The present invention relates generally to camera devices and, more particularly, to a camera device having first and second selectable image paths.
Camera phones, which comprise a mobile, hand-held telephone and a digital camera in the same physical package, have recently been introduced to the market. At present, the development of digital camera phones is in its infancy. Wideband Code Division Multiple Access (WCDMA) and other emerging technologies will soon make it possible to send digital images and live video over wireless communication networks. These emerging technologies will spawn a new breed of camera phones that can be used for teleconferencing or for recording video that can be transmitted over the wireless communications network.
When recording video, the user generally likes to see the image being recorded. In modern video cameras, the image seen through the lens of the camera is presented on a liquid crystal display. The display is typically oriented to face the opposite direction of the lens so that the user can use the display as a viewfinder to view the image being recorded. However, when the user is participating in a video conference, a display facing in the same direction as the lens is needed so that the user can see the other parties while transmitting the user's own image. Modern video cameras solve this problem by mounting the display on a swivel so that it can be rotated to face in either direction. While it is technically feasible to make a display for a camera phone that can swivel, that is not a very practical solution for a camera phone. Color displays have numerous connections that would require use of a flexible connector. If a flexible connector is used, the display would need to swivel in one direction to move from position A to position B, and in the opposite direction to move back from position B to position A. Also the design of the flex is difficult to implement and is often unreliable.
The present invention relates to camera devices, such as a digital camera or camera phone, having first and second selectable image paths. The camera device comprises a housing having a first light aperture formed in a front side of the housing and a second light aperture formed in the back side of the housing. An image sensor is disposed within the housing for converting images formed by light on the image sensor into raw image data. The raw image data is processed by an image processor to produce formatted image signals for output to a display or for transmission by a transceiver. An optical system selectively directs light along either the first or second image paths onto the image sensor. In an exemplary embodiment, the optical system comprises a rotatable or slidable mirror assembly. When the rotatable mirror assembly is in a first position, light entering housing through the first light aperture is directed along the first image path to the image sensor. When the mirror assembly is in the second position, light entering through the second light aperture is directed along a second image path to the image sensor.
The camera phone 10 comprises a microprocessor 12, program memory 14, input/output circuit 16, transceiver 18, audio processing circuit 20, user interface 22, image sensor 32, image processor 34, and optical system 50. Microprocessor 12 controls the operation of the camera phone 10 according to programs stored in program memory 14. Input/output circuits 16 interface the microprocessor 12 with the user interface 22, transceiver 18, audio processing circuit 20, and image processing circuit 34. User interface 22 comprises a keypad 24, display 26, microphone 28, and speaker 30. Keypad 24 allows the operator to dial numbers, enter commands, and select options. The display 26 allows the operator to see dialed digits, call status, and other service information. Microphone 28 converts the user's speech into electrical audio signals, and speaker 30 converts audio signals into audible signals that can be heard by the user. Audio processing circuit 20 provides basic analog output signals to the speaker 30 and accept analog audio inputs from the microphone 28. Transceiver 18 is coupled to an antenna 36 for receiving and transmitting signals.
Image sensor 32 captures images formed by light impacting on the surface of the image sensor 32. The image sensor 32 may be any conventional image sensor 32, such as a charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS) image sensor. Image processor 34 processes raw image data collected by the image sensor 32 for subsequent output to the display 26 or for transmission by the transceiver 18. The image processor 34 is a conventional signal microprocessor programmed to process image data, which is well known in the art.
Contained within housing 40 is a printed circuit board 38 which contains the electronic components of the camera phone 10 such as the microprocessor 12, memory 14, I/O circuits 16, transceiver 18, audio processing circuit 20, and image processing circuit 34. Image sensor 32 is also typically mounted to printed circuit board 38.
Spherical housing 60 of mirror assembly 52 contains a cavity 66 having two openings—an entry opening 70 and exit opening 72. The axis of entry opening 70 is disposed perpendicular to the axis of shaft 62 so that the orientation of entry opening 70 changes when shaft 62 is rotated. The axis of exit opening 72 is coincident or parallel to the axis of shaft 62 so that exit opening 72 remains oriented in the same direction regardless of the angular position of shaft 62. Objective lens 54 is mounted within or adjacent the entry opening 70. Movable mirror 56 is positioned within cavity 66 so that light entering through entry opening 70 is reflected out through exit opening 72. Light reflected out of the mirror assembly 52 is then reflected by stationary mirror 58 onto the surface of the image sensor 32, which is mounted to the printed circuit board 38.
The rotating mirror assembly 52 allows the objective lens 54 and movable mirror 56 to move between at least first and second positions. Equivalently, the objective lens 54 and movable mirror 56 could be mounted for sliding movement between first and second positions. In the first position, shown in
In
A variety of different techniques can be used to detect the position of the mirror assembly 52. In the exemplary embodiment of
The camera phone 10 of the present invention can be used for video conferencing or as a conventional video camera. For teleconferencing, the mirror assembly 52 is oriented so that the lens faces forward, i.e., in the same direction as the display 26. In this orientation, the user's image is transmitted while the user talks on the camera phone 10. At the same time, the user can view the image being transmitted from the person at the other end of the call. To use the camera phone 10 as a video camera, the mirror assembly 52 is rotated to the rearward-looking position, i.e., facing away from the display 26. In this position, the user can use the camera phone 10 to record video images while using the display 26 as a viewfinder. In a preferred embodiment, a button 86 on the camera phone 10 allows the user to turn imaging system on and off.
As an alternative to a rotating lens cover 90, the housing 40 of the camera phone 10 may include movable shutters or other covers. Also, a separate lens cover 90 or shutter can be eliminated by proper sizing of the entry opening 70. In this case, the mirror assembly 52 could be rotated such that the objective lens 54 faces sideways and the spherical housing 60 closes both light apertures 46 and 48.
Those skilled in the art will appreciate that many other arrangements of lenses and mirrors are possible for carrying out the present invention. For example, the objective lens 54 in the mirror assembly 52 can be replaced by two stationary objective lenses 54′—one for each light aperture 46, 48—as shown in
It is also possible to replace the movable mirror 56 with a series of stationary mirrors and liquid crystal light valves as are commonly used in projection systems. The light valves could be used to selectively block or transmit light entering through the first and second light apertures by applying a voltage to the light valve which alters the transmission characteristics of the light valve. This would increase the total number of parts while eliminating movable parts. The light valves could be activated by a switch or button on the camera phone 10.
Thus, the particular arrangement of mirrors and lenses disclosed herein should not be construed as limiting the invention. The invention encompasses any arrangement of mirrors, lenses, light valves, or other components which allow light to be selectively directed along a plurality of image paths to an image sensor.
The present invention may, of course, be carried out in other specific ways than those herein set forth without departing from the spirit and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
4303322 | Someya | Dec 1981 | A |
4704022 | Nozawa et al. | Nov 1987 | A |
5150215 | Shi | Sep 1992 | A |
5491507 | Umezawa et al. | Feb 1996 | A |
5825408 | Yuyama et al. | Oct 1998 | A |
5940126 | Kimura | Aug 1999 | A |
6137525 | Lee et al. | Oct 2000 | A |
6177950 | Robb | Jan 2001 | B1 |
6339508 | Nozawa et al. | Jan 2002 | B1 |
6532035 | Saari et al. | Mar 2003 | B1 |
Number | Date | Country |
---|---|---|
19736675 | Feb 1999 | DE |
WO9726744 | Sep 1997 | WO |
WO9819435 | May 1998 | WO |