The present invention relates to a mechanism intermediate a crank-shaft and a poppet-type intake or exhaust valve of an internal combustion engine for operating at least one such valve, wherein means are provided to vary a time period, extent of duration of valve opening relative to an operating cycle of the engine, and further wherein means are provided to vary a structure or an axial disposition of a camshaft or an associated cam of the camshaft.
The performance of an internal combustion engine can be improved by the use of dual camshafts, one to operate the intake valves of the various cylinders of the engine and the other to operate the exhaust valves. Typically, one of such camshafts is driven by the crankshaft of the engine, through a sprocket and chain drive or a belt drive, and the other of such camshafts is driven by the first, through a second sprocket and chain drive or a second belt drive. Alternatively, both of the camshafts can be driven by a single crankshaft powered chain drive or belt drive. A crankshaft can take power from the pistons to drive at least one transmission and at least one camshaft. Engine performance in an engine with dual camshafts can be further improved, in terms of idle quality, fuel economy, reduced emissions or increased torque, by changing the positional relationship of one of the camshafts, usually the camshaft which operates the intake valves of the engine, relative to the other camshaft and relative to the crankshaft, to thereby vary the timing of the engine in terms of the operation of intake valves relative to its exhaust valves or in terms of the operation of its valves relative to the position of the crankshaft.
As is conventional in the art, there can be one or more camshafts per engine. A camshaft can be driven by a belt, or a chain, or one or more gears, or another camshaft. One or more lobes can exist on a camshaft to push on one or more valves. A multiple camshaft engine typically has one camshaft for exhaust valves, one camshaft for intake valves. A “V” type engine usually has two camshafts (one for each bank) or four camshafts (intake and exhaust for each bank).
Variable camshaft timing (VCT) devices are generally known in the art, such as U.S. Pat. No. 5,002,023; U.S. Pat. No. 5,107,804; U.S. Pat. No. 5,172,659; U.S. Pat. No. 5,184,578; U.S. Pat. No. 5,289,805; U.S. Pat. No. 5,361,735; U.S. Pat. No. 5,497,738; U.S. Pat. No. 5,657,725; U.S. Pat. No. 6,247,434; U.S. Pat. No. 6,250,265; U.S. Pat. No. 6,263,846; U.S. Pat. No. 6,311,655; U.S. Pat. No. 6,374,787; and U.S. Pat. No. 6,477,999. Each of these prior known patents appears to be suitable for its intended purpose. However, it would be desirable to allow a check valve in spool cam torque actuated (CTA) phaser to lock somewhere along a path of travel, other than at either end stop limit of travel.
The disclosed check valve in spool cam torque actuated (CTA) phaser with mid position lock allows a mid position lock with a hydraulic detent circuit in both a rotor and an endplate. A metering edge or edges of the hydraulic detent circuit can be controlled by a position of the end plate relative to the rotor. The hydraulic detent circuit can be activated by a position of a lock pin, where the detent valve can be integrated into the lock pin, but it is not necessary to do so. The lock pin can have two functions: first, to lock a phaser in a base timing position; and second, as a switch for the hydraulic detent circuit. A metering edge or edges for the hydraulic detent circuit can be located between the endplate and the rotor.
To lock the phaser, a spool can be positioned full out, where a lock passage supplying oil to a nose of the lock pin is blocked and a vent passage is opened allowing any remaining oil in the lock passage to be vented. A spring on a back side of the lock pin pushes the lock pin till the nose contacts a face of the endplate or sprocket which in turn allows an annulus on the lock pin to be aligned with three passages, where one passage connects to an advance chamber, another passage connects to a retard chamber and a last passage connects to a pressurized fluid supply passage. Depending on a position of the rotor, the two passages connected to the chambers are able to open and close, causing the rotor to move to a lock position, which only occurs when the lock pin nose is against the sprocket or endplate. When the rotor and sprocket are aligned in the locked position, the lock pin is able to fall into a corresponding aperture to lock the phaser. The two passages are controlled by the rotor to endplate position providing a configuration that does not require an internal bearing.
To unlock the phaser, the spool valve is pushed inward blocking the vent passage and allowing supply oil to be feed to the nose of the lock pin, the supply oil pushes against the nose of the lock pin causing it to retract which unlocks the phaser (compressing the lock pin spring). Once the lock pin is retracted, the annulus on the pin is no longer aligned with the other passages and the hydraulic detent circuit is disabled or blocked. Once the hydraulic detent passage is closed, the phaser can be controlled as normal.
Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
The term “hydraulic fluid” or simply “fluid” as used herein refers to any type of actuating fluids. The term “actuating fluid” as used herein is a fluid which moves the vanes in a vane phaser. Typically, an actuating fluid can include engine oil, but can also be a separate hydraulic fluid. The term “engine oil” as used herein is defined as the oil used to lubricate engine, oil pressure can be tapped to actuate a phaser through a control valve. The term “vane” as used herein is a radial element that actuating fluid acts on, where the vane is housed within a chamber to divide the space into an advance chamber and a retard chamber. The term “vane phaser” as used herein is a phaser which is actuated by one or more vanes moving in corresponding one or more chambers. The term “chamber” as used herein is defined as a space within which a vane rotates. A chamber can be divided into an advance chamber, which makes valves open sooner relative to the crankshaft rotation, and a retard chamber, which makes valves open later relative to the crankshaft rotation. The term “middle position” of the vane as used herein is defined as a position wherein the side of the vane is not touching any side wall of the cavity of the housing.
The term “check valve” as used herein is defined as a valve which permits fluid flow in only one direction. The term “open loop” as used herein is defined as a control system which changes one characteristic in response to another (e.g., moves a control valve in response to a command from an Engine Control Unit (ECU)) without feedback to confirm the action. The term “closed loop” as used herein is defined as a control system which changes one characteristic in response to another, then checks to see if the change was made correctly and adjusts the action to achieve the desired result (e.g. moves a control valve to change phaser position in response to a command from an Engine Control Unit (ECU), then checks the actual phaser position and moves the control valve again to correct position). The term “control valve” as used herein is a valve which controls flow of fluid to a phaser. The control valve can exist within the phaser in a Cam Torque Actuated (CTA) system. A control valve can be actuated by oil pressure or solenoid. The term “spool valve” as used herein is defined as a control valve of a spool type. Typically a spool reciprocates within bore to connect one or more passages to one another. Most often, the spool is located on a center axis of a rotor of a phaser.
The term “housing” as used herein is defined as the outer part of a phaser with at least one chamber defined therein. An outside surface of the housing can be formed as a pulley (for cooperative engagement with a timing belt), a sprocket (for cooperative engagement with a timing chain) or a gear (for cooperative engagement with a timing gear). The term “hydraulic fluid” as used herein is defined as any kind of oil used in hydraulic cylinders, by way of example and not limitation, such as a brake fluid or a power steering fluid. Hydraulic fluid is not necessarily the same as engine oil. Typically the present invention uses an “actuating fluid” as defined above. The term “lock pin” as used herein is defined as a moveable member disposed to lock a phaser in position. Usually a lock pin is used when oil pressure is too low to hold a phaser in a desired position, such as during engine start or shutdown. The term “driven shaft” as used herein is defined as any shaft which receives power (in a VCT system, most often a camshaft). The term “driving shaft” as used herein is defined as any shaft which supplies power (in a VCT system, most often a crankshaft, however one camshaft can drive another camshaft in some configurations).
The term “phase” as used herein is defined as the relative angular position of camshaft and crankshaft (or camshaft and another camshaft, if phaser is driven by another cam). The term “phaser” as used herein is defined as the entire part which mounts to a cam. The phaser is typically made up of a rotor, a housing, and possibly a spool valve, and a check valve. A piston phaser is a phaser actuated by pistons in cylinders of an internal combustion engine. The term “rotor” as used herein is defined as the inner part of the phaser, which is attached to a cam shaft.
The term “solenoid” as used herein is defined as an electrical actuator which uses electrical current flowing in coil to move a mechanical arm, typically in an on/off (all or nothing) solenoid configuration. The term “Variable Force Solenoid (VFS)” as used herein is defined as a solenoid whose actuating force can be varied, usually by Pulse-Width Modulation (PWM) of supply current.
The term “sprocket” as used herein is defined as a member used with chains such as engine timing chains. The term “timing” as used herein is defined as the relationship between the time a piston reaches a defined position (usually Top Dead Center (TDC)) and the time something else happens. For example, in Variable Cam Timing (VCT) or Variable Valve Timing (VVT) systems, timing usually relates to when a valve opens or closes. Ignition timing relates to when the spark plug fires.
The term “Variable Cam Timing (VCT)” system as used herein can be a Cam Torque Actuated (CTA) VCT system, in which the VCT system uses torque reversals in a camshaft caused by forces corresponding to opening and closing engine valves to move the vane. The control valve in a CTA system allows fluid flow from an advance chamber to a retard chamber, allowing a vane to move, or stops flow, locking a vane in position. The CTA phaser can also have oil input to make up for losses due to leakage, but does not use engine oil pressure to move a phaser.
The term “Valve Control Unit (VCU)” as used herein is defined as control circuitry for controlling the VCT system. Typically the VCU acts in response to commands from the Engine Control Unit (ECU). The term “Engine Control Unit (ECU)” as used herein is defined as a central processing unit (CPU) or computer located in the vehicle.
The term “Variable Cam Timing (VCT)” system as used herein includes a phaser, control valve(s), control valve actuator(s) and control circuitry. Variable Cam Timing (VCT) is a process, not a thing, that refers to controlling and/or varying the angular relationship (phase) between one or more camshafts, which drive the engine's intake and/or exhaust valves. The angular relationship also includes phase relationship between the cam and the crankshafts, in which the crank shaft is connected to the pistons.
Variable Valve Timing (VVT) is any process which changes the valve timing. Variable Valve Timing (VVT) could be associated with Variable Cam Timing (VCT), or could be achieved by varying the shape of the cam or the relationship of cam lobes to cam or valve actuators to cam or valves, or by individually controlling the valves themselves using electrical or hydraulic actuators. In other words, all Variable Cam Timing (VCT) is Variable Valve Timing (VVT), but not all Variable Valve Timing (VVT) is Variable Cam Timing (VCT).
Referring to
Referring now to
Portions of passages 56, 58 extend through both the rotor 20 and either the endplate 64 or sprocket 70 to define passage portions with metering pockets or edges 64a, 64b at the interface between the rotor 20 and either the endplate 64 or sprocket 70 for controlling actuating fluid flow through passages 56, 58 in response to an angular position of the rotor with respect to the endplate 64 or sprocket 70. As a result of the placement of the ports of passages 56, 58 opening into chambers 16, 18 respectively and the application of Cam Torque Actuated (CTA) forces, the vane 22 can be moved toward an intermediate or mid position. As can be appreciated, the end result of the flow of fluid is a stoppage of the rotation of the rotor 20 relative to the housing 10, or at least slowing down the rate of rotation sufficiently enough in an intermediate position for a lock pin 60 to lock the housing 10 and the rotor 20 at the intermediate or mid position, whereby the intermediate or mid position can be maintained independent of fluid flow. A lock pin 60, formed either integrally with the detent valve (as shown in
As best seen in
As best seen in
Referring now to
Referring now to
A cam torque actuated (CTA) phaser with normally closed, spring biased, check valves 40, 42 located internally within spool 36 of control valve 24 can operably actuate a hydraulic detent valve 50 and lock pin 60 allowing a mid position lock through hydraulic detent passages 52, 54, 56, 58, where portions of passages 56, 58 extend through both the rotor 20 and the endplate 64. A metering edge or edges of pockets 64a, 64b of the hydraulic detent passages 56, 58 can be controlled by an angular position of the rotor 20 relative to the endplate 64. The hydraulic detent circuit can be activated by a position of a lock pin 60, where the detent valve 50 can be integrated into the lock pin, but it is not necessary to do so. The lock pin 60 can have two functions: first, to lock a phaser in a base timing position; and second, as a switch or actuator for opening and closing the hydraulic detent passages 52, 54, 56, 58. A metering edge or edges of pockets 64a, 64b for the hydraulic detent passages 56, 58 can be located between the endplate 64 and the rotor 20, or alternatively can be located between the rotor 20 and sprocket 70.
To lock the phaser, spool 36 can be positioned full out, where a lock passage 62 supplying actuating fluid or oil to a nose of the lock pin 60 is blocked and a vent passage 48 is opened allowing any remaining actuating fluid or oil in the lock passage 62 to be vented out exhaust passage 48 through chamber 36g of the spool 36. A spring 66 on a back side of the lock pin 60 pushes the lock pin 60 till the nose contacts a face 64c of the endplate 64 or a face 70a of a sprocket 70 which in turn allows an annulus 54 on the lock pin 60 to be aligned with three passages 52, 56, 58, where one passage 56 connects to an advance chamber 16, another passage 58 connects to a retard chamber 18 and a last passage 52 connects to a pressurized fluid supply passage 46 through chamber 36e of spool 36. Depending on a position of the rotor 20, the portions of two passages 56, 58 connected to the chambers 16, 18 are able to open and close, causing the rotor 20 to move to a lock position in response to cam torque actuation forces, which only occurs when the lock pin nose is against the sprocket 70 or endplate 64. When the rotor 20 and endplate 64 or sprocket 70 are aligned in the locked position, the lock pin 60 is able to fall into a corresponding aperture 70b to lock the phaser. The two passages 56, 58 are controlled by the rotor 20 to endplate 64 relative angular position providing a configuration that does not require an internal bearing.
To unlock the phaser, the spool 36 of control valve 24 is pushed inward blocking the vent passage 48 and allowing a supply of pressurized actuating fluid or oil to be feed to the nose of the lock pin 60 through passage 62, the supply of pressurized actuating fluid or oil pushes against the nose of the lock pin 60 causing the lock pin 60 to retract which unlocks the phaser (compressing the lock pin spring 66). Once the lock pin 60 is retracted, the annulus 54 on the lock pin 60 is no longer aligned with the other passages 52, 56, 58 and the hydraulic detent circuit is disabled or blocked. Once the hydraulic detent passages 52, 56, 58 are closed, the phaser can be controlled as normal.
The position of the spool 36 of the control valve 24 determines the direction and rate of change of phase but typically requires a position feed back sensor on the camshaft in order to stop in a specific mid phase position. At this juncture, it is desirous to keep the specific mid-phase position independent of actuating fluid or oil flow. The lock pin 60 can lock the VCT phaser during conditions where the engine oil pump is not supplying any actuating fluid or oil to the VCT phaser such as during the engine cranking cycle. The lock pin 60 can be located at any intermediate or mid position between either extreme end limit of travel within the VCT phaser mechanism. The VCT phaser can operate in an “open loop” mode and be commanded to the stop where the lock pin 60 will engage. The fluid flow through detent passages 52, 54, 56, 58 positions the rotor 20 in the proper position relative to the endplate 64 for the lock pin 60 to reliably engage.
In the case of a cam torque actuated (CTA) VCT phaser, when the spool 36 of control valve 24 is set to one end of stroke (as illustrated in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/058290 | 10/28/2011 | WO | 00 | 2/20/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/061233 | 5/10/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6250265 | Simpson | Jun 2001 | B1 |
6311655 | Simpson et al. | Nov 2001 | B1 |
6382155 | Simpson | May 2002 | B2 |
6453859 | Smith et al. | Sep 2002 | B1 |
6477999 | Markley | Nov 2002 | B1 |
6481402 | Simpson et al. | Nov 2002 | B1 |
6561146 | Todd et al. | May 2003 | B2 |
6644258 | Smith | Nov 2003 | B1 |
6647936 | Lewis | Nov 2003 | B2 |
6666181 | Smith et al. | Dec 2003 | B2 |
6668778 | Smith | Dec 2003 | B1 |
6763791 | Gardner et al. | Jul 2004 | B2 |
6766777 | Simpson et al. | Jul 2004 | B2 |
6772721 | Gardner et al. | Aug 2004 | B1 |
6799544 | Pierik | Oct 2004 | B1 |
6814037 | Smith et al. | Nov 2004 | B1 |
6814038 | Smith | Nov 2004 | B2 |
6883479 | Simpson | Apr 2005 | B2 |
6941913 | Smith | Sep 2005 | B2 |
6966288 | Simpson | Nov 2005 | B2 |
6971354 | Smith et al. | Dec 2005 | B1 |
7124722 | Smith | Oct 2006 | B2 |
7137371 | Simpson | Nov 2006 | B2 |
7318401 | Pluta et al. | Jan 2008 | B2 |
7568458 | Roth et al. | Aug 2009 | B2 |
8356583 | Smith | Jan 2013 | B2 |
Number | Date | Country |
---|---|---|
WO 2009114500 | Sep 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20130220253 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61409340 | Nov 2010 | US |