Camera equipped with data imprinting device

Information

  • Patent Grant
  • RE38541
  • Patent Number
    RE38,541
  • Date Filed
    Thursday, October 14, 1999
    24 years ago
  • Date Issued
    Tuesday, June 29, 2004
    20 years ago
  • US Classifications
    Field of Search
    • US
    • 396 406
    • 396 435
    • 396 436
  • International Classifications
    • G03B1724
Abstract
A camera with a data imprinting device includes a generally triangular space adjacent a film spool. A roller, used to conform the film to the film spool is urged into the triangular space when the film diameter on the roller approaches a maximum diameter. A portion of an optical system for the data imprinting device is also located in the triangular space. The periods of film drive pulses are averaged to establish periods of data imprinting pulses. A plurality of the data imprinting pulses are generated for each film drive pulse. In a full size mode of operation, a first set of the data imprinting pulses are used to record imprinting data. In a panorama mode of operation, a second set of the data imprinting pulses are used to record the imprinting data. The second set of data imprinting pulses contains more data imprinting pulses than the first set of data imprinting pulses, whereby the data imprinted in panorama mode occupies a shorter length of the film than does the data imprinted in full size mode.
Description




BACKGROUND OF THE INVENTION




This invention relates to a camera equipped with a data imprinting device which is disposed at a side of a camera body.




A camera equipped with a data imprinting device is disclosed in Japanese Laid-open Patent Publication No. 2-304538. The data imprinting device disclosed in this publication comprises a substrate having a light emitting element and its driving means, which is disposed on an outer periphery of a spool chamber of a camera body or on an outer periphery of a cartridge thereof. A rectangular space is formed on a photographic optical axis between a dark chamber of the camera body and the spool chamber. The rectangular space includes an optical means for transferring light from the light emitting element to a surface of a film.




According to such a conventional camera, the optical means of the data imprinting system is disposed in the rectangular space formed between the dark chamber of the camera body and the spool chamber, so that a width of the camera must be increased by the width of the rectangular space. Thus a data imprinting device according to the prior art absolutely requires a special space in the camera.




OBJECTS AND SUMMARY OF THE INVENTION




It is therefore a main object of this invention to provide a camera equipped with a data imprinting device, in which the width dimension of the camera need not be enlarged.




Briefly stated, the present invention provides camera with a data imprinting device including a generally triangular space adjacent a film spool. A roller, used to conform the film to the film spool is urged into said triangular space when the film diameter on the roller approaches a maximum diameter. A portion of an optical system for the data imprinting device is also located in the triangular space. The periods of film drive pulses are averaged to establish periods of data imprinting pulses. A plurality of the data imprinting pulses are generated for each fill drive pulse. In a full size mode of operation, a first set of the drive imprinting pulses are used to record imprinting data. In a panorama mode of operation, a second set of the data imprinting pulses are used to record the imprinting data. The second set of data imprinting pulses contains more data imprinting pulses than the first set of data imprinting pulses, whereby the data imprinted in panorama mode occupies a shorter length of the film than does the data imprinted in full size mode.




According to an embodiment of the invention, there is provided a camera comprising: means for selecting at least one of a first screen size and a second screen size, means for producing a feeding pulse signal, means, responsive to the feeding pulse signal for feeding a film, means for generating a first data imprinting signal having a first period when the first screen size is selected, means for generating a second data imprinting signal having a second period when the second screen size is selected, the first and second periods being related to a period of the feeding pulse signal, and means, responsive to one of the first and second data imprinting signals for imprinting data in a screen on the film as it is advanced by the means for feeding a film.




According to a feature of the invention, there is provided a camera comprising: a camera body, a plurality of light emitting elements, optical means for focussing light emitted from the plurality of light emitting elements on a surface of a photosensitive means, means for forming imprinted data from the light focussed on the surface of the photosensitive means, means for exposing the surface of the photosensitive means to light from an object to be photographed, a spool, the photosensitive means being wound on the spool, a maximum circle of the photosensitive means wound on the spool forming, with an interior of the camera body, a generally triangular shaped space, and at least a portion of the optical means being disposed in the generally triangular space, whereby an outside dimension of the camera is reduced.




According to a further feature of the invention, there is provided apparatus for imprinting data in a camera, the camera being of a type capable of exposing a photosensitive medium in at least a full size mode and a panorama mode, comprising: first means for generating first pulses, means, responsive to the first pulses for advancing the photosensitive medium, means for calculating an average period between the first pulses, second means for generating second pulses, the second means including means for generating at least a first and a second of the second pulses for each of the first pulses, third means, responsive to the first of the second pulses for energizing a plurality of sources of light in a pattern effective to imprint a first pattern of data on the photosensitive medium, fourth means, responsive to both the first and the second of the second pulses for energizing the plurality of sources of light in a pattern effective to imprint a second pattern of data on the photosensitive medium, and the first pattern having a length substantially equal to an integral multiple of the second pattern.




The above, and other objects, features and advantages of the present invention will become apparent from the following description read in conjunction with the accompanying drawings, in which like reference numerals designate the same element.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a transverse cross section of a portion of a camera according to an embodiment of the present invention.





FIG. 2

is a perspective view of a rear portion of a camera body according to the embodiment of the invention in FIG.


1


.





FIG. 3

is a perspective view of a rear portion of a camera body according to a further embodiment of the present invention.





FIG. 4

is a longitudinal cross section of a camera according to a still further embodiment of the invention.





FIG. 5

is a transverse cross section of the camera of FIG.


4


.





FIG. 6

is a perspective view of a rear portion of a camera body according to the embodiment of the invention in FIG.


5


.





FIG. 7

is a view of a film illustrating the fields covered by full size mode and panorama mode.





FIGS. 8a and 8b

are schematic diagrams showing the optical paths in full size and panorama modes, respectively.





FIG. 9

is a simplified schematic perspective view of a film drive, and feedback and control system according to an embodiment of the invention.





FIG. 10

is a closeup view of a film to which reference will be made in describing the manner in which the imprinting of data is controlled.





FIGS. 11a through 11d

are figures to which reference will be made in discussing dot-matrix data imprinting.





FIGS. 12a and 12b

are figures illustrating the relationships between feed pulse signals, and their data imprinting signals in full size and panorama modes, respectively.




FIG


13


is a flow chart describing a portion of the flow of operations according to one operating system of the invention.





FIG. 14

is the flow chart describing the remainder of the flow of operations following the flow chart in FIG.


13


.





FIG. 15

is a curve showing the relationship between the feed pulse signal and the data imprinting signal.





FIGS. 16 and 17

are a flow chart describing the flow of operations according to a second operating system of the invention.











DETAILED DESCRIPTION OF THE INVENTION




Referring to

FIGS. 1 and 2

, a camera body


1


includes a dark chamber


2


integrally formed therein for guiding light from an object to be photographed, focussed through a photographic lens (not shown), onto a surface of a film F. A spool chamber


3


is separated from dark chamber


2


by a partitioning wall


1


a, integrally formed with camera body


1


. A back surface


1


b of camera body


1


includes an aperture


1


c, through which film F is drawn to permit exposure of its photosensitive surface in dark chamber


2


. Aperture


1


c is flanked on upper and lower sides with inner rails


4


a,


4


b, respectively. Inner rails


4


a and


4


b extend about 0.2 mm from back surface


1


b into dark chamber


2


. A pair of outer rails


5


a,


5


b are disposed outside inner rails


4


a and


4


b. Outer rails


5


a and


5


b extend from back surface


1


b into dark chamber


2


a distance greater than the extension of inner rails


4


a and


4


b into dark chamber


2


.




A back cover


6


covers a rear of camera body


1


. A front cover


7


covers a front of camera body


1


. A pressure plate


8


on back cover


6


is resiliently urged, by conventional means not shown, toward a front of camera body


1


. Film F is urged by pressure plate


8


between outer rails


5


a,


5


b and into contact with inner rails


4


a and


4


b.




A film spool


11


is centered in spool chamber


3


. A film pressing roller


12


is affixed by a leaf spring


12


a to partitioning wall


1


a in spool chamber


3


. Leaf spring


12


a urges film pressing roller


12


toward spool


11


. A film pressing roller


13


is affixed to back cover


6


by a leaf spring


13


a. Leaf spring


13


a urges film pressing roller


13


toward spool


11


. A sprocket perforation (not shown) in film F is engaged by a boss


11


a. As spool


11


is rotated in the counterclockwise direction in the drawing, boss


11


a pulls film F about spool


11


, whereby continued rotation of spool


11


winds film F on spool


11


. The contact of rollers


12


and


13


ensure tight winding of film F on spool


11


.




A circle Cmax, shown by a two-dots-dash line in

FIG. 1

, indicates the maximum diameter of film F wound on spool


11


. When the diameter of film F is at or near the maximum circle Cmax, roller


12


is urged into a position, shown by a two-dots-dash line in

FIG. 2

, in a recess


3


a in partitioning wall


1


a between dark chamber


2


and spool chamber


3


. Roller


13


a is also urged outward to a position shown in two-dots-dash line in FIG.


1


.




As shown in

FIG. 2

, a data imprinting device includes a plurality of light emitting elements


21


, preferably of light emitting diodes (LEDs), disposed in a line on a substrate


22


in a direction of an optical axis. Substrate


22


is mounted on a top surface


1


d of camera body


1


. A driving circuit (not illustrated) for light emitting elements


21


is also disposed on substrate


22


.




An optical system


23


such as e.g. a prism, is disposed in a substantially triangular space S enclosed by back surface


1


b of camera body


1


and film winding circle Cmax. Light is directed downward from light emitting elements


21


through a circular opening


1


e in top surface


1


d of camera body


1


into triangular space S. The light is refracted by prism


23


at 90 degrees relative to the back of camera body


1


. The light from prism


23


is projected through a circular opening


1


f in back surface


1


b of camera body


1


onto the surface of film F.




One or more of light emitting elements


21


is turned on and off in synchronism with the winding of film. In response to the turning on and off of light emitting elements


21


, corresponding data is imprinted on film F. The optical path from light emitting elements


21


to prism


23


is shielded from light leakage by a cover


24


. Alternatively, cover


24


may be formed integrally with partioning wall


1


a.




In the prior art, a special rectangular space extends in the direction of the optical axis between the dark chamber and the spool chamber. In contrast, the present invention provides a triangular space S for accommodating the roller


12


between the maximum spool diameter Cmax and the wall of the dark chamber. This substantial difference permits reducing the width of camera, whereby the camera can be smaller and more compact.




According to the foregoing embodiment, only prism


23


of the data imprinting device is disposed in substantially triangular space S. Referring now to the further embodiment of the invention shown in

FIG. 3

, a plurality of light emitting elements


121


(LEDs) arranged in a vertical line in an upward and downward direction of camera may be disposed in space S. An image forming lens


123


is interposed between light emitting elements


121


and a vertical rectangular slit


1


g. Light from light emitting elements


121


is imaged by lens


123


on the surface of film F, which is positioned in the same manner as in the embodiment of

FIGS. 1 and 2

. A vertical rectangular opening


1


g in back surface


1


b of camera body


1


permits the light to pass from lens


123


to film F.




A conventional driving circuit (not shown) for driving light emitting elements


121


is disposed on substrate


122


.




As discussed above, the substantially triangular space between the maximum film winding circle in the spool chamber and the back surface of the camera body at a side of the spool chamber accommodates at least some elements of the data imprinting device. Accordingly, a special space for the data imprinting device between the spool chamber and the dark chamber is unnecessary, whereby the width of the camera can be reduced.




The foregoing embodiment of the invention provides a single photographic format. In some applications, it is desired to have two or more formats which require changes in the way data is imprinted on film F. For example, it may be desired to provide two modes of operation with different widths of film F being used for the two formats. In one application, it is desired to provide selectable formats wherein either a full width photograph or a reduced width (panorama) photograph may be produced. To accomplish this, the lens is moved with respect to film F either to fill the entire width of film F (full width mode), or to fill only a center portion of the width of film F (panorama mode) This difference in mode has implications for the data imprinting device. For example, the height and width of the imprinted characters preferably are changed to values suitable for each particular mode.




Referring now to

FIGS. 4 and 5

, an upper screen size changing forms


31


is attached rotatably by a shaft


32


to partitioning walls


1


a and


1


k. A screen change operating portion


33


is operated by external operating member (not illustrated) outside camera body


1


. An ear portion


31


a protrudes from upper screen size changing frame


31


. A pin


31


b, attached to ear portion


31


a, engages a coupling recess


33


a of screen change operating portion


33


. Actuation of screen change operating portion


33


is effective to rotate upper screen size changing frame


31


between a normal position, shown in solid line, and an actuated position, shown in two-dots-dash line.




A lower screen size changing frame


34


is attached rotatably to partitioning walls


1


a and


1


k by a shaft


35


, in a manner similar to the attachment of upper screen size changing frame


31


. Upper and lower screen size changing flames


31


and


34


have sectors gear


31


c and


34


c respectively. Sector gears


31


c and


34


c are in engagement with each other. When upper screen size changing frame


31


is in its normal (solid-line) position, engagement between sector gears


31


c and


34


c maintain lower screen size changing frame


34


in its normal (solid-line) position. In these normal positions, photographs are taken in their normal size. When upper screen size changing frame


31


is rotated to its actuated (two-dots-dash line) position, lower screen size changing frame


34


is also rotated to its actuated (two-dots-dash line) position. In the actuated positions, photographs are taken in panorama (wide-angle) size.




Referring to

FIGS. 4

,


5


and


6


, a light element chamber


24


for data imprinting device is formed in space S of camera body


1


. A guide cylinder


23


a for optical system


23


, illustrated as a prism


23


, is slidably fitted into an upper guide


24


a of light element chamber


24


. Prism


23


includes a lever


23


b protruding into dark chamber


2


. The top of lever


23


b passes through partitioning wall


1


a into a long opening


31


d in upper screen size changing frame


31


. When upper screen size changing frame


31


is rotated between its solid line and its two-dots-dash line positions, prism


23


is moved up and down between a first position, shown in solid line, and a second position, shown in two-dots-dash line.




Light from light emitting elements


21


enters through an opening


1


e in top surface


1


d of camera body


1


into light chamber


24


, and then is bent by prism


23


90 degrees toward the rear plane of the camera.




An entry lens


23


d, integrally formed with prism


23


, permits entry thereinto of light from emitting element


22


. A totally reflecting plane


23


c on prism


23


reflects light impinging on it from entry lens


23


d, and thereby redirects the light at right angles to its original direction through an exit lens


23


e.




When components are in their solid-line positions, the light passes from exit lens


23


e through opening If in camera body back surface


1


b to impinge on film F. When components are in their two-dots-dash line positions, light from exit lens


23


e passes through an opening


1


g in camera body back surface


1


b to impinge on film in an appropriate position for the panorama photograph being exposed in this condition.




Data may be imprinted on film F using, for instance, characters formed in a 9×9 matrix. As best shown in

FIG. 4

, light emitting elements


21


consist of 9 LEDs arranged in a linear array. The 9 LEDs can be turned on and off independently of each other. Light emitting elements


21


are actuated in a suitable pattern at nine points in time corresponding to nine successive positions of film F as it passes opening If or


1


g. This is sufficient to produce a 9×9 array which can represent, for example, a desired alphabetic or numeric character. A suitable time after one alphabetic or numeric character has been exposed on film F, a second alphabetic or numeric character can be exposed during continued movement of film F, and so on until a complete desired character set has been exposed.




Referring to

FIG. 4

, a roller


25


contacts an inner surface of film F. A spring


26


contacts an outer surface of film F aligned with the position contacted by roller


25


. Frictional contact between roller


25


and the surface of fill F rotates roller


25


in step with the movement of film F. A shaft


25


a is affixed to rotate with roller


25


. A slit wheel


27


is affixed at a lower end of shaft


25


a of roller


25


. A conventional photo interrupter


28


encircles the edge of slit wheel


27


. Photo interrupter


28


, as is conventional, includes a light source in one of its arms, and a photo detector in the other of its arms. Each time a slit in slit wheel


27


passes between the light source and the photo detector, the photo detector produces an output pulse signal synchronously with the rotation of slit wheel


27


. This output pulse signal indicates the length of film passing roller


25


.




The output pulse signal from photo interrupter


28


is applied as a feedback signal to a control device


40


having, for example, a CPU, ROM, RAM and peripherals. For purposes of the present description, a CPU in control device


40


controls a film advance matrix driver


41


which, in turn, drives a film advance driver motor


42


. A screen size detecting switch


43


is controlled by the position of screen changing operating portion


33


. A brush


43


a, movable with screen changing operation portion


33


, contacts a stationary portion


43


b. Contact between the movable and stationary portions of screen size detecting switch


43


produces an electrical signal which is applied to control device


40


to inform it that panorama mode is selected. Upon receiving the signal, control device


40


adjusts its signals to the data imprinting controller to control the positioning and timing of the imprinted data corresponding to that required in panorama mode. Conversely, when the stationary and movable portions of screen size detecting switch


43


are out of contact, this condition, communicated to control device


40


, results in control of imprinting corresponding to that required in full size mode.




Signals produced by control device


40


are applied to a light emitting element driver


44


. Light emitting element driver


44


produces the appropriate sequence of energizing signals for the 9 LEDs of light emitting element


21


. The timing of energizing signals applied to light emitting element


21


is controlled according to whether operation is in full size or panorama mode. That is, for a fixed film advance speed, the time between energizing pulses is shorter for panorama than it is for normal mode. This timing is determined in control device


40


in response to the control signal from screen size detecting switch.




In addition to the above elements, a conventional lens


51


and shutter


52


are provided.




According to the above structure, when the full size mode is selected by actuation of screen changing operating portion


33


, upper and lower screen size changing frames


31


and


34


are disposed in the normal positions shown in solid line. This establishes the full size mode with prism


23


located at its first position shown in solid line. In this condition, light from light emitting element


21


passes through prism


23


, and is focused through opening if onto the surface of film F.




Referring now to

FIG. 7

, in the full size mode discussed in the preceding paragraph, the sequence of light pulses from light emitting element


21


is imaged as data


101


along the upper edge of the film.




Returning now to

FIG. 4

, when the panorama size mode is selected by operation of screen changing operation portion


33


, upper and lower screen size changing frames


31


and


34


are move to their second positions shown in two-dots-dash line, with prism


23


at its second position shown in two-dots-dash line. In the panorama mode, light from light emitting devices


21


is focussed by prism


23


through opening


1


g onto the surface of film F.




Referring again to

FIG. 7

, the data in panorama mode produces panorama-mode data


102


spaced inward from the position of normal-mode data


101


.




Referring to

FIGS. 8a and 8b

, the optical relationships for producing the imprinted data, described in the foregoing, is shown, The height y


0


, and the left of these figures, is the height of light emitting elements


21


, which is constant. In the full size mode, shown in

FIG. 8a

, the ratio of distances S


1


and S


1


′, to the lens center of prism


23


produces a focal length f which results in an imprinted image size y


1


, shown at the right of FIG.


8


a. In contrast, in panorama mode the ratio of distances S


2


and S


2


′ to the lens center of prism


23


, produces a longer focal length f, and a smaller imprinted image size y


2


.




At full size or panorama size, the relationships between the lengths s


1


, s


2


of light emitting devices


21


and a lens center of prism


23


and the length s


1


′, s


2


′ of the lens center of prism


23


and the image plane respectively, produce a relationship wherein s


1


<s


2


and s


1


′≈s


2


′. The height y


0


of light emitting devices


21


(the length of 9 LEDs) on the axis through a lens center is constant, and the height y


1


of the image at the full size is bigger than the height y


2


of image at the panorama size. Therefore, the enlargement at the full size is greater than it is at the panorama size.




It will be noticed in

FIGS. 8a and 8b

, that the focal length f and the focal distances S


1


′ and S


2


′ are quite similar, but are not quite equal. Thus, if sharp focus is produced at the panorama size, then the defocus produced by the distance (s


2


′−s


1


′) occurs at the full size. Therefore, it is necessary to arrange the specification of a lens, light emitting devices and so on to prevent this problem.




Similarly, if a sharp focus is produced at the full size, then a defocus is produced at the panorama size. A suitable compromise is obtained by choosing a single lens with a compromise focal length that which produces a focus point above the lens in full size mode, and at the rear of the lens at panorama size. When properly chose, this arrangement leaves a small, but acceptable, amount of defocus at both sizes so that a satisfactory equality of sharpness can be obtained in both operating modes.




The period between energizations of light emitting devices


21


is controlled by control device


40


(

FIG. 4

) to compensate for the differences in image sizes so that the ratio of the height to the width of imaged characters is the same in both modes, with both height and width of characters smaller in panorama mode. The period between energizations in the panorama mode thus is preferably shorter than it is at the full size. To control the period of flash, the motion of the film is detected according to the period of the pulse signal from photo interrupter


28


. The period of the flash is selected corresponding the advance of film F.




Referring

FIG. 9

, an end of film F is held in a film cartridge


14


. The other end of film F is wound on spool


11


. Film advance drive motor


42


(not illustrated in

FIG. 9

) is contained in spool


11


.




The position of an aperture screen


19


, representing the area of film F upon which the next photograph will be exposed, is shown on a two-dots-dash line in the center of film F. The position of a previous screen


20


is shown as a two-dots-dash line party wound on spool


11


.




Slit wheel


27


includes a plurality of radial slits


37


in its perimeter. Photo interrupt


28


applies a pulse signal to control device


40


each time one of radial slits


37


passes between its arms.




After a picture is taken, light emitting elements


21


, located above previous screen


20


of film F, are actuated in the appropriate pattern and sequence by light emitting element driver


44


.




As film F is advanced following the taking of a picture, the light from light emitting elements


21


passes through optical system


23


to impinge on a fixed position on previous screen


20


as it is advanced past the fixed position. The pattern and timing of energizing signals fed to light emitting elements from light emitting element driver


44


imprints data on film F in the conventional shapes characteristic of dot matrix representation.




A screen size changing memory


49


contains the information required by control device


40


to control the advance of film F, the movement of lens


51


and shutter


52


and the control of light emitting elements in the two modes of operation (full size and panorama). Screen size changing memory


49


communicates the required information to control device


40


according to the mode selected. In response to this information, control device


40


produces a control signal connected to light emitting element driver


44


. The control signal includes information about which of the 9 LEDs in light emitting device


21


are energized at any time, and controls the timing of such energization.




An exposure system memory


50


, containing information regarding control of shutter


52


, applies its information to control device


40


. Screen size detecting switch


43


(

FIG. 4

) provides the input to control device


40


which permits it to determine which information it will employ.




Referring now to

FIG. 10

, more detail is shown about the technique for imprinting dot matrix characters at the edge of film F. As also shown in

FIG. 7

, the size of data characters imprinted is switched by actuation of screen change operating portion


33


to appropriate sizes for the screen size selected. In addition to the size difference, a difference also exists in the point on film F where data imprinting begins. That is, panorama-mode data


102


begins in aperture screen


19


at a point substantially to the left of corresponding normal-mode data


101


data.




For normal-mode data


101


, a delay period of T


1


seconds is imposed, during which film F is advanced at a constant speed, before the start of imprinting the first character of imprinting data. Thereafter, additional characters are produced with a timing effective to complete imprinting of normal-mode data


101


before the end of film advance. In contrast, for panorama-mode data


102


, a delay period of T


2


seconds is imposed before the first character of imprinting data is begun. The delay period T


2


substantially longer than the delay period T


1


. Accordingly, the rate at which characters are produced for panorama-mode data


102


must be more rapid than for normal-mode data


101


, in order that the data imprinting can be completed before the end of aperture screen


19


moves past the imprinting location.




Referring now to

FIGS. 11a through 11d

, with prism


23


in its normal position, if all 9 LEDs in light emitting element


21


are energized at each of the nine positions required to create a character, the full pattern in

FIG. 11a

would result. As shown in

FIG. 11b

, selective energization of the nine LEDs as film F moves therepast results in the creation of desired patterns such as, for example, numerals “8”.

FIG. 11c

shows the result that would be obtained if panorama mode used the same timing as normal mode shown in FIG.


11


b. It is clear that the imprinted characters are distorted due to their lower height, without proportionate reduction in width.

FIG. 11d

shows the desired result in which the start of imprinting of panorama-mode data is delayed, and the generation of characters is speeded up. It will be noted that the height and width of the panorama-mode characters in

FIG. 11d

are in the correct proportion. In the particular embodiment of the invention illustrated in

FIGS. 11a through 11d

, the rate of generating panorama-mode data is twice the rate of generating normal-mode data, thus resulting in a 50-percent reduction in character width.




Referring now to

FIG. 12a

, the upper portion shows a clock signal


55


, and a row enable signal


56


, derived therefrom, for enabling energization of one or more LEDs in light emitting element


21


for imprinting of normal-mode data. At the bottom of

FIG. 12a

, is shown the energizing pulses


57


for individual ones of the 9 LEDs during the production of a dot-matrix “8”.

FIG. 12b

shows the same clock signal


55


, in relation to a row enable signal


56


′ for the production of imprinting data in panorama mode. It will be noted that, whereas row enable signal


56


, for normal mode data, occurs once per cycle of clock signal


55


, the row enable signal


56


′, for panorama mode, occurs twice per cycle of clock signal


55


. In this manner, the width of the imprinted data in panorama mode is half the width of imprinted data in normal mode. Although not shown in

FIG. 12b

, energizing pulses


57


′, corresponding to energizing pulses


57


of

FIG. 12a

, are produced to energize individual ones of the LEDs, but at twice the rate as is the case for normal mode.





FIGS. 13-14

and


16


-


17


define the steps, shown in flowchart fashion, for the control of picture taking, and data imprinting, according to two embodiments of the invention.




Referring to

FIG. 13

, step


1


starts the process of taking a picture.




In step


2


, an LED emission start count is selected to set the time at which imprinting data is read out for imprinting in a predetermined position on film F. The number of LED emission start pulses is N


1


for full size and N


2


for panorama size.




In step


3


, a shutter is opened, and a picture is taken. In step


4


, the feeding pulse signal is reset to 0. In step


5


, the screen size, full size or panorama size, is detected.




When the size detected is the full size, step


6


sets N


0


=N


1


. When the size detected is the panorama size, step


7


sets N


0


=N


2


. In step


8


, the film advance drive motor is energized, thereby driving the film forward.




Step


9


sets m=0, where m is the number of imprinting data pulses


56


between the clock pulse signals


55


. In the case of normal size, m is set to 0. That is, the number of imprinting data pulses


56


is equal to the number of clock pulse signals


55


. When panorama size is selected m=1. That is, for each clock pulse, there are two imprinting data pulses


56


, according to the description of

FIGS. 12a and 12b

.




In step


10


, the period between feeding pulse signals is measured. In step


11


, if the number n of feeding pulse signals is smaller than N


0


−1, go back to step


10


. Or if the number n of feeding pulse signals is equal to or greater than N


0


−1, the average of the period is obtained in step


12


.




In step


13


, the period P to turn on LEDS between one feeding pulse signal and the next feeding pulse signal is calculated. In this case, since the number of data imprinting is one, the period P is obtained from the average period between feeding pulse signals divided by 2.




In step


14


, it is determined whether or not the number n of feeding pulse signals is equal to N


0


. If the number n of feeding pulse signals to equal to N


0


, the data imprinting signals are output and the LEDs are turned on in step


15


.




In step


16


, it is determined whether or not the screen size is full size or panorama size. If the screen size is full size, go to step


23


. If the screensize is panorama size, go to step


17


actuate the timer.




In step


18


, let m=m+1. In step


19


, it is determined whether or not the count of the timer is equal to the period P multiplied by m. If the count of the timer is equal to the period P multiplied by m, the data imprinting signals are output. The LEDs are mined on in step


20


.




In step


21


, it is determined whether or not m=1. If m=1, the timer is stopped, and then is reset in step


22


. In step


23


, it is determined whether or not the feeding pulse signals have been input. If the feeding pulse signals have been input, step


24


determines whether or not the number n of feeding pulse signals is equal to N. If the number n of feeding pulse signals is equal to N, step


25


stops the feeding motor and finishes imprinting data.




If the number n of feeding pulse signals is not equal to N in step


24


, go back to step


15


. The value N equals the number of pulses required to feed one frame of film F.




Imprinting of data does not continue until n=N. Instead, imprinting of data is completed at N−k. When n=N, the film advance drive motor is stopped in step


25


.




As above mentioned, feeding pulse signal


55


is employed to advance the film. For full size photography, pulses of data imprinting signal


56


are generated one per feeding pulse signal


55


. As a consequence of this relationship, data is imprinted synchronously with the advance of the film. For panorama photography, pulses of data imprinting signal


56


′ are generated twice per feeding pulse signal


55


. Thus, a synchronous relationship applies to the data imprinting in this mode as well. This makes possible the use of a single feeding pulse signal


55


for both modes of photography and data imprinting. The technique makes it possible to imprint detailed data.




The present technique reduces the number of slits required in slit wheel


27


(FIG.


9


), since multiple data imprinting signals are output for each feeding pulse signal. This makes it possible to reduce the size of the encoder, thereby reducing the size of the camera.




Also, since the period of data imprinting signal


56


/


56


′ is equal to an integral fraction of feeding pulse signal


55


, less feeding pulse signals


55


are required to imprint data corresponding to the screen size.




Referring to

FIG. 15

, four data imprinting signal are output corresponding to one feeding pulse signal. In this case, let m=3 in step


21


.




Referring to

FIGS. 16 and 17

, the flow charts illustrates a further embodiment of a camera equipped with a data imprinting device according to the present invention.




In step


31


, the process of taking a picture starts in response, for example, to pressing a button. The exposure is made.




In step


32


, a delay number is generated for establishing the position at which imprinting will begin on film F. The delay number is N


1


for full size and N


2


for panorama size.




In step


33


, the shutter is opened, and a picture is taken.




In step


34


, the feeding pulse signal is reset to 0.




In step


35


, the screen size, full or panorama, is detected.




When the size is full size, NO is set equal to N


1


in step


36


. When the size is panorama size, N


0


is set equal to N


2


in step


37


.




In step


38


, film advance begins by enabling the film advance driver motor.




In step


39


, m is set to 0, where m is the number X of output of data imprinting signals required to imprint data. In order to generate the numeral “8” in

FIGS. 12a and 12b

, X is set equal to 9.




In step


40


, the period between feeding pulse signals is measured. In step


41


, if the number n of feeding pulse signals is smaller than N


0


−1, go back to step


40


. If the number n of feeding pulse signals is equal to N


0


−1, the average of the period is obtained in step


42


.




In step


43


, the period P to turn on LEDs between a first and a second feeding pulse signal is calculated. In this case, P is equal to P


1


at full size and to P


2


at panorama size.




In step


44


, it is determined whether or not the number n of feeding pulse signals is equal to N


0


. If the number is equal to N


0


, the data imprinting signals are output and the selected LEDs are turned on in step


45


.




In step


46


, it is determined whether the screen size is full size or panorama size. If it is full size, go to step


47


and set P equal to P


1


. If it is panorama size, go to step


48


and set P equal to P


2


.




In step


49


, a timer is started.




In step


50


, let m=m+1.




In step


51


, it is determined whether or not the count of time is equal to the period P multiplied by m. If the count is equal to this product, the data imprinting signals are output and the LEDs are turned on in step


52


.




In step


53


, it is determined whether or not m=X. If this equality is not true, go back to step


50


. In turn, if m=X, stop the timer and reset in step


54


.




In step


55


, it is determined whether the number n of feeding pulse signals is equal to N. If this true, in step


56


, stop the feeding motor and finish imprinting data.




In this embodiment, since the output of data imprinting signals is controlled by timing after imprinting data, this embodiment provides easier control.




Having described preferred embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.



Claims
  • 1. A camera comprising:a camera body having opposed fromfront and back surfaces; at least one film spool including a film advance motor for rotating said at least one film spool; a screen size changing frame movable between a first screen size position and a second screen size position; a pulse signal generator generating a feeding pulse signal responsive to a rate of advancement of a film being wound about said at least one film spool; said film advance motor rotating said at least one film spool responsive to said feeding pulse signal; a controller; said controller generating a first data imprinting signal having a first frequency; said controller generating a second data imprinting signal having a second frequency; said first frequency and said second frequency responsive to said feeding pulse signal; light emitting elements; said light emitting elements being positioned to expose a portion of said film to light emitted from said light emitting elements, responsive to one of said first and second data imprinting signals, thereby imprinting data in said portion on said film during rotation of said at least one film spool by said film advance motor; at least a portion of said light emitting elements is disposed in a generally triangular space, adjacent said at least one spool, defined by said camera body back surface, whereby an outside dimension of said camera is reduced.
  • 2. Apparatus according to claim 1, wherein a light emitting element lens assembly is movably mounted in said camera body for movement between a third position and a fourth position;said controller controlling a position of said light emitting element lens assembly responsive to said screen size changing frame.
  • 3. Apparatus according to claim 1, wherein said lens assembly focusses at a first character height and width when said first screen size is selected, and a second character height and width when said second screen size is selected, said character height and width having substantially the same proportions in both said first screen size and said second screen size.
  • 4. Apparatus according to claim 2, wherein:said controller beginscontrols said light emitting elements to begin said imprinting a first predetermined time after a beginning of said feeding pulse signal, when said first screen size is selected; said controller beginscontrols said light emitting elements to begin said imprinting a second predetermined time after said beginning of said feeding pulse signal, when said second screen size is selected; and said first and second times are different.
  • 5. Apparatus according to claim 4, wherein said first predetermined time is about twice said second predetermined time.
  • 6. A camera of a type adapted for containing a film comprising:a camera body; a plurality of light emitting elements mounted within said camera body; a lens assembly focussingfocusing light emitted from said plurality of light emitting elements on a film surface of a photosensitive means held in said camera body; said light emitted from said plurality of light emitting elements forming imprinted data on said film surfacea surface of said film; a shutter for selectively exposing said film surface to light from an object to be photographed; a spool; said film being wound on said spool when said camera is operated; a data imprinting window disposed closer to the center of the spool than a plane A, which plane is in contact with the maximum diameter of said film when said film is wound on said spool and is perpendicular to said film surface; andsaid lens assembly being mounted in a roughly triangular region defined by a wall of a spool chamber, perpendicular to said film surface; and a surface of the main camera body parallel to said film surface and closest to said film surface; and said triangular region disposed closer to the center of said spool than said plane A; whereby an outside dimension of said camera is reduced.
  • 7. A camera according to claim 6, further including:at least one film pressing roller; said at least one film pressing roller being resiliently mounted on said camera body such that said at least one film pressing roller maintains resilient contact with a surface of said photosensitive meansfilm wound on said spool; a space for said at least one film pressing roller retractably arranged directly below said roughly triangular region in which said optical means arelens assembly is stored; and, said at least one film pressing roller being urged into said roughly triangular region when a diameter of said photosensitive meansfilm wound on said spool approaches said circle having a diameter proportional to the maximum diameter of said photosensitive meansfilm wound on said spool.
  • 8. Apparatus for imprinting data in a camera, said camera being of a type capable of exposing a photosensitive medium in at least a full size mode and a panorama mode, comprising:a first pulse generator first pulses having a first frequency; a spool capable of winding said photosensitive medium including a film advance motor for advancing said photosensitive medium along a film plane and onto said spool; a data imprinting window disposed closer to the center of said spool than a plane A, which plane is in contact with the external form of said photosensitive medium and is perpendicular to said film plane; a roller arranged on a plane parallel to said film plane, in a position directly below and in front of said data imprinting window of said film plane in a direction perpendicular to said film plane; a second pulse generator generating second pulses having a second frequency; said second frequency being at least twice said first frequency, such that for each of said first pulses there are at least a first one and a second one of said second pulses; a controller capable of energizing a plurality of sources of light in a pattern, responsive to said first one of said second pulses, effective to imprint a first pattern of data on said photosensitive medium; said controller being of energizing said plurality of sources of light in a pattern, responsive to said first one and said second one of said second pulses, effective to imprint a second pattern of data on said photosensitive medium; and said first pattern having a length substantially equal to an integral multiple of said second pattern.
  • 9. A data recording device of a type for recording data on a film in a camera comprising:said camera being of a type having an exposed region of said film, when said camera is operated, changeable between at least a normal size and a panoramic size; a line of light sources disposed separate from a size changing frame; an optical path from said line of light sources to a position on said film; a film advance for advancing said film; means for modulating said light sources to produce a light pattern corresponding to said data; said light pattern exposes said film as said film is advancing to record said data on said film; and means for moving an element in said optical path to locate said position selectively for at least said normal view and said panoramic view.
  • 10. A data recording device as in claim 9, wherein:said element in said optical path includes a prism; and said means for moving includes means for moving said prism perpendicular to a direction of said film advancement to project said light pattern to a position on said film related to a position of said prism.
  • 11. A device as in claim 9, wherein:said element in said optical path includes a lens; said means for moving includes means for moving said lens to at least a normal position and a panoramic position; said at least said normal position and said panoramic position corresponding to said at least said normal size and said panoramic size; and a position of said lens producing an overall height of said recorded data related to a selected one of said at least said normal size and said panoramic size.
  • 12. A device as in claim 9, wherein:said means for modulating said light sources includes means for producing said light pattern at a regular interval; said regular interval is proportional to a rate of said film advance, whereby said data recorded on said film has an dimension in a direction of film advance corresponding to said regular interval; and said dimension corresponds to a selected one of said at least said normal size and said panoramic size.
  • 13. A data recording device for recording data on a film in a camera comprising:said camera being of a type selectable between a first image size and a second image size; an image size selector for selecting a selected one of said first image size and said second image size; a first position on said film corresponding to said first image size; a second position on said film corresponding to said second image size; a selected position on said film corresponding to said selected one of said first image size and said second image size; a plurality of light emitting elements disposed separate from a size changing frame; an optical path from said plurality of light to said selected position on said film; a controller for activating said light emitting elements producing a light pattern corresponding to said data; a film advance for advancing said film past said position; an optical system for projecting said light pattern on said film as said film is advanced past said position whereby said data is recorded on said film; and said image size selector moving said optical system to record said data on said film in a location corresponding to said selected one of said first image size and said second image size.
  • 14. A data recording device as in claim 13, wherein said optical system is moveable along a vertical axis between said first position and said second position.
  • 15. A data recording device as in claim 13, wherein said optical system includes a prism.
  • 16. A data recording device as in claim 13, wherein:said image size selector includes an image size modification frame; said image size modification frame is moveable between an inserted position and a removed position in relation to an optical subject path; said image size selector simultaneously moves said optical system and said image size modification frame between their respective positions when said image size is selected.
  • 17. A data recording device of a type for recording data on a film in a camera comprising:said camera being of a type having an exposed region of said film, when said camera is operated, selectable between a first image size and a second image size, said first image size being different from said second image size; an image size selector which selects a selected one of said first image size and said second image size; light emitting elements; a controller which activates said light emitting elements, producing a light corresponding to said data; an optical system has an integrally formed reflecting plane and lens which projects said light on said film, whereby said data is recorded on said film; said image size selector moving said optical system to record said data on said film in a location corresponding to said selected one of said first image size and said second image size.
Priority Claims (3)
Number Date Country Kind
3-276879 Sep 1991 JP
3-298017 Oct 1991 JP
3-286640 Oct 1991 JP
Parent Case Info

This is a Continuation of application Ser. No. 08/436,160 filed May 8, 1951995(abandoned), which was a Continuation-in-part of application Ser. No. 0807/952,580 filed Sep. 28, 1992 (abandoned).

US Referenced Citations (8)
Number Name Date Kind
4265526 Ueda et al. May 1981 A
4268143 Dearing et al. May 1981 A
4751538 Konno Jun 1988 A
4994830 Harvey Feb 1991 A
5010357 Misawa Apr 1991 A
5019843 Ogawa et al. May 1991 A
5086311 Naka et al. Feb 1992 A
5182590 Kaihara et al. Jan 1993 A
Foreign Referenced Citations (1)
Number Date Country
2304538 Dec 1990 JP
Divisions (1)
Number Date Country
Parent 08/763659 Dec 1996 US
Child 09/418247 US
Continuations (1)
Number Date Country
Parent 08/436160 May 1995 US
Child 08/763659 US
Continuation in Parts (1)
Number Date Country
Parent 07/952580 Sep 1992 US
Child 08/436160 US
Reissues (1)
Number Date Country
Parent 08/763659 Dec 1996 US
Child 09/418247 US