The present invention relates a camera control apparatus and a camera control system each of which operates a plurality of cameras cooperatively so as to image the same subject to be imaged.
Conventionally, there is proposed a camera control apparatus which operates a plurality of cameras cooperatively so as to image the same subject to be imaged (see a patent document 1, for example) . The patent document 1 discloses a technique that a sub camera receives a signal from a main camera to thereby perform a control in accordance with the signal.
Patent document 1: JP-A-2003-284050
Problems that the Invention is to Solve
However, in the camera control apparatus of the related art, the main and sub cameras are required to be set on a menu screen etc. Thus, when the main camera can not track the subject, the main camera is required to be set again on the menu screen etc. As a result, there arises a problem that in the case of automatically tracking a moving subject to be imaged, the subject may be lost from a monitor screen.
The invention is made in view of the aforesaid circumstances and an object of the invention is to provide a camera control apparatus and a camera control system each of which can, in the case of automatically tracking a moving subject to be imaged, automatically track the subject to be imaged without being lost from a monitor screen.
The aforesaid object is attained by the following configurations.
The camera control apparatus according to the invention includes a main camera determining means which determines a main camera among a plurality of cameras; and a main camera direction information generating means which generates main camera direction information including an address of the main camera determined by the main camera determining means and simultaneously transmits the main camera direction information to all of the cameras.
According to this configuration, in the case of automatically tracking a moving subject to be imaged, the subject to be imaged can be automatically tracked without being lost from a monitor screen.
The camera control apparatus according to the invention is configured in a manner that the main camera determining means determines the camera, an image from which is displayed on a main monitor, as the main camera.
According to this configuration, since the main monitor always displays an image from the camera acting as the main camera, a surveillant can always confirm a subject to be imaged on the main monitor. Further, by selecting a camera an image from which is to be displayed on the main monitor, the main camera can be selected automatically, and so the surveillant is not required to perform any additional operation, advantageously.
The camera control apparatus according to the invention is configured to further include: an image obtaining means which obtains respective images from the plurality of the cameras; and an all camera information obtaining means which obtains various kinds of information including characteristic data and moving directions of a subject to be imaged and view angle size information of all the cameras based on the images from the plurality of the cameras obtained by the image obtaining means, wherein
the main camera determining means determines the main camera based on the various kinds of information of all the cameras obtained by the all camera information obtaining means.
According to this configuration, since the main camera can be determined automatically from the images of all the cameras, a surveillant is not required to perform an operation for determining the main camera, advantageously.
The camera control apparatus according to the invention is configured in a manner that the all camera information obtaining means inputs the images from all the cameras into an image recognition device and obtains various kinds of information analyzed by the image recognition device.
According to this configuration, since the main camera can be determined automatically from the various kinds of information analyzed by the image recognition device, a surveillant is not required to perform an operation for determining the main camera, advantageously.
The camera control apparatus according to the invention is configured to further include a recording control means which extracts only an optimum portion of the image from each of the plurality of the cameras obtained by the image obtaining means and stores into a recording device.
According to this configuration, at the time of recording images obtained from the plurality of the cameras, since only optimum portions are extracted and stored, the images can be recorded for a long time. Further, in the case of transmitting data to a network, an amount of data can be made small without degrading the image quality of the data.
The camera control apparatus according to the invention is configured in a manner that a camera control system which includes a plurality of cameras having a main camera and a sub camera cooperating with the main camera, and a camera control apparatus which controls the main camera and the sub camera, wherein the camera control apparatus, includes: a main camera determining means which determines a main camera among a plurality of cameras; and a main camera direction information generating means which generates main camera direction information including an address of the main camera determined by the main camera determining means and simultaneously transmits the main camera direction information to all of the cameras.
According to this configuration, in the case of automatically tracking a moving subject to be imaged, the subject to be imaged can be automatically tracked without being lost from the monitor screen.
According to the invention, in the case of automatically tracking a moving subject to be imaged, the subject to be imaged can be automatically tracked without being lost from the monitor screen.
Hereinafter, the preferred embodiment for implementing the invention will be explained with reference to drawings.
In the camera 101, the control portion 30 controls respective portions of the camera. The image pickup portion 31 includes an image-pickup element such as a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor) and outputs an imaged signal. The imaged signal from the image pickup portion 31 is inputted into the control portion 30. The rotary mechanism 32 includes a panning mechanism and a tilting mechanism. The panning mechanism is moved by a panning motor and the tilting mechanism is moved by a tilting motor. The rotary mechanism 32 is controlled by the control portion 30 to move a camera main body in the panning and tilting directions. The image output portion 33 outputs to the outside the imaged signal which is inputted into the control portion 30 from the image pickup portion 31.
In this embodiment, the imaged signal inputted into the control portion 30 from the image pickup portion 31 is applied to the camera control apparatus 109. The communication portion 34 communicates bidirectionally with the camera control apparatus 109 so as to input the imaged signal from the image pickup portion 31 to the camera control apparatus 109 and to receive control data from the camera control apparatus 109. When the communication portion receives the control data from the camera control apparatus 109, the communication portion inputs the control data to the control portion 30. In particular, at the time rotating the camera 101, main camera direction information is inputted as the control data. In this case, the control data is taken into the control portion even if the main camera direction information is used for another camera 101.
As shown in
The direction information converting portion 303 operates when the own camera 101 is not the main camera 101m. In this case (that is, in the case of the sub camera 101s) , the main camera direction information is converted into sub camera direction information based on relative positional information between the own camera 101 as the sub camera 101s and the other camera 101 as the main camera 101m. The sub camera direction information is direction information for making the own camera 101 track the main camera 101m as the sub camera 101s. The relative positional information between the own camera 101 as the sub camera 101s and the other camera 101 as the main camera 101m is stored in the positional information table storage portion 304. In this case, the relative positional information is represented by a distance between the both cameras.
Return to
Return to
The recording device 104 is used for recording a still image and a moving image (possibly including sound). In this embodiment, although the recording device 104 is disposed in adjacent to the apparatus 104, the recording device may be disposed at a remote and transmit/receive data via a network. The image recognition device 105 has functions of performing image recognition of images from all the cameras 101, generating characteristic data representing the features of subjects such as persons or things, extracting the moving directions of persons or things and the changes of size information of view angles, analyzing various information including the characteristic data, the moving directions and the view angle sizes and inputting the analyzed results into the camera control apparatus 109. The external sensor 106 is disposed in adjacent to each of the cameras 101 and is used for detecting a subject to be imaged approaching the corresponding camera 101. For example, an infrared ray is used for detecting a subject to be imaged. The communication portion 107 is coupled to a network such as an internet to thereby enable the camera control apparatus to communicate with an external device (not shown). The camera control table 108 operates to select the camera 101 an image from which is displayed on the main monitor 102 and to set the view angle and image quality of the selected camera 101. The setting of the image quality includes the settings of “a panning angle”, “a tilting angle” and “a magnification of the view angle”. The camera control table 108 can set the operation of the camera control apparatus 109 and can switch between cooperation and non-cooperation among the cameras.
The camera control apparatus 109 includes a function (an image obtaining means) of obtaining respective images from the plurality of the cameras 101; a function of inputting the respective images thus obtained from the plurality of the cameras 101 into the image recognition device 105; a function (an all camera information obtaining means) of receiving information (various kinds of information such as the characteristic data, the moving directions, the view angle size information of all the cameras) with respect to the images (still images or motion images) from the plurality of the cameras 101 inputted from the image recognition device 105; a function (a main camera determining means, a main camera direction information generating means) of specifying the camera 101 serving as the main camera 101m from the various kinds of information of all the cameras thus received, then generating the main camera direction information including the address of the specified camera 101 and simultaneously transmits the main camera direction information to all the cameras 101; a function of switching between the main camera 101m and the sub cameras 101s; a function of displaying the images from the plurality of the cameras 101 on the monitors 102, 1031, 1032, . . . 103n; a function of selectively transmitting the images from the plurality of the cameras 101 to a remote display device (not shown) by using the communication portion 107; a function (a recording control means) of extracting only an optimum portion of the image from each of the plurality of the cameras 101, then subjecting the extracted images to the compression processing by using JPEG (joint photographic experts group) or MPEG (moving picture experts group) and storing in the recording device 104; a function of expanding the compressed data stored in the recording device 104 and transmitting to the external device via the communication portion 107; and a function of obtaining states such as a recording time and a recording state of the recording device 104 and a remaining capacity of a recording medium etc.
Since only the optimum portions of the images are stored in the recording device 104, the recording device can record for a long time. Further, an amount of data to be transmitted to the network can be made small without degrading the quality of the data. Furthermore, at the time of transmitting data to the external device, an image (still image or motion image) is directly transmitted or transferred via a server in accordance with required information after performing personal authentication. Each of the monitors 102, 1031, 1032, . . . , 103n may be a television monitor for displaying an image or a personal computer etc. coupled to the apparatus via the network.
Next, the operation of the camera control system thus configured will be explained.
In contrast, when it is determined in the step ST12 that the address obtained from the inputted main camera direction information is not the address of the own camera, the camera having the corresponding address is searched among the remaining cameras 101 and the searched camera is specified as the main camera 101m (step ST14) . Then, the main camera direction information is converted into the sub camera direction information based on the relative positional information between the specified camera 101 and the own camera 101 (step ST15) to thereby perform the rotation control of the main body of the own camera in accordance with the sub camera direction information (step ST16). That is, the own camera acts as the sub camera 101s to thereby perform the control of tracking a subject to be imaged. When the main camera direction information is not inputted in the determination of the step ST10, other processing is performed (step ST17).
When the information of all the cameras 101 is transmitted, the camera control apparatus 109 specifies the main camera 101m based on the respective information (step ST22). Then, after specifying the main camera 101m, the camera control apparatus generates the main camera direction information including the address. of the specified camera 101 (step ST23) and simultaneously transmits the main camera direction information thus generated to all the cameras 101 (step ST24).
Further, in
In this manner, according to the camera control system of the embodiment, the camera control apparatus 109 simultaneously transmits the main camera direction information to all the cameras 101. Then, the camera 101 determined so as to act as the main camera 101m in accordance with the address contained in the main camera direction information controls the direction thereof in accordance with the main camera direction information. The camera 101 determined so as to act as the sub camera 101s converts the main camera direction information into the sub camera direction information based on the relative positional relation with the main camera 101m and controls the direction thereof in accordance with the sub camera direction information. Thus, a subject to be imaged can be always caught and displayed on the monitor screen without causing a control delay. That is, a subject to be imaged can be automatically tracked without being lost from the monitor screen.
Further, the camera 101 determined so as to act as the sub camera 101s uses the positional information table recording the distances between the adjacent cameras therein at the time of converting the main camera direction information into the sub camera direction information, the sub camera direction information can be obtained easily in a short time. Further, in the case of recording the images obtained from the plurality of the cameras 101 in the recording device 104, the camera control apparatus 109 extracts and records only the optimum portions of the images, images for a long time can be recorded. Furthermore, in the case of transmitting data to the network, an amount of data can be made small without degrading the image quality of the data.
Although in the aforesaid embodiment, each of all the cameras 101 is arranged to include the control means capable of controlling the view angle, a fixed camera which can not control the view angle thereof may be mixed.
Further, although in the aforesaid embodiment, the external sensor 106 is disposed in adjacent to the installation location of each of the cameras 101 and is used for detecting a subject to be imaged, the information from the external sensors 106 may be used at the time of specifying the main camera.
Although the invention is explained in detail with reference to the specific embodiment, it will be obvious for those skilled in the art that the embodiment may be changed or modified in various manners without departing from the gist and range of the invention.
The present application is based on Japanese Patent Application (Japanese Patent Application No. 2006-210894) filed on Aug. 2, 2006, the contents of which is incorporated herein by reference.
The invention has an effect that in the case of automatically tracking a moving subject to be imaged, the subject can be tracked without being lost from the monitor screen, and can be suitably applied to the image recording system for surveillance.
Number | Date | Country | Kind |
---|---|---|---|
2006-210894 | Aug 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/065013 | 7/31/2007 | WO | 00 | 1/15/2009 |