The present disclosure is generally related to devices, systems, and methods for pest (e.g., rodent) management, including bait stations having a camera.
Pest-management devices, such as rodent snap-traps, are designed to capture unwanted pests, such as rodents. Such devices often fail to provide an indication, independent of manual inspection by a user, that a particular device has operated. When multiple pest-management devices, such as hundreds or thousands of pest-management devices, are deployed, manual inspection of each device becomes time intensive and costly.
To address a lack of remote notification of pest-management devices, a detection and communication system can be purchased and installed to existing pest-management devices. However, such detection and communication systems can be difficult and time consuming to install. Additionally, if a detection component is not properly installed on a particular pest-management device, a user may not be remotely informed of operation of the particular pest-management device. Further, such add-on detection and communication systems typically have several wires that remain exposed to environmental conditions and to pests after installation. Exposed wires can deteriorate due to environmental conditions and can be chewed on by pests thus resulting in damage or failure of the detection and communication system.
Other attempts to address remote notification of operation of a pest-management device have included all-in-one products that include a detection and communication system are integrated in the pest-management device (e.g., bait station). Such integrated pest-management devices suffer from an increased cost of an all-in-one design and are difficult or impossible to repair if a one or more components fail. In the event of a failure of a single component, such as the detection or communication system, a user is forced to discard the entire integrated pest-management device and purchase a new device.
This disclosure describes devices, systems, and methods associated with pest (e.g., rodent) management. An example of a pest-management apparatus includes a detector device having a housing, a plurality of sensors coupled to the housing, a camera coupled to the housing, a wireless communication interface, and circuitry disposed within a cavity of the housing. The camera is configured to be activated in response to sensor data from one or more of the plurality of sensors and/or remote image capture requests. In some implementations, the detector device has artificial intelligence (AI) based image detection software. In some implementations, the detector device has no exposed wires outside of the housing. The detector device is configured to be coupled to a pest-management device (e.g., bait station). The pest-management device may include a trap, such as a rodent snap-trap. The circuitry is configured to detect operation of the trap based on one or more sensors of the plurality of sensors. In response to detection of the operation of the trap, the circuitry may capture an image, initiate transmission (e.g., wired and/or wireless transmission) of a notification, or both.
Another example of a pest-management apparatus includes bait station that is configured to provide an electrical path to a detector device without using wires in an area where the wires may be accessible to a pest. Thus, the wires may be less prone to damage, such as from the pest chewing on or pulling on the wires.
The above-described aspects include the benefit of increased speed and ease of deployment of a pest-management apparatus and a reduction in time and manpower to identify pest-management apparatuses that have operated. To illustrate, components and devices of the pest-management apparatus are configured to be removably coupled from each other and, when coupled, enable proper function and interaction between different components. In this manner, the present disclosure provides a pest-management system with “plug and play” components that provide a high degree of user customization. For example, a user may easily arrange one or more components to form a multi-trap pest-management apparatus that includes individual trap operation detection as well as remote notification of individual trap operation. Furthermore, the above-described aspects provide components that can be combined with a variety of other components to enable a user to achieve different pest-management device configurations. Additionally, the above-described aspects provide a pest-management apparatus, such as a bait station, that includes components or devices that can repaired or replaced without having to discard the entire pest-management apparatus resulting in cost saving. Additionally, the above-described aspects include a pest-management apparatus with no exposed wires that can be chewed on and damaged by a pest.
As used herein, various terminology is for the purpose of describing particular implementations only and is not intended to be limiting of implementations. For example, as used herein, an ordinal term (e.g., “first,” “second,” “third,” etc.) used to modify an element, such as a structure, a component, an operation, etc., does not by itself indicate any priority or order of the element with respect to another element, but rather merely distinguishes the element from another element having a same name (but for use of the ordinal term). The term “coupled” is defined as connected, although not necessarily directly, and not necessarily mechanically; two items that are “coupled” may be unitary with each other. The terms “a” and “an” are defined as one or more unless this disclosure explicitly requires otherwise. The term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; e.g., substantially 90 degrees includes 90 degrees and substantially parallel includes parallel), as understood by a person of ordinary skill in the art. In any disclosed embodiment, the term “substantially” may be substituted with “within [a percentage] of” what is specified, where the percentage includes 0.1, 1, or 5 percent; and the term “approximately” may be substituted with “within 10 percent of” what is specified. The phrase “and/or” means and or. To illustrate, A, B, and/or C includes: A alone, B alone, C alone, a combination of A and B, a combination of A and C, a combination of B and C, or a combination of A, B, and C. In other words, “and/or” operates as an inclusive or.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), and “include” (and any form of include, such as “includes” and “including”). As a result, an apparatus that “comprises,” “has,” or “includes” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, a method that “comprises,” “has,” or “includes” one or more steps possesses those one or more steps, but is not limited to possessing only those one or more steps.
Any aspect of any of the systems, methods, and article of manufacture can consist of or consist essentially of—rather than comprise/have/include—any of the described steps, elements, and/or features. Thus, in any of the claims, the term “consisting of” or “consisting essentially of” can be substituted for any of the open-ended linking verbs recited above, in order to change the scope of a given claim from what it would otherwise be using the open-ended linking verb. Additionally, it will be understood that the term “wherein” may be used interchangeably with “where.”
Further, a device or system that is configured in a certain way is configured in at least that way, but it can also be configured in other ways than those specifically described. The feature or features of one embodiment may be applied to other embodiments, even though not described or illustrated, unless expressly prohibited by this disclosure or the nature of the embodiments.
Some details associated with the aspects of the present disclosure are described above, and others are described below. Other implementations, advantages, and features of the present disclosure will become apparent after review of the entire application, including the following sections: Brief Description of the Drawings, Detailed Description, and the Claims.
The following drawings illustrate by way of example and not limitation. For the sake of brevity and clarity, every feature of a given structure is not always labeled in every figure in which that structure appears. Identical reference numbers do not necessarily indicate an identical structure. Rather, the same reference number may be used to indicate a similar feature or a feature with similar functionality, as may non-identical reference numbers. The figures are drawn to scale (unless otherwise noted), meaning the sizes of the depicted elements are accurate relative to each other for at least the embodiment depicted in the figures. Views identified as schematics are not drawn to scale.
Referring now to the figures, and more particularly to
Detector device 104 (e.g., a monitoring system) includes a camera 111, a switch 116 (e.g., a sense switch), circuitry 118, and a housing 106 that defines a cavity 107. In some implementations, detector device 104 may also include a switch 109 (e.g., an activation switch). The housing 106 includes a first portion 110 and a second portion 112. First portion 110 is removably coupled to second portion 112 such that first portion 110 and second portion 112 cooperate to define cavity 107. In some implementations, first portion 110 and second portion 112 may be configured to be coupled via one or more fasteners, such as a screw, a clip, or a combination thereof, as illustrative, non-limiting examples. Second portion 112 includes one or more protrusions 108. The one or more protrusions 108 are configured to stabilize or secure detector device 104 when detector device 104 is coupled to platform 190, trap 122, etc. In some implementations, housing 106 does not include the one or more protrusions 108.
Switch 109 includes an activation switch, such as a toggle switch, push button, a slide switch, or a rotary switch, as illustrative, non-limiting examples. Switch 109 is coupled (e.g., electrically coupled) to circuitry 118 and is configured to activate and/or deactivate circuitry 118 to perform one or more operations, as described herein. Additionally, or alternatively, switch 109 may be configured for use in programming and/or configuring detector device 104. In some implementations, switch 109 may be positioned within cavity 107. In some such implementations, switch 109 may be accessible and/or visible via an opening of the housing 106 when first portion 110 is coupled to second portion 112. For example, when first portion 110 is coupled to second portion 112, the opening may be defined by first portion 110, second portion 112, or a combination of first portion 110 and second portion 112. In other implementations, switch 109 may be coupled to or integrated in housing.
Camera 111 includes one or more image sensors (e.g., a charge coupled device (CCD) and is configured to capture image data. Camera 111 may include or correspond to a digital camera or a digital video camera in some implementations. Camera 111 is configured to capture an image, generate image data, responsive to one or more different indications and/or conditions. For example, in some implementations, camera 111 is configured to capture an image, generate image data, responsive to one or more indications generated based on sensor data from one or more sensors of the detector device 104 or coupled to the detector device 104. Additionally, or alternatively, camera 111 is configured to capture an image responsive to receiving an image capture command, such as from an input button (e.g., switch 109) on the housing 106, or from a remote device (e.g., 552 or 554). In some such implementations, the camera 111 may be configured to operate in one or more modes, such as an on demand mode, a timer mode, a request mode, or a combination thereof. Additional details on the camera 111 and the operations thereof, are described further with reference to
Switch 116 includes a magnetic switch, such as a reed switch, as an illustrative, non-limiting example. Switch 116 includes an operational region bounded by a portion of switch 116, as described further herein with reference to
As shown, switch 116 is physically coupled to housing 106. In other implementations, switch 116 is integrated in housing 106 (e.g., integrated in first portion 110, second portion 112, or both), or is included within housing 106, such as within cavity 107. In some implementations, switch 116 is removably coupled to housing 106. For example, an electrical connection (e.g., a port) can be incorporated into housing 106, and switch 116 can be physically coupled to housing 106 via the port.
Circuitry 118 is disposed in cavity 107 and is electrically coupled to switch 116. Circuitry 118 is configured to detect operation of trap 122 responsive to an operation of magnetic switch 116. For example, in a particular implementation, circuitry 118 is configured to detect operation of trap 122 responsive to an operation in which switch 116 transitions from an active state to a deactivated state. Alternatively, in another particular implementation, circuitry 118 is configured to detect operation of trap 122 responsive to an operation in which switch 116 transitions from a deactivated state to an active state.
Circuitry 118 may be connected to switch 116 by an electrical wire, as described further herein with reference
Trap 122, such as a snap-trap (e.g., a rodent snap-trap), includes a base 124, a capture element 128 (e.g., a hammer, a bar, a jaw, etc.), a trigger 126, a latch 130 (e.g., a release catch), and a magnet 132. In some implementations, base 124 includes an opening 125 that defines a channel 136. It is noted that in other implementations, base 124 may not include the opening 125 that defines channel 136 Capture element 128, also referred to herein as a capture bar, is pivotally coupled to base 124 such that a portion of capture element 128 is biased toward a capture portion 134 of base 124. Capture element 128 may be biased toward the capture position via a biasing member (not shown), such as, for example, a spring.
As shown, capture element 128 is in a set position in which capture element 128 is held in position by latch 130. For example, capture element 128 is configured to be pivoted away from the capture portion 134 to the set position in which the portion of capture element 128, upon release (by latch 130) of capture element 128 from the set position, travels toward capture portion 134. To illustrate, latch 130 is configured to retain capture element 128 in the set position such that movement of trigger 126 may cause latch 130 to release, thereby enabling movement of capture element 128 toward capture portion 134. In other implementations, trap 122 include an electric trap, an adhesive mat, or another a pest-capture device. Base 124 of trap 122 is configured to be coupled to housing 106 such that, upon the release of capture element 128 from the set position, the magnetic field (of magnet 132) causes an operation of magnetic switch 116. For example, base 124 is configured to be coupled to housing 106 via platform 190 (as described further herein with reference to at least
Referring to
Referring to
Platform 190 includes a layer having a surface 172, 174, walls 160, 162, 164, 166, 168, one or more brackets 176 (e.g., clips or retention features), and one or more protrusions 178. Brackets 176 are configured to retain trap 122 in a coupled position with respect to platform 190 and protrusions 178 are configured to stabilize and position trap 122 with respect to platform 190. Additionally, an angled surface of protrusions 178 may configured to facilitate (e.g., guide) the trap 122 into being coupled with the platform 190. Although described as having one or more brackets 176, in other implementations, platform 190 may not include the one or more brackets.
In some implementations, platform 190 may include one or more through holes, such as a representative through hole 175. Through hole 175 may be configured to align with opening 125 such that a screw or other device (e.g., one or more fasteners) may be inserted to anchor trap 122 to platform 190. In other implementations, trap 122 and/or platform 190 may be secured or otherwise anchored in another manner, such as a screw, an adhesive, a tie (e.g., a zip tie), a strap, or a combination thereof, as an illustrative, non-limiting examples. To illustrate, trap 122 and/or platform 190 may include one or more openings to enable trap and/or platform 190 to be secured or otherwise anchored to a floor, trap box, or pipe using a tie or screw. Additionally, or alternatively, it is noted that a holder and/or housing 106 may also include one or more openings to enable the holder, housing 106, trap 122, and/or platform 190 to be secured or otherwise anchored.
Platform includes a first portion 152 associated with detector device 104 and a second portion 154 associated with trap 122. For example, first portion 152 corresponds to a region 182 defined by surface 172 and at least a portion of walls 160, 164, 166, 168. The detector device 104 is removably coupled to platform via region 182. Second portion corresponds to a region 184 defined by surface 174, at least a portion of walls 160, 162, 164, 168, one or more brackets 176, one or more protrusions 178, or a combination thereof. Although platform 190 is described as being removably couplable to each of detector device 104 and trap 122, in other implementations, platform 190 is removably couplable to one of detector device 104 or trap 122, but not to the other. For example, in a particular implementation, detector device 104 is integrated in platform 190 and trap 122 is removably couplable with platform 190. In another particular implementation, trap 122 is integrated in platform 190 and detector device 104 is removably couplable with platform 190.
In some implementations, a portion of one or more of walls 160, 162, 164, 166, 168 may be omitted. For example, in a particular implementation, a portion of wall 164 corresponding to second portion 154 may be omitted. Additionally, or alternatively, an entirety of wall 162 may be omitted.
During operation, each of detector device 104 and trap 122 is coupled to platform 190. For example, detector device 104 is coupled to first portion 152 of platform 190 via region 182 and trap 122 is coupled to second portion 154 of platform 190 via region 184. Detector device 104 is activated (e.g., turned on) via switch 109. Capture element 128 is configured in the set position such that a magnetic field of magnet 132 causes switch 116 to be in an active state. In response to trigger 126 being operated, such as by a rodent applying a force to trigger 126, latch 130 releases capture element 128 from the set position. Capture element 128 (including magnet 132) travels towards capture portion 134, also referred to herein as a capture zone. As magnet 132 travels with capture element 128, a strength of a magnetic field (of magnet 132) received by switch 116 dissipates and switch 116 transitions from the active state to a deactivated state in response to a received magnetic field strength being less than an operating characteristic of switch 116. Circuitry 118 detects the change in state of switch 116 indicating operation of the trap 122. Operation of the trap 122 (e.g., changing of the state of the switch 116) may trigger activation of camera 111. To illustrate, after activation of trap 122, camera 111 captures an image to determine if a pest was actually captured. The image (image date) can be transmitted to an external device for review. Accordingly, the trap 122 can be monitored remotely. In a particular implementation, the trap 122 may be reset or rearmed remotely as well.
As shown, platform 190 is a single structure. Alternatively, platform 190 may include multiple structures. For example, first portion 152 (e.g., cavity) may include or correspond to a covering or a holder, such as a covering or a holder as described at least with reference to at least
In an implementation of an aspect of a pest-management apparatus (e.g., a pest-management system), a monitoring system, such as detector device 104, for trap 122 includes housing 106 that defines cavity 107, switch 116 physically coupled to housing 106, and circuitry 118 disposed in cavity 107 and electrically couplable to switch 116. Switch 116 has an operational region bounded by a portion of the switch 116 and configured to operate responsive to a magnetic field of magnet 132. To illustrate, housing 106 is configured to be coupled to base 124 of trap 122 such that, upon the release of capture element 128 from the set position, the magnetic field causes the operation of switch 116. Housing 106 is configured to be coupled to trap 122 directly or via platform 190 that is configured to be coupled to housing 106 and to be coupled to base 124 of trap 122. Circuitry 118 is configured to detect operation of the trap 122 responsive to an operation of switch 116. Circuitry 118 includes one or more components selected from the group of components consisting of a power supply, a processor, a memory, communication circuitry, a transmitter, a sensor device, and an indicator device (e.g., one or more light emitting diodes, an audio speaker, a display device, or a combination thereof). In some implementations of the pest-management apparatus, the pest-management apparatus includes one or more components selected from the group of components consisting of trap 122, detector device 104, and a holder that includes at least one bracket configured to maintain detector device 104 within a cavity defined by the holder.
Thus,
Referring to
As shown, trap 122 is configured such that capture element 128 is in the set position. Capture element 128 is pivotally coupled to base 124 such that a portion of capture element 128 is biased toward capture portion 134 of base 124. To configure capture element 128 in the set position, capture element 128 is configured to be pivoted away (opposite the direction indicated by arrows 302, 304) from the capture portion 134 to the set position. Upon release of capture element 128 from the set position, capture element 128 travels toward capture portion 134 in the direction indicated by arrows 302, 304. To illustrate, when detector device 104 and trap 122 are coupled to platform 190, release of capture element 128 from the set position causes magnet 132 to travel such that a magnetic field of magnet 132 is removed from an operational region bounded by a portion of the switch 116, thus causing switch 116 to experience a state transition. For example, operation of the portion of capture element 128 from the set position toward capture portion 134 of trap 122 changes the state of the switch 116 from an open state to a closed state, or from a closed state to an open state. Operation of the trap 122 (e.g., changing of the state of the switch 116) may trigger activation of camera 111. To illustrate, after activation of trap 122, camera 111 captures an image to determine if a pest was actually captured. Thus,
Referring to
In example 400, detector device 104 includes an indicator device 408. Indicator device 408 is configured to indicate (e.g., visually indicate) a state of trap 122 to a user. For example, indicator device 408 may indicate whether trap 122 is in the set position or has been tripped (e.g., actuated). As shown, indicator device 408 is incorporated into housing 106. Indicator device 408 is coupled to circuitry 118 (not shown). Indicator device 408 includes a light emitting diode (LED), an audio speaker, a display device, or a combination thereof. In an implementation where indicator device 408 includes the LED, the LED may change in color, intensity, blinking frequency, or a combination thereof, in response to detection by circuitry 118 of an operation of trap 122.
Additionally, or alternatively, indicator device 408 may include or be coupled to switch 109. For example, indicator device 408 may provide an indication in response to switch 109 being operated to activate circuitry 118. In some implementations, indicator device 408 may be configured to provide one or more indications as part of a configuration routine of device 104. For example, indicator device 408 may be configured to provide a first set of one or more indications responsive to device 104 being activated, a second set of one or more indications responsive to device 104 being wirelessly coupled to another device, and/or a third set of one or more indications in response to detection of operation of trap 122, as illustrative, non-limiting examples.
Thus,
Referring to
Trap 122 includes magnet 132 configured to generate a magnetic field 504. As described above, magnet 132 may be coupled to or included in capture element 128 and may travel as indicated by dashed arrow 503.
Detector device 104 may include one or more switches (e.g., one or more magnetic switches), such as switch 116, a second switch 518, and a third switch 519, each of which is coupled to housing 106. As shown, switch 116 is physically coupled to an exterior of housing 106, second switch 518 is integrated in housing 106, and third switch 518 is within housing 106 (e.g., within cavity 107 of housing 106). Each of the switches 116, 518, 519 may be configured to be selectively, magnetically coupled to a corresponding trap 122. Although example 500 shows detector device 104 having three switches, in other implementations, detector device 104 can include more than three switches or fewer than three switches.
Switch 116 may be considered representative of each of switches 518, 519. Switch 116 includes an operational region 502 bounded by a portion of the switch 116 and configured to operate responsive to magnetic field 504 of magnet 132. In a particular implementation, switch 116 includes a reed switch. Operational region 502 is configured such that magnet 132 having a designated magnetic field strength can operate switch 116 when magnet 132 is within a threshold distance to operational region 502. To illustrate, when magnet 132 is within the threshold distance and switch 116 receives the designated magnetic field strength of magnet field 504, switch 116 is in, or transitions to, an electrically conductive state. When magnet 132 is not within the threshold distance and switch 116 does not receive the designated magnetic field strength of magnet field 504, switch 116 is in, or transitions to, a non-electrically conductive state.
In a particular implementation, switch 116 is in an active state responsive to magnetic field 504 when capture element 128 of trap 122 is in the set position. Upon release of capture element 128, magnet 132 travels (with capture element 128) and switch 116 transitions to an inactive state as a strength of magnetic field 504 experienced by switch 116 dissipates. In another particular implementation, switch 116 is in an inactive state when capture element 128 of trap 122 is in the set position. Upon release of capture element 128, magnet 132 travels (with capture element 128) such that magnetic field 504 traverses operational region 502 with the designated magnetic field strength to activate switch 116. As capture element 128 continues to travel with magnet 132, switch 116 transitions to an inactive state as a strength of magnetic field 504 experience by switch 116 dissipates. Accordingly, operation of trap 122 may temporarily activate switch 116 such that circuitry 118 may detect operation of trap 122 based on the temporary activation of switch 116. To illustrate, circuitry 118 may apply a voltage to switch 116 and measure a current through switch 116 to determine whether switch 116 is in an open state or a closed state.
As shown, switch 116 is coupled to circuitry 118 via connector 540 and an electrical wire 541, such as electrical wire 418 of
Likewise, second switch 518 is coupled to circuitry 118 via connector 542 and wire 543, and third switch 519 is coupled to circuitry via connector 544 and wire 545. Alternatively, switch 116 may be coupled to circuitry 118 via connector 540 and not electrical wire 541, or via electrical wire 541 and not connector 540. Similarly, second and third switches 518, 519 may be coupled to circuitry 118 via a corresponding connector, a corresponding wire, or both.
Detector device 104 may also include a switch 509, such as activation switch and/or a control switch. For example, switch 509 may include or correspond to switch 109. Switch 509 is coupled to circuitry 118 and configured to activate one or more components of circuitry 118, initiate one or more operations by circuitry 118, or a combination thereof.
As shown, circuitry 118 includes one or more components, such as controller 510, memory 520, one or more indicator devices 408, power supply 530, one or more sensors 532, a camera 534, and/or communication circuitry 526. In some implementations, circuitry 118 may include more components or fewer components. For example, circuitry 118 may not include the one or more sensors 532. As another example, in some implementations, circuitry 118 includes one or more components selected from the group of components consisting of power supply 530, controller 510 (e.g., a processor), memory 520, communication circuitry 526, a transmitter, a sensor 532, a camera 534, and an indicator device 408. In some implementations, circuitry 118 may include switch 116 and/or switch 509. Additionally, or alternatively, detector device 104 may include a reset switch 511. Reset switch 511 may be configured to reset detector device 104 or trap 122 to a default configuration.
Memory 520 is configured to store instructions 522 and/or data 524. Instructions 522 may be executable by controller 510 (e.g., a processor) that is coupled to memory 520 and to switch(es) 116, 518, 519. For example, controller 510 may be configured to execute the instructions to perform one or more operations, such as described further herein with reference to
Communication circuitry 526 includes a transceiver 528 and is configured to generate notifications or messages, such as representative message 556, for wireless communication. Although communication circuitry 526 is described as including transceiver 528, in other implementations, communication circuitry 526 includes a transmitter but not a receiver. Additionally, or alternatively, communication circuitry 526 may include one or more interfaces to enable detector device 104 to be coupled (via a wired connection and/or a wireless connection) to another device. Power supply 530 includes a battery, such as a rechargeable battery, or other power source. Sensor(s) 532 include one or more sensors, such as a moisture sensor, a heat sensor, a vibration sensor, a power sensor, etc.
Sensors 532 may also include touch sensors, field sensors, motion sensors, the magnetic switches 116, 518, and 519 (e.g., reed sensors) illustrated in
In some implementations, sensors 532 or magnetic switches 116, 518, and 519 (e.g., reed sensors) are configured to generate sensor data (e.g., 730) indicative of a status of a door or point of entry to a building or monitored area. For example, the detector device 104 may include a sensor configured to sense a state of a door or a change in a state of a door (or other entry point). To illustrate, a magnetic switch may be operatively (e.g., magnetically) coupled to a magnet or a magnetic portion of a door, such that movement of the door causes the sensor to indicate a change in door status. As another example, the detector device 104 may include a port configured to couple to an external sensor configured to sense a state of a door or a change in a state of a door (or other entry point). The sensor data (e.g., 730) may be used to activate the camera 534, as described with reference to
Camera 534 includes one or more image sensors (e.g., a charge coupled device (CCD) and is configured to capture image data. Camera 534 may include or correspond to a digital camera in some implementations. Camera 534 is configured to capture an image, generate image data, responsive to one or more different indications and/or conditions. For example, in some implementations, camera 534 is configured to capture an image, generate image data, responsive to one or more indications generated based on sensor data from one or more sensors of the detector device 104, such as magnetic switches 516-519, sensors 532, etc. Additionally, or alternatively, camera 534 is configured to capture an image responsive to receiving an image capture command, such as from an input button (e.g., switch 509) on the housing 106 or the station 501, or from a remote device (e.g., 552 or 554). Additional details on the camera 534 and the operations thereof, are described further with reference to
Controller 510 is configured to execute instructions 522 to detect the release of the capture element 128 from the set position, activate an indicator device 408 responsive to detection of the release, or both. For example, circuitry 118 may detect release of capture element 128 based on activation or deactivation of switch 116. Additionally, or alternatively, in response to detection of the release of the capture element 128, controller 510 may initiate communication circuitry 526 to transmit message 556 indicating operation of trap 122. Communication circuitry 526 may transmit message 556 to server 552 or to device 554, such as a computer, tablet, phone, etc.
In a particular implementation, housing 106 is physically coupled to second switch 518 (e.g., a second magnetic switch) and circuitry 118 is further configured to detect operation of a second trap, such as a second rodent snap-trap, responsive to an operation of the second switch 518. Additionally, housing 106 may be physically coupled to third switch 519 (e.g., a third magnetic switch) and circuitry 118 is further configured to detect operation of a third trap (e.g., a third rodent snap-trap) responsive to an operation of third switch 519. In some implementations, switch 116 and second switch 518 are coupled in parallel to circuitry 118, such that circuitry 118 is configured to activate the indicator device 408 responsive to a first signal from switch 116, a second signal from second switch 518, or both. When detector device 104 includes multiple switches 116, 518, 519, controller 510 may be configured to activate the one or more indicator devices 408 to identify which trap had a detected operation. For example, each trap (e.g., each switch 116, 518, 519) may correspond to a different indicator or to a different indicator output.
In some implementations, controller 510 is configured to identify when an output of a sensor 532 satisfies a threshold and, in response, to initiate a communication (e.g., a message). For example, when sensor 532 is a power supply sensor, controller 510 may identify when power supply 530 is in a low power condition, such as when a battery needs to be changed or charged. As another example, when sensor 532 is a moisture sensor, controller 510 may identify when one or more traps are underwater and are in need of physical inspection. As another example, when sensor 532 is a vibration sensor, controller 510 may identify activation of a particular trap based on a signal of a corresponding switch indicating operation of the particular trap and based on the output of the vibration sensor being greater than or equal to a threshold during a particular time period associated with the controller 510 receiving the signal from the switch.
Thus,
Referring to
Server 602 includes a processor 610, a memory 612, and a communications interface 614 (e.g., wired interface, wireless interface, or both). Memory 612 is configured to store data, such as instructions 622, training data 624, neural network data 626, and AI generated pest identification data 628. Training data 624 (e.g., training sets) includes pest image database data and/or pest specification database data. Processor 610 generates a neural network (e.g., neural network data 626) based on processing the training data 624. Based on the neural network (e.g., neural network data 626) and the training data 624 (e.g., the processing thereof), AI generated pest identification data 628 can be derived which is based on and/or includes correlations identified by the neural network.
AI generated pest identification data 628 includes or corresponds to AI generated correlation data used to identify a pest or a property thereof. The AI generated pest identification data 628 may be in the form of tables, images, thresholds, formulas, or a combination thereof. In some implementations, AI generated pest identification data 628 may include eye curvature data 629, condition data 630, or both. To illustrate, eye curvature data 629 includes AI generated data on eye curvature of species and/or sex of pests such that image data can be analyzed to determine a species and/or sex of a pest or type of pest (e.g., species of rodent). Condition data 630 includes AI generated data on different weather (e.g., temperature and humidity) and lighting conditions such that corrections can be made for identifying pest in all conditions and using visible and/or infrared images.
First PMD 604 includes a controller 632, a memory 634, a wireless interface 636, a camera 638, a first light source 640, a second light source 642, and one or more ports 644. Components 632-638 may include or correspond to such corresponding components of pest-management station 501 of
First PMD 604 and second PMD 606 may be the same or different types of PMDs. To illustrate, such PMDs of system 600 may include different components and/or target different types of pests. Additionally, such devices may be located in different places, such as different places of the same location or in different locations entirely. The PMDs may communicate with the server directly or indirectly. To illustrate, the first PMD communicates 604 directly with the server 602 via a network (e.g., cellular network), while the second PMD 606 communicates with the server 602 via a router 608 via the network or another network (e.g., an internet network or a wired network), as illustrated in the example of
For example, a PMD of system 600 may include a trap, such as trap 122, bait, or a combination thereof. A PMD of system 600 may include multiple traps and/or baits, and such traps and/or baits may include different types of traps and/or baits. When different types of traps and/or baits are used, the different types of traps and/or baits may target or be configured to catch or terminate (and optionally lure) different types of pests, such as insects, rodents, etc. At least one PMD of system 600 includes a detector device 104 having a housing 106.
First PMD 604 (e.g., detector device 104 thereof) is wirelessly coupled to server 602 (and optionally second PMD 606, such as a detector device thereof, and/or router 608) via a wired connection, a wireless connection, or both. Second PMD 606 is coupled to server 602 via router 608 (e.g., a wireless interface 652 thereof).
During operation, first PMD 604 captures an image using camera 638, i.e., generates image data 664. The image may correspond to an area external to the first PMD 604 or an area of an interior of the first PMD 604. First PMD 604 may use the first light source 640, the second light source 642, or both as flash devices based on conditions, such as lighting conditions and direction. For example, non-visible light, such as infrared light, may be used to image an area external to the first PMD 604 to not scare away incoming pests and/or at night. Visible light may be used to image an internal area, such as when capturing images of an interior or cavity of first PMD 604, because such images may provide higher quality images and identification of a pest already captured or of an empty trap. The image data 664 is sent to the server 602 for processing. The server 602 analyzes the image data 664 using AI generated pest identification data 628 and generates an indication, modifies the image data, generates a notification message 666 including the indication, updates the training data 624 with the image data, updates the neural network based on the image data, or a combination thereof.
In a particular implementation, the first PMD 604 generates the image data 664 responsive to a request, such as a request message 662 from server 602. Alternatively, the request message 662 is transmitted by another device (e.g., 708 of
Referring to
As compared to the pest-management system of example 600 of
Additionally, or alternatively, modified or processed image data (modified image data 764), generated by AI processing of image data 664, may be sent to server 602, device 709, or both. Examples of modified or processed image data are illustrated and described with reference to
In some implementations, the image data 664 may be sent to the server 602 to update the AI training data and resulting algorithms and correlations. In some such implementation, the server 602 may transmit an AI update 766 to PMDs to update the memory 634 thereof.
Additionally, or alternatively to updating AI generated pest data 628 based on image data 664, server 602 may receive second training data 772 (e.g., updated training data). The server 602 may update the AI generated pest data 628 based on the second training data 772 in addition to or the alternative of image data 664 (e.g., images from PMDs).
In some implementations, a pest management system (e.g., 600 or 700) may further include AI generated timing data, such as timing data 730. Timing data 730 may be included as part of the AI generated pest identification data 628, as illustrated in
To illustrate, sensor data 768 may be captured by a particular sensor (e.g., reed switch) and indicate when a door opens and/or closes. The opening and closing of the door may be a prime opportunity for a pest to enter into a building or monitored area. Accordingly, the sensor data 768 (e.g., opening and closing of the door) can be used to generate timing data 730; and timing data 730 generates image capture commands based on the correlations identified from the sensor data 768. For example, a monitoring device coupled to pest monitoring mount, as in
As another illustration, image data which indicate positive results (e.g., a pest is present) may be used to identify which monitoring devices are candidates for increased monitoring and/or when to monitor or capture images. Additionally, or alternatively, image data which indicate negative results (e.g., no pests present) may be used to identify which monitoring devices are candidates for decreased monitoring and/or when to not monitor or capture images.
In the implementations of
In some implementations, the camera 638 may operate in more than one mode at a time. For example, the camera 638 may be configured to capture images responsive to a timer and responsive to sensor based triggers. As another example, after activation of trap, such as 122, camera 638 may operate in a timer based mode (e.g., a keep alive mode) and an on-demand mode. To illustrate, every period (e.g., every x hours) an image is captured and images may also be capture responsive to a request.
In each of the above described modes, the camera 638 may capture images according to corresponding mode settings. To illustrate, when in a particular mode, the camera 638 captures images using camera settings that correspond to the particular mode the camera 638 is in. Mode settings (i.e., camera settings for a particular mode) may include amount of images to capture, image capture delay, type of flash used, flash delay, focus, shutter speed, image location (an area external to a PMD, an area of an interior of the PMD, or both), etc., or a combination thereof.
As a first illustrative, non-limiting example, trigger based modes may have a mode setting (camera mode setting) to use a first type of flash, such as visible light, a second type of flash, UV light, or both. Additionally, in some implementations, the mode settings may have multiple different settings for a given mode, i.e., sub-mode settings. One such example of a mode that may have sub-mode settings is the trigger based mode. To illustrate, when the camera 638 is activated based on a first sensor (e.g., a motion sensor indicates motion exterior to the PMD) the camera 638 captures an image of an area exterior of the PMD using a second type of flash, UV flash. As another illustration, when the camera 638 is activated based on a second sensor (e.g., a touch bar sensor indicates motion in an interior of the PMD) the camera 638 captures an image of the interior of the PMD using a first type of flash, visible light flash. Thus, the camera 638 can be operated based on the mode in which the camera 638 was activated and based on additional information relevant to the activation.
As a second illustrative, non-limiting example, timer based modes may have a camera mode setting to use a first type of flash, such as visible light. To illustrate, as the trap may already be activated in such modes (e.g., keep alive mode), a visible light flash may provide better illumination and image quality. Also, scaring a pest away may not be applicable in such situations.
As a third illustrative, non-limiting example, trigger based modes may have a camera mode setting to use a first type of flash, such as visible light. To illustrate, as a user may desire to see a status of a trap, a visible light flash may provide better illumination and image quality. Although examples of flash settings for camera mode settings are provided above, camera modes may have additional or other (alternative) settings that are determined based on camera mode.
In some implementations, the image data or modified image data is transmitted to the server by a PMD responsive to capture (e.g., soon or immediately after capture if a connection is active). In other implementations, the image data or modified image data is transmitted to the server responsive to preset or preconfigured update times.
Accordingly,
Referring to
Referring to
Referring to
Platform 190 includes a base portion (e.g., base 2450) and a lid portion (e.g., a lid—not shown). For example, the lid is movable relative to base 2450 to cover a chamber (e.g., an interior chamber) of platform 190. Base 2450 includes walls 2457 and posts 2454. Base 2450 also includes one or more openings 2456 to enable a pest, such as rodent, to enter an interior chamber of platform 190 when the lid is coupled to base 2450. Additionally, or alternatively, base 2450 includes a through hole 2453, which may include or correspond to through hole 175.
Separator 2420 includes wall portion 2426 and clips 2412. Separator 2410 includes wall portion 2416 and clips 2412. Clips 2412 are configured to be coupled to posts 2454 of base 2450. Wall portion 2416 includes edges 2414 that are spaced apart and configured to engage slots 1622 of holder 1610. It is noted that detector device 104 is to be coupled to holder 1610 (e.g., inserted into cavity 1616) prior to edges 2414 being engaged with slots 1622. In other implementations, holder 1610 may be replaced by detector device 104 that includes fins and slots (similar to fins 1620 and slots 1622) coupled to housing 106.
When holder 1610 (including detector device 104), separator 2410, trap 122, and separator 2420 are positioned in base 2450 and the lid is coupled to base 2450, separators 2410, 2420 guide a rodent that enters opening 2456 of platform 190 to capture portion 134 of trap 122. For example, referring to
Thus,
Referring to
As shown, base 2450 includes a sidewall 2626 that defines an external perimeter of the station. Sidewall 2626 of base 2450 includes corner portions 2642 across which the sidewall may change direction. Corner portions 2642 may include any appropriate shape (e.g., to guide a rodent exterior to base 2450 toward opening(s) 2646). For example, one or more corner portions 2642 may be curved or flat. As shown, at least one corner portion 2642 (e.g., two corner portions closest to lid 2552) includes a first radius of curvature and at least one other corner portion (e.g., two corner portions opposite lid 2552) includes a second radius of curvature greater than the first radius of curvature.
Base 2450 includes one or more interior walls 2666 (e.g., two interior walls 2666, each extending substantially vertically from a floor and toward a top of base 2450. At least one of interior wall(s) 2666 is configured to prevent a rodent from climbing over the interior wall when lid 2552 is in the closed position. For example, at least one of interior wall(s) 2666 includes an upper surface 2670 configured to contact lid 2552 (e.g., one or more ridges 2674 thereof) when the lid is in the closed position. Lip 2662 of sidewall 2626 may be configured to engage at least a portion of lid 2552.
Base 2450 includes one or more interior protrusions 2678, such as ridges (e.g., two protrusions 2678, as shown) that each extend from floor and toward a top of base 2450. When lid 2552 is in the closed position, interior wall(s) 2646 and protrusion(s) 2678 may cooperate with the lid to define subchamber 2682 within chamber 2622. Protrusion(s) 2678 are located such that, when lid 2552 is in the closed position, at least a portion of chamber 24622 is accessible by passing over at least one of the protrusion(s) 2678. For example, one or more protrusions 2678 each extend between sidewall 2626 and an interior wall 2666 such that, for example, when lid 2552 is in the closed position, access to subchamber 2682 is possible by passing over one of the protrusion(s). As shown, one or more protrusions 2678 each include a height (e.g., extending in a direction perpendicular to floor) that is selected to allow a rodent to climb over the protrusion when lid 2552 is in the closed position, but to inhibit liquids from reaching at least a portion of chamber 2622, such as, for example, subchamber 2682.
Lid 2552 includes one or more ridges 2674 (e.g., two ridges 2674, as shown), each extending from an inner surface 2686 of lid 2552. When lid 2552 is in the closed position, each ridge 2674 is configured to contact a respective interior wall 2666 (e.g., upper surface 2670) of base 2450 such that, for example, the ridge(s) and interior wall(s) cooperate to define subchamber 2682. In at least this way, when lid 2552 is in the closed position, inner surface 2686, or a portion thereof, of the lid may be spaced apart from base 2450 by one or more ridges 2674, thereby providing for an increased volume within chamber 2622. In some implementations, such ridge(s) (e.g., 2674) may be configured to increase a stiffness of lid 2552.
As shown, lid 2552 is configured to be coupled to base 2450 via one or more hinges 2690 (e.g., two hinges 2690, as shown). For example, each hinge 2690 includes a hinge pin and one or more hooks, where the hinge pin is configured to be pivotally received within an interior channel of each of the hook(s). In other implementations, lid 2552 may be coupled to a base 2450 in any suitable fashion, such as, for example, being slidably coupled to the base, removably (e.g., detachably) coupled to the base (e.g., without hinges 2690), and/or the like.
At least one opening 2646 (e.g., two openings 2646, as shown) is configured to permit a rodent exterior to the apparatus to enter chamber 2622. As shown, each opening 2646 is defined by base 2450 alone (e.g., the entire outer perimeter of the entrance or opening is defined by the base); however, in other implementations, one or more openings 2646 may be defined by base 2450 and lid 2552, when the lid is in a closed position, and/or by the lid alone.
Lid 2552 includes a lip 2618 extending from (e.g., substantially all of or all of) a periphery thereof and configured to be received by base 2450 when the lid is in the closed position. More particularly, lip 2618 is configured to be received by a groove 2621 of base 2450, which may be defined by lip 2662. Lip 2618 may be configured to be closely or tightly received by groove 2621 such that, for example, an outer-most face of the lip is immediately adjacent or is in contact with an inner face of the groove (e.g., which may frustrate or prevent insertion of an implement between the lip and the groove in an attempt to pry lid 2552 from the closed position). When lid 2552 is in the closed position, access to subchamber 2682 through opening(s) 2646 using a human hand or implement is inhibited. To illustrate, subchamber 2682 is not visible through opening(s) 2646, and direct access to the subchamber through each opening is obstructed by a respective interior wall 2666.
Trap 122 may be included in subchamber 2682 as indicated by arrow 2699. In some implementations, base 2450 includes a fastener 2683 (e.g., a clip) configured to couple trap 122 to holder 1610. For example, fastener 2683 may be configured to be inserted into channel 136 of trap 122. Detector device 104 is coupled to inner surface 2686 of lid 2552 such that switch 116 included in detector device 104 is configured to detect operation of trap 122 based on magnet 132.
Thus,
Referring to
Trap 122 includes magnet 132 positioned such that, when capture element 128 is in the set position or when capture element 128 is released from the set position, a magnetic field of magnet 132 changes a state of switch 116 included in detector device 104. In some implementations, trap 122 may be coupled to platform 190 of
Referring to
Referring to
Referring to
The base 1302 (e.g., cavity 1308 thereof) further includes multiple areas 1322-1326, which can be separated or divided (at least partially) by dividers (not shown). The dividers can be coupled to base 1302 via slots 1332. The areas 1322-1326 can include traps or other equipment depending on a desired configuration of the pest-management apparatus 1300.
Referring to
Top 1304 further includes a light source 1344, and a corresponding wire 1346. Light source 1344 may include or correspond to first light source 640, second light source 642, or both. The top 1304 may define one or more openings or apertures, such as 1350-1358. Such apertures (e.g., 1350-1358) may be used for coupling devices, such as screws (e.g., 1356, 1358), as a window (e.g., 1352, such as a camera window), and as wire/cable routing openings (e.g., 1350, 1354), to facilitate coupling components inside a cavity of the pest-management apparatus 1300 to the detector device. In this example, the detector device is not positioned with the cavity 1308 (e.g., internal cavity). Rather, the detector device is positioned in an external cavity defined by the top 1304 alone, or the top 1304 and corresponding covering thereof (e.g., 1306), as illustrated in
Referring to
Referring to
Referring to
Referring to
Although
Referring to
The method 2100 may include receiving an image request, at 2110, and includes generating an image capture command, at 2112. For example, the controller 510 or 632 generates a command to activate the camera 534, 638 responsive to receiving an image request. In some implementations, the image request is generated locally and/or received from a component of the detector device 104. To illustrate, a button may be pressed on the detector device or sensor data may be compared to thresholds to generate the image request and/or image capture command. In other implementations, the image request is received from another device, such as a server and/or client device, such as 552, 602, 709, or a combination thereof.
The method 2100 further includes generating image data, at 2114, and may include analyzing the image data, at 2116. For example, the camera captures an image and generates image data. In some implementations, the detector device 104 includes AI software and processes the image data 664 to generate modified image data 764.
The method 2100 includes transmitting a message, the message generated based on the image data, at 2118. The message may include or correspond to one or more of the messages described with reference to
Thus, the method 2100 describes operation of the detector device. To illustrate, the detector device of a pest-management apparatus may be configured to provide an indication of a status of the detector device and/or an indication of operation of a trap. Additionally, the method 2100 may enable increased speed and ease of deployment of a pest-management apparatus and a reduction in time and manpower to identify pest-management apparatuses that have operated.
Referring to
The method 2200 may include receiving a request message, at 2210, and includes transmitting an image capture request message, at 2212. For example, the server 602, using processor 610, initiates sending of a request message 662 to a PMD (e.g., first PMD 604) via communication interface 614. In some implementations, the processor 610 may receive an activation message from a timer or from another device, such as device 709 and generates and transmits the request message responsive thereto.
The method 2200 further includes receiving image data, at 2214, and processes the image data, at 2116. For example, the server 602 received image data 664 and/or modified image data 764 from the PMD and processes the image data 664, the modified image data 764, or both. To illustrate, the server 602 processes the image data 664 using AI generated pest ID data 628. As another illustration, the server 602 updates the AI generated pest ID data 628 based on the raw data.
The method 2200 may include generating an indication, at 2218. For example, the server 602 processes the modified image data 764 to generate an notification or indication of a pest, indication of no pest, indication of a service for the PMD (e.g., reset the trap), or a combination thereof. The method 2200 includes transmitting a notification, at 2220. For example, the server 602 sends a notification message to a client device, such as 709, and/or a device from which it received the request at 2210. The notification may include the modified image data 764, the indication, or both.
Thus, the method 2200 describes operation of the detector device. To illustrate, the detector device of a pest-management apparatus may be configured to provide an indication of a status of the detector device and/or an indication of operation of a trap. Additionally, the method 2200 may enable increased speed and ease of deployment of a pest-management apparatus and a reduction in time and manpower to identify pest-management apparatuses that have operated.
Referring to
The method 2300 may include generating AI model data based on training data, at 2310, and receiving image data, at 2312, as described with reference to
The method 2300 may further include analyzing the image data, at 2314, as described with reference to
The method 2300 may also include transmitting a message based on the analysis data, as described with reference to
Thus, the method 2300 describes operation of the detector device. To illustrate, the detector device of a pest-management apparatus may be configured to provide an indication of a status of the detector device and/or an indication of operation of a trap. Additionally, the method 2300 may enable increased speed and ease of deployment of a pest-management apparatus and a reduction in time and manpower to identify pest-management apparatuses that have operated.
The above specification and examples provide a complete description of the structure and use of illustrative embodiments. Although certain aspects have been described above with a certain degree of particularity, or with reference to one or more individual examples, those skilled in the art could make numerous alterations to aspects of the present disclosure without departing from the scope of the present disclosure. As such, the various illustrative examples of the methods and systems are not intended to be limited to the particular forms disclosed. Rather, they include all modifications and alternatives falling within the scope of the claims, and implementations other than the ones shown may include some or all of the features of the depicted examples. For example, elements may be omitted or combined as a unitary structure, connections may be substituted, or both. Further, where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and/or functions, and addressing the same or different problems. Similarly, it will be understood that the benefits and advantages described above may relate to one example or may relate to several examples. Accordingly, no single implementation described herein should be construed as limiting and implementations of the disclosure may be suitably combined without departing from the teachings of the disclosure.
The previous description of the disclosed implementations is provided to enable a person skilled in the art to make or use the disclosed implementations. Various modifications to these implementations will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other implementations without departing from the scope of the disclosure. Thus, the present disclosure is not intended to be limited to the implementations shown herein but is to be accorded the widest scope possible consistent with the principles and novel features as defined by the following claims. The claims are not intended to include, and should not be interpreted to include, means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 62/886,399, filed Aug. 14, 2019, hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62886399 | Aug 2019 | US |