The invention relates to a camera device.
The invention provides a camera device to solve the above problem. The camera device of the invention includes an annual body which is provided with a non-circular region for light rays to pass through. By such arrangement, the thickness of the camera device can be reduced if the camera device includes a general lens assembly or a periscopic lens assembly.
The camera device in accordance with an exemplary embodiment of the invention includes a plurality of lenses and an annular body. The plurality of lenses and the annular body are arranged between an object side and an image side along an optical axis. The annular body is disposed between the object side and the plurality of lenses, between the plurality of lenses, or between the plurality of lenses and the image side. The annular body includes an annular main body, an outer circumferential portion, and an inner circumferential portion, wherein the annular main body connects to the outer circumferential portion and the inner circumferential portion, the annular main body is disposed between the outer circumferential portion and the inner circumferential portion, and the inner circumferential portion is non-circular and surrounds the optical axis to form a hole. The camera device satisfies: Dx>Dy, 1<Dx/Dy<28, wherein Dx is a maximum dimension of the hole through which the optical axis passes, and Dy is a minimum dimension of the hole through which the optical axis passes.
In another exemplary embodiment, the camera device satisfies: 0<(Dx−Dy)/(Dx/2)<2.
In yet another exemplary embodiment, the camera device further includes a reflection device disposed between the object side and the plurality of lenses.
In another exemplary embodiment, the reflection device is a prism or a reflection mirror.
In yet another exemplary embodiment, the camera device satisfies: 0<ΔS/(Dx/2)<8, wherein ΔS is a difference between an area of a circle having a diameter of Dx and a cross sectional area of the hole.
In another exemplary embodiment, the camera device satisfies: 0<(AxΔS)/Ax<1, where Ax is an area of a circle having a diameter of Dx and ΔS is a difference between the area of the circle having the diameter of Dx and a cross sectional area of the hole.
In yet another exemplary embodiment, the outer circumferential portion is non-circular.
In another exemplary embodiment, the annular body is made of metal or polyethylene terephthalate (PET).
In yet another exemplary embodiment, the annular body is manufactured by atomizing, blacking, or printing a non-effective-diameter region on one of the lenses.
The camera device in accordance with another exemplary embodiment of the invention includes a plurality of lenses. At least one of the lenses includes an annular shade. The annular shade includes an annular main body, an outer circumferential portion, and an inner circumferential portion, wherein the annular main body connects to the outer circumferential portion and the inner circumferential portion, the annular main body is disposed between the outer circumferential portion and the inner circumferential portion, and the inner circumferential portion forms a hole. The camera device satisfies: 0<(Ax−ΔS)/Ax<1, where Ax is an area of a circle having a diameter of Dx, Dx is a maximum dimension of the hole through which an optical axis passes, and S is a difference between the area of the circle having the diameter of Dx and a cross sectional area of the hole.
In yet another exemplary embodiment, the camera device satisfies: 0<ΔS(Dx/2)<8.
In another exemplary embodiment, the outer circumferential portion is non-circular.
In yet another exemplary embodiment, the camera device satisfies: 0<(AxΔS)/Ax<1, where Ax is an area of a circle having a diameter of Dx.
In another exemplary embodiment, the outer circumferential portion is non-circular.
In yet another exemplary embodiment, the outer circumferential portion includes at least one straight edge.
In another exemplary embodiment, the outer circumferential portion is polygonal.
In yet another exemplary embodiment, the inner circumferential portion includes at least one straight edge.
In another exemplary embodiment, the inner circumferential portion is polygonal.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
As shown in
The F-number of a camera device is equal to the effective focal length (f) divided by the entrance pupil diameter (D), and the mathematical equation can be represented by F-number=f/D. Since the entrance pupil area A is equal to π×(D/2)2, F-number=f/D can be rewritten as F-number=f/2×(π/A)1/2. Therefore, the larger the entrance pupil area A, the smaller the F-number when the effective focal length (f) of the camera device is the same.
Table 1 shows data for the camera device of the first embodiment of the invention, wherein f is fixed to 15 mm, D1x is fixed to 5.55 mm, and A1x is fixed to 24.1799625 mm2, f is an effective focal length of the camera device (not shown), D1x is a maximum dimension of the hole 2031 defined by the inner circumferential portion 203 through which the optical axis 30 passes, D1y is a minimum dimension of the hole 2031 defined by the inner circumferential portion 203 through which the optical axis 30 passes, A1x is an area of a circle having a diameter of D1x and ΔS1 is a difference between the area of the circle having the diameter of D1x and a cross sectional area of the hole 2031. If D1y ranges from 5.55 mm to 0.5 mm, then F-number ranges from 2.70 to 8.38, D1x/D1y ranges from 1.0 to 11.1, (D1x−D1y)/(D1x/2) ranges from 0.0 to 1.81981982, ΔS1/(D1x/2) ranges from 0.0 mm to 7.808527027 mm, and (A1x-ΔS1)/A1x ranges from 1.0 to 0.103858722.
Table 2 shows other data for the camera device of the first embodiment of the invention, wherein f is fixed to 5.09389 mm, D1x is fixed to 3.0872 mm, and A1x is fixed to 7.481681014 mm2. If D1y ranges from 3.0872 mm to 0.112 mm, then F-number ranges from 1.65 to 8.07, D1x/D1y ranges from 1.0 to 27.56428751, (D1x−D1y)/(D1x/2) ranges from 0.0 to 1.927442343, ΔS1/(D1x/2) ranges from 0.0 mm to 4.644779097 mm, and (A1x−ΔS1)/A1x ranges from 1.0 to 0.041701858.
The modulation transfer function diagram of the camera device at different F-numbers in Table 2 is similar to in Table 1, so the illustration is omitted.
As shown in
Table 3 shows data for the camera device of the second embodiment of the invention, wherein f is fixed to 15 mm, D2x is fixed to 5.55 mm, A2x is fixed to 24.1799625 mm2, f is an effective focal length of the camera device (not shown), D2x is a maximum dimension of the hole 4031 defined by the inner circumferential portion 403 through which the optical axis 50 passes, D2y is a minimum dimension of the hole 4031 defined by the inner circumferential portion 403 through which the optical axis 50 passes, A2x is an area of a circle having a diameter of D2x and ΔS2 is a difference between the area of the circle having the diameter of D2x and a cross sectional area of the hole 4031. If D2y ranges from 5.55 mm to 0.5 mm, then F-number ranges from 2.76 to 8.85, D2x/D2y ranges from 1.0 to 11.1, (D2x−D2y)/(D2x/2) ranges from 0.0 to 1.81981982, ΔS2/(D2x/2) ranges from 0.388490991 mm to 7.902328829 mm, and (A2x−ΔS2)/A2x ranges from 0.955415047 to 0.09309361.
Table 4 shows other data for the camera device of the second embodiment of the invention, wherein f is fixed to 5.09389 mm, D2x is fixed to 3.0872 mm, and A2x is fixed to 7.481681014 mm2. If D2y ranges from 3.0872 mm to 0.112 mm, then F-number ranges from 1.68 to 8.86, D2x/D2y ranges from 1.0 to 27.56428751, (D2x−D2y)/(D2x/2) ranges from 0.0 to 1.927442343, ΔS2/(D2x/2) ranges from 0.216170649 mm to 4.678920066 mm, and (A2x−ΔS2)/A2x ranges from 0.955400262 to 0.034657987.
The modulation transfer function diagram of the camera device at different F-numbers in Table 4 is similar to in Table 3, so the illustration is omitted.
As shown in
Table 5 shows data for the camera device of the third embodiment of the invention, wherein f is fixed to 15 mm, D3x is fixed to 5.55 mm, and A3x is fixed to 24.1799625 mm2, f is an effective focal length of the camera device (not shown), D3x is a maximum dimension of the hole 6031 defined by the inner circumferential portion 603 through which the optical axis 70 passes, D3y is a minimum dimension of the hole 6031 defined by the inner circumferential portion 603 through which the optical axis 70 passes, A3x is an area of a circle having a diameter of D3x and ΔS3 is a difference between the area of the circle having the diameter of D3x and a cross sectional area of the hole 6031. If D3y ranges from 5.55 mm to 0.5 mm, then F-number ranges from 2.71 to 8.53, D3x/D3y ranges from 1.0 to 11.1, (D3x−D3y)/(D3x/2) ranges from 0.0 to 1.81981982, ΔS3/(D3x/2) ranges from 0.065103604 mm to 7.840346847 mm, and (A3x−ΔS3)/A3x ranges from 0.992528421 to 0.100206938.
Table 6 shows other data for the camera device of the third embodiment of the invention, wherein f is fixed to 5.09389 mm, D3x is fixed to 3.0872 mm, and A3x is fixed to 7.481681014 mm2. If D3y ranges from 3.0872 mm to 0.112 mm, then F-number ranges from 1.67 to 8.28, D3x/D3y ranges from 1.0 to 27.56428571, (D3x−D3y)/(D3x/2) ranges from 0.0 to 1.927442343, ΔS3/(D3x/2) ranges from 0.133247612 mm to 4.654496641 mm, and (A3x−ΔS3)/A3x ranges from 0.972508716 to 0.039696961.
The modulation transfer function diagram of the camera device at different F-numbers in Table 6 is similar to in Table 5, so the illustration is omitted.
In each of the above embodiments, the annular body can be made of metal, polyethylene terephthalate (PET), or manufactured by atomizing, blacking or printing a non-effective-diameter region on any of the lenses.
In each of the above embodiments, the annular body is disposed between the object side and the plurality of lenses. However, it has the same effect and falls into the scope of the invention that the annular body is disposed between the plurality of lenses or between the plurality of lenses and the image side.
In the first embodiment, the outer circumferential portion 202 and the inner circumferential portion 203 of
In the third embodiment, the outer circumferential portion 602 and the inner circumferential portion 603 of
In the second embodiment, the outer circumferential portion 402 and the inner circumferential portion 403 of
In the above embodiments, it is also possible to connect the annual body to any of the lenses of the plurality of lenses, so that any of the lenses of the plurality of lenses includes the annular body, and should be within the scope of the invention.
While the invention has been described by way of example and in terms of the preferred embodiment(s), it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
106126040 A | Aug 2017 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4047807 | Okano | Sep 1977 | A |
5648877 | Schnitzlein | Jul 1997 | A |
6538827 | Bos | Mar 2003 | B2 |
6556361 | Smith et al. | Apr 2003 | B1 |
7414665 | Watanabe | Aug 2008 | B2 |
8837060 | Lin | Sep 2014 | B2 |
9341813 | Lin | May 2016 | B1 |
20010003480 | Ryuk et al. | Jun 2001 | A1 |
20050031338 | Koyama et al. | Feb 2005 | A1 |
20070053077 | Lin | Mar 2007 | A1 |
20070092246 | Aoki et al. | Apr 2007 | A1 |
20090303617 | Chang | Dec 2009 | A1 |
20110267696 | Tsuji | Nov 2011 | A1 |
20130329026 | Hida | Dec 2013 | A1 |
20140016216 | Mori et al. | Jan 2014 | A1 |
20150346470 | Sugiyama | Dec 2015 | A1 |
20180095235 | Chang | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
205643983 | Oct 2016 | CN |
2002258132 | Sep 2002 | JP |
200488181 | Mar 2004 | JP |
200728791 | Aug 2007 | TW |
201303406 | Jan 2013 | TW |
201416700 | May 2014 | TW |
Entry |
---|
TW Office Action dated Dec. 11, 2017 in corresponding Taiwan application (No. 106126040). |
English translation of TW Office Action dated Dec. 11, 2017 in corresponding Taiwan application (No. 106126040). |
Number | Date | Country | |
---|---|---|---|
20190041554 A1 | Feb 2019 | US |