliary loads such as compressor loads, fan loads, and “hotel” power loads (an alternator for generating 110 V at 60 Hz) for passenger train applications. Driving such loads or turning off such loads can result in load changes on the order of 500 horsepower at any instant.
Another design consideration generally unique to such larger engines is lower engine speeds (RPM) and reduced chamber air movement. Smaller engines typically operate at engine speeds of several thousand RPM's. However, larger locomotive engines typically operate at between 0-1050 RPM. The rate at which the pistons move generally impacts the air intake speed and/or swirl. Lower RPM typically translates into slower air intake. With smaller volume cylinders, sufficient chamber air movement to allow proper atomization of the fuel to air mixture typically occurs during the power stroke. However, larger cylinders typically have much less cylinder air movement which results in a more stagnant trapped air volume. This generally requires a greater fuel injection pressure to be applied to overcome the in-cylinder compression and penetrate the trapped air volume in a sufficiently atomized state, such that entrainment will result in a homogenous and stoichiometric burn of the air/fuel mixture.
In a conventional locomotive engine design, a crank sensor synchronizes an engine governor unit (EGU) to the crank. A cam sensor, however, determines the respective stroke the engine is actually in, that is, without the cam sensor, the EGU would not be able to determine the difference between a compression stroke and an exhaust stroke. Once the cam position is known, the EGU does not typically need additional cam data because by sensing crank teeth information, the EGU is able to maintain the proper cam sense. Presently, one simply cannot start the locomotive engine without the cam sensor.
In view of the above-discussed issues, it would be desirable to provide control techniques that would allow for reliably providing controlled start of the compression-ignition engine of the locomotive even in the absence of the cam sensor since, presently, the cam sensor is a single point failure in the locomotive. Another reliability enhancement resulting from the elimination of the cam sensor would be to eliminate loss of synchronization in the EGU due to noisy cam pulses. It would be further desirable to lower manufacturing costs of the engine since if one could eliminate the cam sensor, one could also eliminate machining done on the cam sensor cover and timing wheel. Further, wiring and circuitry on the EGU that processes the cam sensor signal could be eliminated. Additionally, elimination of the cam sensor would result in a simpler manufacturing process not requiring time consuming and error prone cam sensor gapping actions.
BRIEF SUMMARY OF THE INVENTION
Generally speaking, the present invention fulfills the foregoing needs by providing in one exemplary embodiment a method for controlling start of a compression ignition engine having a plurality of cylinders. Each cylinder includes a respective piston reciprocally movable between respective top and bottom positions along a cylinder longitudinal axis. The method comprises providing a respective fuel delivery assembly for each cylinder. The method further comprises retrieving from memory a set of fuel delivery assembly firing rules and then processing the firing rules so that a firing signal is delivered to each fuel delivery assembly on every crank revolution during a cranking mode of operation. The fuel delivery assembly is arranged to be responsive to any firing signal received during an injection window leading to the top position along the longitudinal axis so as to supply fuel to each cylinder during that injection window. The fuel delivery assembly is further arranged to be insensitive to any firing signal received outside the injection window so that no fuel is delivered to each cylinder outside the injection window.
The present invention further fulfills the foregoing needs by providing in another embodiment a method for controlling start of a compression ignition engine having a plurality of cylinders. Each cylinder includes a respective piston reciprocally movable between respective top and bottom positions along a cylinder longitudinal axis. The method comprises allows for providing a respective fuel delivery assembly for each cylinder. The method further allows for retrieving from memory a set of fuel delivery assembly firing rules. The firing rules are processed so that a firing signal is delivered to each fuel delivery assembly on every other crank revolution relative to a hypothesized cam position. Reprocessing the firing rules every n engine revolutions so that the firing signal is delivered to each fuel delivery assembly relative to a cam position about 180 degrees relative to the original hypothesized cam position, n corresponds to a positive integer greater that 1.
The present invention further fulfills the foregoing needs by providing in yet another embodiment a method for controlling start of a compression ignition. engine having a plurality of cylinders grouped in at least two sets of cylinders. Each cylinder including a respective piston reciprocally movable between respective top and bottom positions along a cylinder longitudinal axis. The method allows for providing a respective fuel delivery assembly for each cylinder. The method further allows for retrieving from memory a set of fuel delivery assembly firing rules. The method further allows for processing the firing rules so that a firing signal is delivered to each fuel delivery assembly in one of the two sets of cylinders on every other crank revolution relative to a hypothesized cam position and for processing the firing rules so that a signal is delivered to each fuel delivery assembly in the other of the two sets of cylinders on every other crank revolution relative to a cam position about 180 degrees relative to the hypothesized cam position.
DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view of an exemplary Vee-style diesel locomotive engine that may benefit from the cam-elimination techniques of the present invention;
FIG. 2
is a partial cut-away view of a unitized power assembly controlled by a processor embodying the control algorithms illustrated below in the context of
FIGS. 3-5
;
FIG. 3
is a flow chart of an exemplary embodiment for controlling start of a compression ignition engine having a plurality of cylinders without use of a cam sensor;
FIG. 4
is a flow chart of another exemplary embodiment for controlling start of a compression ignition engine without use of a cam sensor;
FIG. 5
is a flow chart of yet another exemplary embodiment for controlling start of a compression ignition engine having a plurality of cylinders without use of a cam sensor; and
FIG. 6
is a simplified block diagram of a processor that may be used for controlling start of a compression ignition without use of a cam sensor.
Before any embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1
generally depicts an exemplary compression ignition diesel engine
10
which employs an electronic fuel control system in accordance with one embodiment of the invention. The engine
10
may be any relatively large diesel engine, such as diesel engine models FDL-12, FDL-16, or HDL, as manufactured by General Electric Company, at Grove City, Pa. Such an engine may include a turbo charger
12
and a series of unitized power or fuel injection assemblies
14
. For example, a 12-cylinder engine has 12 such power assemblies while a 16 cylinder engine has 16 such power assemblies. The engine
10
further includes an air intake manifold
16
, a fuel supply line
18
for supplying fuel to each of the power assemblies
14
, a water inlet manifold
20
used in cooling the engine, a lube oil pump
22
and a water pump
24
, all as known in the art. An intercooler
26
connected to the turbo charger
12
facilitates cooling of the turbo charged air before it enters a respective combustion chamber inside one of the power assemblies
14
. The engine may be a Vee-style type or an in line type, also as known in the art.
FIG. 2
depicts one of the plurality of power assemblies
14
which includes a cylinder
28
and a corresponding fuel delivery assembly generally indicated at
30
for delivering fuel to the combustion chamber within the cylinder
28
. Each unitized power assembly
14
may further include an air valve rocker arm shaft
32
for moving a plurality of spring-biased air valves generally indicated at
34
. The valve rocker arm shaft
32
is connected to the valve pushrod
36
through the valve rocker arm
38
. The air valve rocker arm shaft
32
is connected to a valve pushrod
36
and is actuated as known in the art.
Each unitized power assembly
14
further includes a cylinder liner
40
which is insertable into a bored aperture (not shown) in the engine block of the engine
10
. The unitized power assembly
14
includes a cylinder jacket or casting for housing the cylinder
28
and associated components. For a typical engine
10
, such as may be used in locomotive applications, an exemplary range of injection pressure is between approximately 15-20 k.p.s.i. An exemplary fuel delivery flow volume range is between about 100-1600 mm3/stoke. An exemplary range of per cylinder displacement may be from about 5.5 liters to about 11 liters. It will be appreciated that the present invention is not limited to the above-described exemplary ranges.
The fuel delivery assembly
30
includes a fuel injecting mechanism
42
connected to a high-pressure injection line
44
which fluidly connects to a fuel pressure generating unit
46
such as a fuel pump. This configuration is known as a pump-line-nozzle configuration. The fuel pressure generating unit
46
builds pressure through the actuation of fuel pushrod
48
which is actuated by a lobe on the engine camshaft dedicated to fuel delivery actuation. The fuel delivery assembly
30
includes an electronic signal line
50
for receiving electronic signals from an electronic controller, as will be described later. The electronic signal line
50
provides a control signal to an electronically-controlled valve
52
which forms part of the fuel delivery assembly
30
.
The unitized power assembly
14
derives its name from the fact that each cylinder and accompanying components (or power assembly) may be removed from the engine individually to facilitate servicing. Consequently, the entire engine need not be removed or replaced to facilitate repair of the cylinder or any of its associated components. It will be appreciated that the system and techniques of the present invention are not limited to unitized power assemblies.
FIG. 3
illustrates a flow chart of an exemplary method embodying one aspect of the present invention. The method allows for controlling start of a compression ignition engine having a plurality of cylinders without use of a cam sensor. Each cylinder includes a respective piston reciprocally movable between respective top and bottom positions, e.g., top dead center (TDC) and bottom dead center (BDC), along a cylinder longitudinal axis. As discussed above, subsequent to start step
100
, step
102
allows for providing a fuel delivery assembly, e.g., fuel delivery assembly
30
(
FIG. 2
) for each cylinder. Step
104
allows for retrieving from memory a set of fuel delivery assembly firing rules. Step
106
allows for processing the retrieved firing rules to deliver a firing signal to each fuel delivery assembly per every crank revolution during a cranking mode of operation. It will be appreciated by those skilled in the art that standard engine starting techniques that rely on cam sensor information would generally delivery a firing signal during every other crank revolution during the cranking mode of operation in lieu of delivering the firing signal per every cranking revolution. Step
108
allows for arranging the fuel delivery assembly to be responsive to any firing signal received during a compression stroke at TDC so as to supply fuel to each cylinder during an injection window, which is determined by the rise of the fuel cam lobe. For example, if the cam lobe profile is rising, then fuel pushrod
48
(
FIG. 1
) will be actuated and, in cooperation with the firing signal that actuates the solenoid that opens the high pressure line, then delivery of fuel into the cylinder will occur. It will be appreciated that fuel delivery within that injection window is not limited to fuel delivery just within the compression stroke, since the delivery usually continues into the power stroke. For instance, we may start injection at 5 degrees before TDC and continue for 25 degrees after TDC. Step
110
allows for arranging the fuel delivery assembly to be insensitive to any firing signal received outside the injection window so that no fuel is delivered to the cylinder outside the injection window. For example, if the cam lobe profile is no longer rising, then fuel pushrod
48
(
FIG. 1
) will not be actuated to deliver any fuel and, even the presence of the firing signal would not result in delivery of fuel into the cylinder since the fuel pushrod in this case would not have been actuated by the fuel cam lobe. Thus, this embodiment takes advantage of the above-described duel interrelationship for delivering fuel into the cylinders: 1) fuel pushrod actuation and 2) presence of firing signal. If either of the two actions do not occur, then fuel delivery does not occur. It will be appreciated that foregoing interrelationship comprises an electromechanical interrelationship built in one exemplary embodiment and need not be implemented via software code. The above-described actions allow during the cranking mode of operation to fire one or more solenoids in the fuel delivery assembly as if each cylinder TDC corresponds to the compression stroke. This results in firing the cylinder if indeed the cylinder is at TDC of the compression stoke, however, the fuel delivery assembly will not inject fuel if the cylinder is at TDC of the exhaust stroke since in this latter case a fuel pump cam would not be moving upwardly, and thus no fuel flow will develop and the cylinder would not be fired even in the presence of a firing signal. This embodiment enables to start the engine with all cylinders and could be continued indefinitely. In the event that there may be a concern regarding incremental wear on the injector pump valve if it is receiving a firing signal every crank revolution, then the following optional steps may be used to synchronize the engine. It will be appreciated, however, that if incremental wear of the injector valve is not a factor, then the following steps are not necessary.
Step
112
allows for determining whether the engine has reached a predefined engine RPM, e.g., from about 200 to about 250 RPM. If the engine has reached the predefined engine RPM, then step
114
allows for processing a new set of firing rules so that a firing signal is delivered to each fuel delivery assembly during every other crank revolution relative to a hypothesized cam position. If the engine has not reached the predefined engine speed, then the method iteratively continues at step
106
. Step
116
, reached through connecting node A, allows for monitoring one or more operational engine parameters indicative of the level of performance of the engine, e.g., engine speed, acceleration, etc. As indicated at decision block
118
, if the level of engine performance decreases, then step
120
allows for changing the hypothesized cam position by about 180 degrees, prior to return step
122
. Conversely, if the level of engine performance increases, then the method proceeds to return step
122
. This would indicate that the hypothesized cam position corresponds to the actual cam position. Further engine synchronization would be maintained by sensing a signal indicative of crank teeth position, as would be readily understood by one of ordinary skill in the art.
FIG. 4
illustrates a flow chart of an exemplary method embodying another aspect of the present invention. The method allows for controlling start of a compression ignition engine having a plurality of cylinders without use of a cam sensor. Each cylinder includes a respective piston reciprocally movable between respective top and bottom positions, e.g., top dead center (TDC) and bottom dead center (BDC), along a cylinder longitudinal axis. As discussed above, subsequent to start step
200
, step
202
allows for providing a fuel delivery assembly, e.g., fuel delivery assembly
30
(
FIG. 2
) for each cylinder. Step
204
allows for retrieving from memory a set of fuel delivery assembly firing rules. Step
206
allows for processing the retrieved firing rules to deliver a firing signal to each fuel delivery assembly on every other crank revolution to a hypothesized cam position. Step
208
allows for reprocessing the firing rules every n revolutions so that the timing of the firing signal is changed about 180 degrees relative to the hypothesized cam position.
Step
210
allows for determining whether the engine has reached a predefined engine RPM, e.g., from about 200 to about 250 RPM. If the engine has reached the predefined engine RPM, then the method continues at step
212
reached through connecting node B. If the engine has not reached the predefined engine speed, then the method iteratively continues at step
206
. Step
212
allows for monitoring one or more operational engine parameters indicative of the level of performance of the engine, e.g., engine speed, acceleration, etc. As indicated at decision block
214
, if the level of engine performance decreases, then step
216
allows for changing the hypothesized cam position by about 180 degrees, prior to return step
220
. Conversely, if the level of engine performance increases, then the method proceeds to return step
220
.
As suggested above, this last-described embodiment will attempt to fire the engine correctly for n revolutions, then fire incorrectly for n revolutions and could give the operator the impression that the engine is not running properly. It is believed that appropriate training of the operator would avoid that issue. In addition, n must be carefully chosen to allow enough time for the engine to accelerate to the decision speed. Also, the decision speed must be far enough above the cranking speed to assure that the engine has in fact reached this speed by its own power.
FIG. 5
illustrates a flow chart of an exemplary method embodying yet another aspect of the present invention. The method allows for controlling start of a compression ignition engine having a plurality of cylinders without use of a cam sensor. Each cylinder includes a respective piston reciprocally movable between respective top and bottom positions, e.g., top dead center (TDC) and bottom dead center (BDC), along a cylinder longitudinal axis. As discussed above, subsequent to start step
300
, step
302
allows for providing a fuel delivery assembly for each cylinder. Step
304
allows for retrieving from memory a set of fuel delivery assembly firing rules. Step
306
allows for grouping the plurality of cylinders in at least two distinct sets of cylinders. For example, in a 16 cylinder engine made up of two banks of eight cylinders, then each cylinder in one bank would comprise one set of cylinders and each cylinder in the other bank would comprise the second set of cylinders. It will be appreciated that other grouping of sets are possible. For instance, the front 8 cylinders could be one set and the back 8 the other. All even cylinders could be in one set, the odd cylinders in the other. Step
308
allows for processing the retrieved firing rules to deliver a firing signal to each fuel delivery assembly in one of the two sets of cylinders on every other crank revolution relative to a hypothesized cam position. Step
310
allows for processing the retrieved firing rules to deliver a firing signal to each fuel delivery assembly in the other one of the two sets of cylinders on every other crank revolution about 180 degrees relative to the hypothesized cam position.
It will be appreciated that in this exemplary embodiment, half of the cylinders will receive a firing signal during the firing window and produce power. The other half of the cylinders will receive the signal during the exhaust/intake stroke and no fuel will be delivered.
Step
312
, reached through connecting node C, allows for determining whether the engine has reached a predefined engine RPM, e.g., from about 200 to about 250 RPM. If the engine has not reached the predefined engine speed, then the method iteratively continues at step
308
reached through connecting node D. If the engine has reached the predefined engine RPM, then step
212
allows for monitoring one or more operation engine parameters indicative of the level of performance of the engine, e.g., engine speed, acceleration, etc. As indicated at decision block
316
, if the level of engine performance decreases, then step
318
allows for changing the hypothesized cam position by about 180 degrees, prior to return step
322
. Conversely, if the level of engine performance increases, then step
320
allows for continuing to maintain the firing signal relative to the hypothesized prior to return step
220
. It is believed that this last-described technique, may offer some advantages in one exemplary embodiment since it does not require any wiring changes to an existing engine control design and it is further believed that this embodiment better handle dry-injector conditions.
FIG. 6
illustrates an exemplary processor
400
configured to start a large compression ignition engine without cam sensor information. Memory
402
is used for storing the various firing rules respectively delivered to each fuel delivery assembly
30
, as discussed in the context of
FIGS. 3 through 5
. As suggested above, once a correct cam orientation has been determined, a crank teeth signal together with signals indicative of various operational and/or environmental conditions, e.g., ambient temperature, barometric pressure, engine RPM, acceleration, etc., are used for determining any desired timing and fuel-value requirement for efficiently controlling engine operation in a manner well-understood by those of ordinary skill in the art.
It will be understood that the specific embodiment of the invention shown and described herein is exemplary only. Numerous variations, changes, substitutions and equivalents will now occur to those skilled in the art without departing from the spirit and scope of the present invention. Accordingly, it is intended that all subject matter described herein and shown in the accompanying drawings be regarded as illustrative only and not in a limiting sense and that the scope of the invention be solely determined by the appended claims.
Claims
- 1. A method for controlling start of a compression ignition engine without a cam sensor, the engine having a plurality of cylinders, each cylinder including a respective piston reciprocally movable between respective top and bottom positions along a cylinder longitudinal axis, the method comprising:providing a respective fuel delivery assembly for each cylinder; retrieving from memory a set of fuel delivery assembly firing rules; processing the firing rules so that a firing signal is delivered to each fuel delivery assembly on every crank revolution during a cranking mode of operation; arranging the fuel delivery assembly to be responsive to any firing signal received during an injection window so as to supply fuel to each cylinder during that injection window; arranging the fuel delivery assembly to be insensitive to any firing signal received outside the firing window so that no fuel is delivered to each cylinder outside that firing window; switching to a new set of firing rules upon reaching a predefined engine RPM; and processing the new set of firing rules so that a firing signal is delivered to each fuel delivery assembly on every other crank revolution assuming a cam indication corresponding to a compression stroke.
- 2. The method of claim 1 further comprising monitoring one or more engine operational parameters so that if engine performance continues to increase, then the assumed cam indication is maintained.
- 3. The method of claim 1 further comprising monitoring one or more engine operational parameters so that if engine performance continues to decrease, then the assumed cam indication is changed to correspond to an exhaust stroke.
- 4. The method of claim 2 wherein the one or more operational parameters are selected from the group comprising engine acceleration and speed.
- 5. A method for controlling start of a compression ignition engine without a cam sensor, the engine having a plurality of cylinders, each cylinder including a respective piston reciprocally movable between respective top and bottom positions along a cylinder longitudinal axis, the method comprising:providing a respective fuel delivery assembly for each cylinder; retrieving from memory a set of fuel delivery assembly firing rules; processing the firing rules so that a firing signal is delivered to each fuel delivery assembly on every crank revolution during a cranking mode of operation; arranging the fuel delivery assembly to be responsive to any firing signal received during an injection window so as to supply fuel to each cylinder during that injection window; arranging the fuel delivery assembly to be insensitive to any firing signal received outside the firing window so that no fuel is delivered to each cylinder outside that firing window; switching to a new set of firing rules upon reaching a predefined engine RPM; and processing the new set of firing rules so that a firing signal is delivered to each fuel delivery assembly on every other crank revolution assuming a cam indication corresponding to an exhaust stroke.
- 6. The method of claim 5 further comprising monitoring one or more engine operational parameters so that if engine performance continues to increase, then the assumed cam indication is maintained.
- 7. The method of claim 5 further comprising monitoring one or more engine operational parameters so that if engine performance continues to decrease, then the assumed cam indication is changed to correspond to a compression stroke.
- 8. A method for controlling start of a compression ignition engine without a cam sensor, the engine having a plurality of cylinders, each cylinder including a respective piston reciprocally movable between respective top and bottom positions along a cylinder longitudinal axis, the method comprising:providing a respective fuel delivery assembly for each cylinder; retrieving from memory a set of fuel delivery assembly firing rules; processing the firing rules so that a firing signal is delivered to each fuel delivery assembly on every crank revolution during a cranking mode of operation; arranging the fuel delivery assembly to be responsive to any firing signal received during an injection window so as to supply fuel to each cylinder during that injection window; arranging the fuel delivery assembly to be insensitive to any firing signal received outside the firing window so that no fuel is delivered to each cylinder outside that firing window; switching to a new set of firing rules upon reaching a predefined engine RPM; and processing the new set of firing rules so that a firing signal is delivered to each fuel delivery assembly on every other crank revolution assuming a cam indication corresponding to one of the following stokes: a compression stroke and an exhaust stroke.
- 9. The method of claim 8 further comprising monitoring one or more engine operational parameters so that if engine performance continues to increase, then the assumed cam indication is maintained.
- 10. The method of claim 8 further comprising monitoring one or more engine operational parameters so that if engine performance continues to decrease, then the assumed cam indication is changed to correspond to the other stoke.
US Referenced Citations (9)