Camera for vehicle

Information

  • Patent Grant
  • 8570374
  • Patent Number
    8,570,374
  • Date Filed
    Friday, November 13, 2009
    15 years ago
  • Date Issued
    Tuesday, October 29, 2013
    11 years ago
Abstract
In a first embodiment, the invention is directed to a camera for mounting on a vehicle, including a lens member, an imaging element and an image processing board. The image processing board is separated sufficiently from the imaging element so as to impart relatively little heat generated during operation to the imaging element. The imaging element is positioned to receive video input from the lens member. The image processing board is configured to generate image processing board output data that relates to the video input received by the imaging element. The image processing board is positioned in a selected position to release heat along a heat path that is spaced from the imaging element. The camera may further include a vehicle interface board configured to communicate signals relating to the image processing board output data to a vehicle component.
Description
FIELD OF THE INVENTION

The present invention relates to a camera for use in vehicles, and more particularly to a forward-facing, windshield-mounted camera for use in vehicles.


BACKGROUND OF THE INVENTION

Forward-facing cameras are used in vehicles for several purposes. Such cameras may be used for lane-departure sensing, oncoming vehicle headlight detection, accident avoidance and/or other purposes. Some cameras are mounted on the interior surface of the windshield at a suitable location so as not to unduly obstruct the driver's view. Such cameras may be installed in sedans, SUVs, trucks, cross-overs, sports coupes, and other types of vehicle. Such a range of vehicles encompasses a relatively large range of rake angles for the windshield. As a result, a manufacturer typically carries several different configurations of camera housing to accommodate the different windshield rake angles associated with each different type of vehicle or each different vehicle model on which such cameras are mounted. As a result, the cost associated with such cameras may be relatively high. Additionally, as a result of the position of the camera (ie. against the windshield), the camera is preferably configured to reduce its impact on the driver's view, while being suitably configured to handle heat buildup that can take place therein during use. Heat can cause the imaging element in the camera to lose the ability to detect contrast.


It would be advantageous to provide a camera that addresses one or more of these considerations.


SUMMARY OF THE INVENTION

In a first aspect, the invention is directed to a camera for mounting on a vehicle, including a lens member, an imaging element and an image processing board. The image processing board may comprise a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a microcontroller and other elements, which can generate heat during use. The image processing board is separated sufficiently from the imaging element so as to impart relatively little heat generated during operation to the imaging element.


In a particular embodiment of the first aspect, the imaging element is positioned to receive video input from the lens member. The image processing board is configured to generate image processing board output data that relates to the video input received by the imaging element. The camera may further include a vehicle interface board configured to communicate signals relating to the image processing board output data to a vehicle component. The image processing board is positioned in a selected position to release heat along a heat path that is spaced from the imaging element.


In a second aspect, the invention is directed to a camera for mounting on a mounting surface (eg. a vehicle windshield) on a vehicle including a lens member, an imaging element, a vehicle interface board and a housing. The housing is configured so that at least a portion of the housing can be used for a range of angles of mounting surface (eg. windshield rake angles) thereby reducing the manufacturing costs to adapt the camera to different mounting surface angles (eg. windshield rake angles) associated with different vehicle models.


In a particular embodiment of the second aspect, the imaging element is positioned to receive video input from the lens member. The vehicle interface board is configured to communicate signals relating to the video input to a vehicle component. The housing including a front housing member, an upper housing member and a lower housing member. The front housing member holds the lens member and is hingeably connected to the upper housing member.


In a third aspect, the invention is directed to a camera for mounting on a camera for mounting on a vehicle windshield, wherein the camera is configured so as to not unduly obscure the driver's view out through the windshield.


In a particular embodiment of the third aspect, the camera includes a housing, a lens member, an imaging element, an image processing board and a vehicle interface board. The housing has an upper housing wall and is mountable to the vehicle windshield such that the upper housing wall is generally parallel to the vehicle windshield. The imaging element is positioned to receive video input from the lens member. The image processing board is configured to generate image processing board output data that relates to the video input received by the imaging element. The vehicle interface board is configured to communicate signals relating to the image processing board output data to a vehicle component. The housing is configured to be at a selected angle relative to the lens member. The image processing board and the vehicle interface board are positioned behind the imaging element and are generally parallel to the housing.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described by way of example only with reference to the attached drawings, in which:



FIG. 1 is a perspective view of a camera in accordance with an embodiment of the present invention;



FIG. 2 is a sectional perspective view of the camera shown in FIG. 1;



FIG. 3
a is a side view of the camera shown in FIG. 1 mounted to a first vehicle windshield; and



FIG. 3
b is a side view of the camera shown in FIG. 1 mounted to a second vehicle windshield.





DETAILED DESCRIPTION OF THE INVENTION

Reference is made to FIG. 1, which shows a camera 10 for use in a vehicle, and in particular for use as a forward view camera in a vehicle. Referring to FIG. 2, the camera 10 includes a lens member 12, an imaging element 14, an image processing board 15, a vehicle interface board 16 and a housing 18. The camera 10 is configured to protect the imaging element 14 from heat buildup, as the performance of the imaging element 14 may be impacted by exposure of the imaging element 14 to heat.


The lens member 12 may be any suitable lens member known in the art, and is mounted to the front housing member 16. The camera 10 may be configured so that the lens member 12 extends generally horizontally. The imaging element 14 is positioned in a selected position to receive images through the lens member 12. For example, the imaging element 14 may be oriented generally vertically a selected distance behind the lens member 12. The imaging element 14 may be, for example, a circuit board with an image sensor thereon. The image sensor may be any suitable type of sensor, such as a charge-coupled device (CCD) or a complimentary metal-oxide semiconductor (CMOS) sensor. The imaging element 14 may be relatively sensitive to heat buildup. Heat buildup can result in a loss of ability of the sensor to detect contrast, as the heat can cause a deterioration in the signal-to-noise ratio associated with the image sensor.


The image processing board 15 is configured to generate image processing board output data that relates to the video input received by the imaging element 14. Specifically, the image processing board 15 may receive raw video data directly from the imaging element 14 corresponding to the video input received by the imaging element 14. The image processing board 15 may process the raw video data to determine if there are any items of interest therein, such as, for example, oncoming vehicle headlights, objects in front of the vehicle that represent a collision risk, and vehicular lane markers. The image processing board 15 may then determine what image processing board output data to send to the vehicle interface board 16 based on the items of interest found. For example, if any oncoming vehicle headlights are identified and are determined to be sufficiently close to the vehicle in which the camera 10 is mounted, a corresponding signal may be sent to the vehicle interface board 16, for transmission to a suitable vehicle controller that can take a suitable action, such as shutting off the high beam headlights.


The image processing board 15 may comprise a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a microcontroller and other elements, which can generate a relatively large amount of heat, compared to the imaging element 14 and vehicle interface board 18. Generally, heat leaving the image processing board 15 moves generally upwards, expanding laterally away from the image processing board 15 as it rises. The path of the heat leaving the image processing board 15 is referred to as the heat path and is shown at 20. The image processing board 15 may be positioned in a selected position so that the heat path 20 is spaced from the imaging element 14. For example, the image processing board 15 may be positioned generally above the imaging element 14. The heat path 20, which extends upwards from the image processing board 15 is thus spaced from the imaging element 14. To further assist in preventing heat buildup in the imaging element 14, the image processing board 15 may have an upper surface 22 that is proximate to an upper housing wall, shown at 24. As a result, at least some heat generated by the image processing board 15 passes into the upper housing wall 24 and is directed away from the interior of the camera 10. The upper surface 22 of the image processing board 15 may be in abutment with the upper housing wall 24, to further assist in removing heat from the image processing board 15. As another means of inhibiting heat buildup in the imagine element 14, the air conditioning system (not shown) of the vehicle in which the camera 10 may be mounted, may blow cool air upwards along the windshield, thus providing convective cooling for the camera 10 overall. Additionally, some cool air blown by the air conditioning system may pass into the housing 18 of the camera 10 (eg. by way of vent holes in the housing 18) and may provide at least some flow of cool air on the imaging element 14, thereby helping the imaging element 14 to dissipate heat.


It is possible in some embodiments for the image processing board 15 to be omitted. In such embodiments, the imaging element 14 may communicate directly with the vehicle interface board 16.


The vehicle interface board 16 sends signals relating to the video input received by the imaging element 14 to one or more other vehicle components, such as controllers that manage the operation of the brakes, the high-beams, and other components. For example, in embodiments wherein the image processing board 15 is provided, the vehicle interface board 16 may send signals corresponding to the image processing board output data. In embodiments wherein the image processing board 15 is omitted, the vehicle interface board 16 may send signals corresponding to the raw video data from the imaging element 14.


In the exemplary arrangement shown in FIG. 2, the image processing board 15 is positioned above the vehicle interface board 16, and as a result, the heat path 20 from the image processing board 15 is spaced from the vehicle interface board 16. One reason for this is to inhibit heating the imaging element 14 indirectly through causing a heat buildup in the vehicle interface board 16.


Data and power transfer between the imaging element 14, the image processing board 15 and the vehicle interface board 16 may be carried out by any suitable means. For example, an FFC ribbon cable (not shown) may connect the imaging element 14 to the image processing board 15. A board-to-board stacker (not shown) may connect the image processing board 15 to the vehicle interface board 16.


While the vehicle interface board 16 is shown in FIG. 2 as being separate from the image processing board 15, it is optionally possible for the vehicle interface board 16 to be joined with the image processing board 15 on a common board.


The housing 18 may extend generally upwardly at a selected angle behind the lens member 12. The selected angle may be based on the rake angle of the windshield (shown at 25 in FIG. 3a) to which the camera 10 may be mounted.


The housing 18 may be configured to assist in directing heat received from the image processing board 15 away from the interior of the camera 10. To this end, the upper housing wall 24 may be made from a thermally conductive material, such as a metal, (eg. Aluminum). Additionally, manufacturing the housing 18 from a metal such as Aluminum provides electro-magnetic compatibility (EMC) protection and electrostatic discharge (ESD) protection for the imaging element 12, the image processing board 15 and the vehicle interface board 16 contained thereon.


The housing 18 may include an upper housing member 26, a front housing member 28, and a lower housing member 30. The upper housing member 26 may be configured for mounting to a vehicular component, such as the windshield 25. As shown in FIGS. 3a and 3b, the windshield rake angle, shown at TH, which is the windshield angle relative to the vertical, may vary from vehicle model to vehicle model. The lens member 12, however, may have a relatively consistent orientation (approximately horizontal) regardless of the vehicle in which it is mounted. As a result, the orientation of the front housing member 28, which holds the lens member 12, relative to the upper housing member 26 varies from vehicle model to vehicle model. To accommodate this variation, the front housing member 28 may be hingedly connected to the upper housing member 26. As a result, a common upper housing member 26 and front housing member 28 may be used in the assembly of the camera 10 for several different vehicle models. The upper housing member 26 substantially completely defines the top of the housing 18, shown at 32, and the rear of the housing 18, shown at 34. The front housing member 28 substantially completely defines the front of the housing 18, shown at 36.


The lower housing member 30 may be configured to define the bottom of the housing 18, shown at 38, and both sides of the housing 18, one of which is shown at 40 in FIG. 1.


Referring to FIGS. 3a and 3b, the lower housing member 30 may be configured for each vehicle model to which the camera 10 is mounted. Thus, a manufacturer may keep an inventory of first lower housing members 30a for vehicles with the windshield 25 shown in FIG. 3a, and an inventory of second lower housing members 30b for vehicles with the windshield 25 shown in FIG. 3b. By keeping different lower housing members 30 for different vehicle models, and common upper housing members 26 and front housing members 28, a manufacturer can provide a camera 10 that appears tailored to each vehicle model while having at least some commonality of parts to reduce inventory and manufacturing cost.


The camera 10 may be mounted at any suitable position on the windshield 25. Preferably, the camera 10 is mounted at or near the longitudinal centerline of the windshield 25, and in the wipe zone of the windshield 25 (ie. the zone of the windshield 25 that is clearable by the windshield wiper system). For certain types of windshield wiper system, such as ‘butterfly’ wiper systems (ie. wherein the windshield wipers counter-rotate), the wipe zone at the longitudinal centerline of the windshield 25 is relatively low. By providing the camera 10 with three separate boards (eg. the imaging element 14, the image processing board 15 and the vehicle interface board 16), and by configuring the camera 10 so that the imaging element 14 extends generally vertically and so that the image processing board 15 and the vehicle interface board 16 are stacked and extend generally parallel to the upper housing member 26 behind the imaging element 14, the camera 10 is configured to remain relatively close to the windshield 25 and has a relatively thin profile so as not to unduly obstruct the view of the driver out through the windshield 25.


It will be understood that when the camera 10 is described as being mounted to the vehicle windshield 25, it need not be directly mounted to the windshield 25 itself. It may be indirectly mounted to the windshield 25 through one or more intermediate members, such as mounting brackets and the like.


In alternative embodiments, the circuit board arrangement in the camera 10 may be similar to that shown in U.S. Pat. Nos. 6,824,481, 6,975,215, 7,188,963, 7,460,007, 7,480,149, 6,326,613, 6,593,565, 6,774,356, 7,041,965, 7,262,406, 7,265,342, 7,420,159, 7,538,316 all of which are hereby incorporated by reference.


In alternative embodiments, the housing construction of the camera 10 may be similar to that shown in U.S. Pat. Nos. 6,824,481, 6,975,215, 7,188,963, 7,460,007, 7,480,149, 6,326,613, 6,593,565, 6,774,356, 7,041,965, 7,262,406, 7,265,342, 7,420,159, 7,538,316 all of which are hereby incorporated by reference.


While the above description constitutes a plurality of embodiments of the present invention, it will be appreciated that the present invention is susceptible to further modification and change without departing from the fair meaning of the accompanying claims.

Claims
  • 1. A camera for mounting at a windshield of a vehicle, the camera comprising: a housing, wherein the housing is formed of a thermally conductive metallic material that provides electro-magnetic compatibility protection and electrostatic discharge protection;a lens member;an imaging element disposed in the housing and positioned to receive video input from the lens member;wherein, when the camera is mounted at the windshield of the vehicle, the imaging element is generally vertically oriented;an image processor disposed on an image processing board disposed in the housing, wherein said image processor is operable to generate image output data that relates to the video input received by the imaging element;circuitry operable to communicate signals relating to the image output data to a vehicle component;wherein, when the camera is mounted at the windshield of the vehicle, the image processing board is generally non-vertically oriented; andwherein the image processing board is positioned in a selected position to release heat along a heat path that is spaced from the imaging element.
  • 2. A camera as claimed in claim 1, wherein, when the camera is mounted at the windshield of the vehicle, the image processing board is positioned generally above the imaging element.
  • 3. A camera as claimed in claim 2, wherein the housing includes an upper housing wall, and wherein the image processing board is positioned substantially in abutment with the upper housing wall.
  • 4. A camera as claimed in claim 3, wherein the upper housing wall comprises aluminum.
  • 5. A camera as claimed in claim 2, wherein the circuitry is disposed at a vehicle interface board and wherein the image processing board is positioned above the vehicle interface board.
  • 6. A camera as claimed in claim 1, wherein the circuitry is disposed on the image processing board.
  • 7. A camera as claimed in claim 1, wherein, when the camera is mounted at the windshield of the vehicle, (i) the housing extends generally from the lens member upwardly at a selected angle, (ii) the imaging element is oriented generally vertically behind the lens member, and (iii) the housing includes an upper housing wall and the image processing board is positioned in abutment with the upper housing wall.
  • 8. A camera for mounting on a vehicle windshield, comprising: a housing with an upper housing wall, wherein the housing is mountable to the vehicle windshield such that the upper housing wall is generally parallel to the vehicle windshield;wherein the housing is formed of a thermally conductive metallic material that provides electro-magnetic compatibily protection and electrostatic discharge protection;a lens member;an imaging element disposed in the housing and positioned to receive video input from the lens member;wherein, when the camera is mounted at the windshield of the vehicle, the imaging element is generally vertically oriented;an image processor disposed on an image processing board disposed in the housing wherein the image processor is operable to generate image output data that relates to the video input received by the imaging element; andcircuitry operable to communicate signals relating to the image output data to a vehicle component;wherein when the camera is mounted at the windshield of the vehicle, the image processing board is generally non-vertically oriented; andwherein the housing is configured to be at a selected angle relative to the lens member, wherein the image processing board is positioned behind the imaging element and is generally parallel to the housing.
  • 9. A camera as claimed in claim 8, wherein the selected angle permits the lens member to extend generally horizontally when the housing is mounted to the vehicle windshield.
Parent Case Info

This application claims the benefits of U.S. Provisional applications 61/114,111, filed November 13, 2008 and U.S. Provisional Application No. 61/158,805, filed Mar. 10, 2009.

US Referenced Citations (296)
Number Name Date Kind
2414223 De Virgilis Jan 1947 A
3870404 Wilson et al. Mar 1975 A
4065750 Duncan et al. Dec 1977 A
4274078 Isobe et al. Jun 1981 A
4286305 Pilat et al. Aug 1981 A
4443057 Bauer et al. Apr 1984 A
4646210 Skogler et al. Feb 1987 A
4646673 Fordyce Mar 1987 A
4733336 Skogler et al. Mar 1988 A
4760497 Roston Jul 1988 A
4768135 Kretschmer et al. Aug 1988 A
4781436 Armbruster Nov 1988 A
4793690 Gahan et al. Dec 1988 A
4807096 Skogler et al. Feb 1989 A
4859867 Larson et al. Aug 1989 A
4863130 Marks, Jr. Sep 1989 A
4871917 O'Farrell et al. Oct 1989 A
4886960 Molyneux et al. Dec 1989 A
4891559 Matsumoto et al. Jan 1990 A
4895097 Lechnir Jan 1990 A
4916374 Schierbeek et al. Apr 1990 A
4930742 Schofield et al. Jun 1990 A
4936533 Adams et al. Jun 1990 A
4956591 Schierbeek et al. Sep 1990 A
4967319 Seko Oct 1990 A
4973844 O'Farrell et al. Nov 1990 A
5058851 Lawlor et al. Oct 1991 A
5100095 Haan et al. Mar 1992 A
5140455 Varaprasad et al. Aug 1992 A
5151816 Varaprasad et al. Sep 1992 A
5178448 Adams et al. Jan 1993 A
5193029 Schofield et al. Mar 1993 A
5255442 Schierbeek et al. Oct 1993 A
5264997 Hutchisson et al. Nov 1993 A
5266873 Arditi et al. Nov 1993 A
5327288 Wellington et al. Jul 1994 A
5330149 Haan et al. Jul 1994 A
D351370 Lawlor et al. Oct 1994 S
5361190 Roberts Nov 1994 A
5371659 Pastrick et al. Dec 1994 A
5377949 Haan et al. Jan 1995 A
5426294 Kobayashi et al. Jun 1995 A
5439305 Santo Aug 1995 A
5455716 Suman et al. Oct 1995 A
5469298 Suman et al. Nov 1995 A
5475366 Van Lente et al. Dec 1995 A
5487522 Hook Jan 1996 A
5488352 Jasper Jan 1996 A
5497306 Pastrick Mar 1996 A
5521760 De Young et al. May 1996 A
5530240 Larson et al. Jun 1996 A
5537003 Bechtel et al. Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5566224 ul Azam et al. Oct 1996 A
5570127 Schmidt Oct 1996 A
5572354 Desmond et al. Nov 1996 A
5576687 Blank et al. Nov 1996 A
5582383 Mertens et al. Dec 1996 A
5587236 Agrawal et al. Dec 1996 A
5609652 Yamada et al. Mar 1997 A
5615857 Hook Apr 1997 A
5631638 Kaspar et al. May 1997 A
5632551 Roney et al. May 1997 A
5649756 Adams et al. Jul 1997 A
5654686 Geschke et al. Aug 1997 A
5659423 Schierbeek et al. Aug 1997 A
5660454 Mori et al. Aug 1997 A
5661455 Van Lente et al. Aug 1997 A
5666157 Aviv Sep 1997 A
5669698 Veldman et al. Sep 1997 A
5669705 Pastrick et al. Sep 1997 A
5671996 Bos et al. Sep 1997 A
5689241 Clarke, Sr. et al. Nov 1997 A
5691848 Van Lente et al. Nov 1997 A
5703568 Hegyi Dec 1997 A
5708410 Blank et al. Jan 1998 A
5708743 DeAndrea et al. Jan 1998 A
5774283 Nagel et al. Jun 1998 A
5786772 Schofield et al. Jul 1998 A
5796094 Schofield et al. Aug 1998 A
5796176 Kramer et al. Aug 1998 A
5798575 O'Farrell et al. Aug 1998 A
5820097 Spooner Oct 1998 A
5820245 Desmond et al. Oct 1998 A
5825283 Camhi Oct 1998 A
5837891 Bridge Nov 1998 A
5845000 Breed et al. Dec 1998 A
5863116 Pastrick et al. Jan 1999 A
5878353 ul Azam et al. Mar 1999 A
5910854 Varaprasad et al. Jun 1999 A
5923027 Stam et al. Jul 1999 A
5926087 Busch et al. Jul 1999 A
5940503 Palett et al. Aug 1999 A
5947586 Weber Sep 1999 A
5971552 O'Farrell et al. Oct 1999 A
6000823 Desmond et al. Dec 1999 A
6006159 Schmier et al. Dec 1999 A
6020704 Buschur Feb 2000 A
6028537 Suman et al. Feb 2000 A
6056410 Hoekstra et al. May 2000 A
6087942 Sleichter, III et al. Jul 2000 A
6087953 DeLine et al. Jul 2000 A
6089721 Schierbeek Jul 2000 A
6097023 Schofield Aug 2000 A
6097024 Stam et al. Aug 2000 A
6100798 Liang Aug 2000 A
6108084 Winner Aug 2000 A
6124647 Marcus et al. Sep 2000 A
6124886 DeLine et al. Sep 2000 A
6151065 Steed et al. Nov 2000 A
6158655 DeVries, Jr. et al. Dec 2000 A
6166625 Teowee et al. Dec 2000 A
6166698 Turnbull et al. Dec 2000 A
6170955 Campbell et al. Jan 2001 B1
6172613 DeLine et al. Jan 2001 B1
6176602 Pastrick et al. Jan 2001 B1
6198087 Boon Mar 2001 B1
6198409 Schofield et al. Mar 2001 B1
6207967 Hochstein Mar 2001 B1
6210008 Hoekstra et al. Apr 2001 B1
6222460 DeLine et al. Apr 2001 B1
6229226 Kramer et al. May 2001 B1
6229434 Knapp et al. May 2001 B1
6243003 DeLine et al. Jun 2001 B1
6250148 Lynam Jun 2001 B1
6259359 Fujinami et al. Jul 2001 B1
6276821 Pastrick et al. Aug 2001 B1
6278377 DeLine et al. Aug 2001 B1
6291905 Drummond et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6296379 Pastrick Oct 2001 B1
6299316 Fletcher et al. Oct 2001 B1
6299319 Mertens et al. Oct 2001 B1
6305807 Schierbeek Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6318697 Corrado et al. Nov 2001 B1
6320176 Schofield et al. Nov 2001 B1
6323477 Blasing et al. Nov 2001 B1
6326613 Heslin et al. Dec 2001 B1
6329925 Skiver et al. Dec 2001 B1
6333759 Mazzilli Dec 2001 B1
6341013 Battiti et al. Jan 2002 B1
6341523 Lynam Jan 2002 B2
6353392 Schofield et al. Mar 2002 B1
6366213 DeLine et al. Apr 2002 B2
6386742 DeLine et al. May 2002 B1
6392218 Kuehnle May 2002 B1
6406152 Hoekstra et al. Jun 2002 B1
6412973 Bos et al. Jul 2002 B1
6420975 DeLine et al. Jul 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6433676 DeLine et al. Aug 2002 B2
6445287 Schofield et al. Sep 2002 B1
6452148 Bendicks et al. Sep 2002 B1
6466136 DeLine et al. Oct 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6496117 Gutta et al. Dec 2002 B2
6498967 Hopkins et al. Dec 2002 B1
6501387 Skiver et al. Dec 2002 B2
6513252 Schierbeek et al. Feb 2003 B1
6516664 Lynam Feb 2003 B2
6545598 De Villeroche Apr 2003 B1
6555804 Blasing Apr 2003 B1
6564122 Huertgen et al. May 2003 B1
6587573 Stam et al. Jul 2003 B1
6593565 Heslin et al. Jul 2003 B2
6596978 Hochstein Jul 2003 B2
6603137 Hochstein Aug 2003 B2
6614043 Hochstein Sep 2003 B2
6615650 Mahner et al. Sep 2003 B2
6617564 Ockerse et al. Sep 2003 B2
6646359 Schaefer et al. Nov 2003 B2
6648477 Hutzel et al. Nov 2003 B2
6653615 Bechtel et al. Nov 2003 B2
6660360 Mertzel et al. Dec 2003 B2
6672744 DeLine et al. Jan 2004 B2
6672745 Bauer et al. Jan 2004 B1
6690268 Schofield et al. Feb 2004 B2
6731071 Baarman May 2004 B2
6734904 Boon et al. May 2004 B1
6737963 Gutta et al. May 2004 B2
6738088 Uskolovsky et al. May 2004 B1
6742904 Bechtel et al. Jun 2004 B2
6742905 Suyama et al. Jun 2004 B2
6765480 Tseng Jul 2004 B2
6768092 Sakata Jul 2004 B2
6774356 Heslin et al. Aug 2004 B2
6774810 DeLine et al. Aug 2004 B2
6784129 Seto et al. Aug 2004 B2
6799904 Schaefer et al. Oct 2004 B2
6803574 Abel et al. Oct 2004 B2
6806485 Jackson, Jr. Oct 2004 B2
6812645 Baarman Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6825620 Kuennen et al. Nov 2004 B2
6831268 Bechtel et al. Dec 2004 B2
6831288 Schmitt et al. Dec 2004 B1
6832719 DeVries, Jr. et al. Dec 2004 B2
6841767 Mindl et al. Jan 2005 B2
6867510 Kramer et al. Mar 2005 B2
6877870 Krug Apr 2005 B2
6877888 DeLine et al. Apr 2005 B2
6889064 Baratono et al. May 2005 B2
6894619 Schmitt et al. May 2005 B1
6917163 Baarman Jul 2005 B2
6924470 Bechtel et al. Aug 2005 B2
6930593 Crawshaw Aug 2005 B2
6968736 Lynam Nov 2005 B2
6975215 Schofield et al. Dec 2005 B2
6975390 Mindl et al. Dec 2005 B2
6980092 Turnbull et al. Dec 2005 B2
6995354 Hagan et al. Feb 2006 B2
7004593 Weller et al. Feb 2006 B2
7041965 Heslin et al. May 2006 B2
7053761 Schofield et al. May 2006 B2
7075511 Mousseau et al. Jul 2006 B1
7108409 DeLine et al. Sep 2006 B2
7111996 Seger et al. Sep 2006 B2
7188963 Schofield et al. Mar 2007 B2
7195381 Lynam et al. Mar 2007 B2
7199767 Spero Apr 2007 B2
7205524 Drummond et al. Apr 2007 B2
7242320 Lawlor et al. Jul 2007 B2
7249860 Kulas et al. Jul 2007 B2
7255451 McCabe et al. Aug 2007 B2
7255465 DeLine et al. Aug 2007 B2
7262406 Heslin et al. Aug 2007 B2
7265342 Heslin et al. Sep 2007 B2
7289037 Uken et al. Oct 2007 B2
7297932 Georgiadis et al. Nov 2007 B2
7304680 Köhler et al. Dec 2007 B2
7311428 DeLine et al. Dec 2007 B2
7322755 Neumann et al. Jan 2008 B2
7370983 DeWind et al. May 2008 B2
7420159 Heslin et al. Sep 2008 B2
7438774 Kurfiss et al. Oct 2008 B2
7446427 Parker et al. Nov 2008 B2
7460007 Schofield et al. Dec 2008 B2
7463281 Luskin et al. Dec 2008 B2
7467883 DeLine et al. Dec 2008 B2
7480149 DeWard et al. Jan 2009 B2
7490944 Blank et al. Feb 2009 B2
7497632 Kajino et al. Mar 2009 B2
7538316 Heslin et al. May 2009 B2
7570793 Lages et al. Aug 2009 B2
7609961 Park Oct 2009 B2
7646889 Tsukamoto Jan 2010 B2
7651228 Skiver et al. Jan 2010 B2
7657052 Larson et al. Feb 2010 B2
7658521 DeLine et al. Feb 2010 B2
7697028 Johnson Apr 2010 B1
7719408 DeWard et al. May 2010 B2
7728721 Schofield et al. Jun 2010 B2
7755668 Johnston et al. Jul 2010 B1
7780137 Hansel et al. Aug 2010 B2
7780454 Baranski Aug 2010 B2
7811011 Blaesing et al. Oct 2010 B2
7817205 Schulte et al. Oct 2010 B2
7837173 Zinzer et al. Nov 2010 B2
7855353 Blaesing et al. Dec 2010 B2
7855755 Weller et al. Dec 2010 B2
7860275 Leleve et al. Dec 2010 B2
7864981 Leleve et al. Jan 2011 B2
7888629 Heslin et al. Feb 2011 B2
7889086 Schafer et al. Feb 2011 B2
7911356 Wohlfahrt et al. Mar 2011 B2
7914188 DeLine et al. Mar 2011 B2
7916009 Schofield et al. Mar 2011 B2
7940305 Adameck May 2011 B2
7965336 Bingle et al. Jun 2011 B2
7994471 Heslin et al. Aug 2011 B2
8051707 Roehr et al. Nov 2011 B2
8094002 Schofield et al. Jan 2012 B2
8134117 Heslin et al. Mar 2012 B2
8179437 Schofield et al. May 2012 B2
8192095 Kortan et al. Jun 2012 B2
8256821 Lawlor et al. Sep 2012 B2
8288711 Heslin et al. Oct 2012 B2
8309907 Heslin et al. Nov 2012 B2
8325028 Schofield et al. Dec 2012 B2
8339453 Blake, III et al. Dec 2012 B2
20020075387 Janssen Jun 2002 A1
20020126457 Kameyama Sep 2002 A1
20030081128 Kirmuss May 2003 A1
20040200948 Bos et al. Oct 2004 A1
20050237385 Kosaka et al. Oct 2005 A1
20060050018 Hutzel et al. Mar 2006 A1
20060061008 Karner et al. Mar 2006 A1
20070132610 Guernalec et al. Jun 2007 A1
20070235638 Backes et al. Oct 2007 A1
20080092673 Hansel et al. Apr 2008 A1
20080225538 Lynam et al. Sep 2008 A1
20100208077 DeWard et al. Aug 2010 A1
20110155874 Roehr et al. Jun 2011 A1
20120224065 Schofield et al. Sep 2012 A1
20120310519 Lawlor et al. Dec 2012 A1
Foreign Referenced Citations (32)
Number Date Country
3525672 Jan 1987 DE
3605704 Aug 1987 DE
9306989.8 Jul 1993 DE
4214223 Nov 1993 DE
4329983 Mar 1995 DE
29513369 Dec 1995 DE
19647200 Jan 1998 DE
29805142 Jun 1998 DE
19755008 Jul 1999 DE
10132982 Jan 2003 DE
10211444 Oct 2003 DE
10237554 Mar 2004 DE
10237607 Mar 2004 DE
10342837 Apr 2005 DE
102005002686 Aug 2006 DE
102005015973 Oct 2006 DE
102006039065 Mar 2007 DE
0461424 Dec 1991 EP
0667254 Aug 1995 EP
0928723 Jul 1999 EP
0969275 Jan 2000 EP
1376051 Jan 2004 EP
1389565 Feb 2004 EP
2210835 Jun 1989 GB
2316379 Feb 1998 GB
59029539 Feb 1984 JP
62043543 Feb 1987 JP
11131880 May 1999 JP
11254925 Sep 1999 JP
WO9814974 Apr 1998 WO
WO9914088 Mar 1999 WO
WO9923828 May 1999 WO
Non-Patent Literature Citations (4)
Entry
“Combination of rain sensing, autolamps and telephone antenna in one module,” Research Disclosure, Kenneth Mason Publications, Hampshire, GB No. 412, Aug. 1998, p. 1045XP-000824825.
N.R. Lynam, “Electrochromic Automotive Day/Night Minor,” SAE Technical Paper Series, 870636 (1987).
N.R. Lynam, “Smart Windows for Automobiles,” SAE Technical Paper Series, 900419 (1990).
N.R. Lynam and A. Agrawal, “Automotive Applications of Chromogenic Materials,” from Large Area Chromogenics: Materials and Devices for Transmittance Control, C.M. Lampert and C.G. Granquist, EDS, Optical Engineering Press, Washington (1990).
Related Publications (1)
Number Date Country
20100118145 A1 May 2010 US
Provisional Applications (2)
Number Date Country
61114111 Nov 2008 US
61158805 Mar 2009 US