The invention relates generally to camera lens suspensions such as those incorporated into mobile phones. In particular, the invention relates to limiters between relatively movable components of such suspensions.
PCT International Application Publication Nos. WO 2014/083318 and WO 2013/175197 disclose a camera lens optical image stabilization (OIS) suspension system that has a moving assembly (to which a camera lens element can be mounted) supported by a flexure element or spring plate on a stationary support assembly. The moving assembly is supported for movement on the support assembly by plural balls. The flexure element, which is formed from metal such as phosphor bronze, has a moving plate and flexures. The flexures extend between the moving plate and the stationary support assembly and function as springs to enable the movement of the moving assembly with respect to the stationary support assembly. The balls allow the moving assembly to move with little resistance. The moving assembly and support assembly are coupled by shape memory alloy (SMA) wires extending between the assemblies. Each of the SMA wires has one end attached to the support assembly, and an opposite end attached to the moving assembly. The suspension is actuated by applying electrical drive signals to the SMA wires. The above-identified PCT publications are incorporated herein by reference for all purposes.
There remains a continuing need for improved lens suspensions. Suspension structures of these types that are highly functional, robust and efficient to manufacture would be particularly desirable.
Embodiments of the invention include a suspension assembly with a limiter. In embodiments, the suspension assembly comprises a support member including a wire attach structure, and a moving member coupled to the support member. The moving member includes a plate, flexure arms extending from the plate and coupled to the support member, and a wire attach structure. A bearing supports the plate of the moving member for movement with respect to the support member. A shape memory alloy wire is coupled to and extends between the wire attach structures of the support member and the moving member. The limiter limits a range of movement of the moving member with respect to the support member, and in embodiments includes an opening in one of the moving member plate and the support member, and a stop that includes an engagement portion extending into the opening in the other of the moving member plate and the support member. The opening has a first diameter, and the engagement portion has a second diameter that is less than the first diameter.
In embodiments, bearings 100, which are described in greater detail below, extend from the support member 12 (e.g., from portion 26 of base layer 16) and engage a bottom side of the moving member 14 (i.e., the side shown in
Traces 18 include terminals 30 and contact pads 32 in the conductor layer on the base layer 16. Each of the traces 18 couples a terminal 30 to a contact pad 32. For example, contact pads 32a and 32b are at a first mount region 33 of the support member 12, and traces 18a and 18b couple terminals 30a and 30b to pads 32a and 32b, respectively. Contact pads 32 at a second mount region 35 are similarly coupled to terminal 30 by traces 18. A contact pad 32 is located at each of the crimps 24 in the illustrated embodiment, and each of the contact pads is coupled by a separate trace to a separate terminal 30 (e.g., trace 18d couples terminal 30d to pad 32d). The portion of the base layer 16 on which the terminals 30 are located is formed out of the plane of the major surface portion 26 (e.g., perpendicular to the plane of the major surface portion in the illustrated embodiment).
The end portions of the flexure arms 62 have mount regions 74 that are configured to be mounted to the mount regions 33 and 35 of the support member 12. Conductive traces 76 on the base layer 68 extend on the flexure arms 62 from the mount regions 74. In embodiments, the traces 76 also extend on the base layer 68 over portions of the plate 60. In the illustrated embodiment, the traces 76 also extend to contact pads 77 on the arms 72 on the plate 60. In the illustrated embodiment, the contact pads 77 are on platforms extending out of the major planar surface of the plate 60. The contact pads are at other locations (e.g., on the plate 60) in other embodiments (not shown). A layer of dielectric 78 is located between the conductive traces 76 and the base layer 68 to electrically insulate the traces from the base layer. Mount regions 74 include first and second mounting pads 80 and 82. Each mounting pad 82 includes an island or pad portion 84 in the base layer 68 that is electrically isolated from other portions of the base layer. Each trace 76 extends from the mounting pad 82, over (and electrically insulated from) the mounting pad 80. In the illustrated embodiment, the portions of traces 76 extending between the mounting pads 80 and 82 are enlarged over the portions of the traces on the flexure arms 62 to provide support for the island pad portions 84 in the base layer 68. The traces 76 extend to the island pad portions 84, and in embodiments are electrically connected to the island pad portions by electrical connections such as a plated or other via 86 that extends through the dielectric 78 at the mounting pad 82. Other embodiments include other electrical connections in place of or in addition to vias 86, such as conductive adhesive that extends between the trace 76 and island pad portion 84 over the edges of the dielectric 78. Mounting pad 80 includes a pad portion 90 in the base layer 68 that is electrically isolated from the trace 76 by the dielectric 78. In the illustrated embodiments, the portions of the traces 76 over the mounting pads 80 and 82 are circular and open in the center, but take other forms in other embodiments (not shown).
As perhaps best shown in
As described in greater detail below, the support member 12 and moving member 14 can be formed from additive and/or subtractive processes. Base layers 16 and/or 68 are stainless steel in embodiments. In other embodiments the base layers 16 and/or 68 are other metals or materials such as phosphor-bronze. Traces 18 and 76, terminals 30 and contact pads 32 can be formed from copper, copper alloys or other conductors. Polyimide or other insulating materials can be used as the dielectric 20 and 78. Other embodiments of the support member 12 and/or moving member 14 (not shown) have more or fewer traces 18 and 76, and the traces can be arranged in different layouts. Structures other than crimps 24, such as welds, can be used to attach the SMA wires 15 to the base layer 16. Other embodiments of the invention (not shown) have more or fewer crimps 24 and 70, and the crimps can be at different locations on the support member 12 and moving member 14, respectively.
In still other embodiments, the spacer portion 102 can be formed from other materials such as metal, and the surface portion 104 can be a layer or coating of polymer on the metal spacer portion. For example, in embodiments the spacer portion 102 can be a formed dimple in the metal base layer 16. In other embodiments the spacer portion 102 is a separate metal or polymer member that is attached, for example by adhesive or welding, to the support member 12. In still other embodiments, the bearings 100 can extend from the moving member 14 (e.g., from the base layer 68), and slidably engage the support member 12 (e.g, at the base layer 16). Surface portion 104, which has a perimeter, can be generally flat as shown in the embodiment of
Bearings such as 100 provide important advantages. For example, in addition to providing a high-quality, reliable, low friction sliding bearing interface, they can be manufactured and assembled relatively efficiently, and enable relatively close spacing between the support member 12 and moving member 14 (i.e., relatively thin suspensions).
Moving member 114 includes a plate 160 and spring or flexure arms 162 extending from the plate. Plate 160 and flexure arms 162 are formed from a spring metal layer such as stainless steel. End portions of the flexure arms 162 have mount regions 174 configured to be mounted to mount regions 133 of the support member 112. Moving crimp 115 includes wire attach structures such as crimps 170, and is attached (e.g., by welding) to the plate 160 of moving member 114 to become part of the moving member. Although not shown in
Bearings 200 include a spacer portion 202 and have a surface region or portion 204. The spacer portion 202 extends from the plate 160 of the moving member 114, and the surface portion 204 engages a polymer surface portion 203 on the bearing race 113 to define a sliding bearing interface that will allow the moving member 114 to slide with respect to the bearing race and the support member 112. Properties of the spacer portion 202 and surface portion 204 can include relatively low friction, relatively low viscosity, relatively low wear and/or relatively high stiffness. In the illustrated embodiment, the spacer portion 202 is a formed dimple in the plate 160. In other embodiments the spacer portion 202 is a separately manufactured member (e.g., from metal, polymer or ceramic) that is attached to the plate 160 (e.g., by adhesive or welding). In embodiments, for example, the spacer portion 202 and surface portion 204 are formed from polyoxymethylene. In embodiments, the surface portion 204 can be a coating on the spacer portion 202. Examples of materials that can be used as coatings for surface portion 204 include ceramic, and polymers such as polyoxymethylene and fluoropolymers (e.g. Teflon). Although three bearings 200 are shown in
As noted above, the static FPC and spring crimp circuit can be formed from overlaying layers of base metal (e.g., a spring metal such as SST), poly and Cu (i.e., the “trace” layer). An insulating covercoat can be applied over all or portions of the Cu. Corrosion resistant metals such as gold (Au) and/or nickel (Ni) can be plated or otherwise applied to portions of the trace layer to provide corrosion resistance. Conventional additive deposition and/or subtractive processes such as wet (e.g., chemical) and dry (e.g., plasma) etching, electro plating and electroless plating and sputtering processes in connection with photolithography (e.g., use of patterned and/or unpatterned photoresist masks), as well as mechanical forming methods (e.g., using punches and forms) can be used to manufacture the static FPC and spring crimp circuit in accordance with embodiments of the invention. Additive and subtractive processes of these types are, for example, known and used in connection with the manufacture of disk drive head suspensions, and are disclosed generally in the following U.S. patents, all of which are incorporated herein by reference for all purposes: Bennin et al. U.S. Pat. No. 8,885,299 entitled Low Resistance Ground Joints for Dual Stage Actuation Disk Drive Suspensions, Rice et al. U.S. Pat. No. 8,169,746 entitled Integrated Lead Suspension with Multiple Trace Configurations, Hentges et al. U.S. Pat. No. 8,144,430 entitled Multi-Layer Ground Plane Structures for Integrated Lead Suspensions, Hentges et al. U.S. Pat. No. 7,929,252 entitled Multi-Layer Ground Plane Structures for Integrated Lead Suspensions, Swanson et al. U.S. Pat. No. 7,388,733 entitled Method for Making Noble Metal Conductive Leads for Suspension Assemblies, Peltoma et al. U.S. Pat. No. 7,384,531 entitled Plated Ground Features for Integrated Lead Suspensions.
The static FPC is a one-piece member in the illustrated embodiment, and has two static crimps (attachment structures) on each of two diagonal corners of the member (4static crimps in total). A terminal pad section includes terminal pads in the trace layer that are connected to traces that extend over the surface of the member. As shown for example, a separate trace extends to each of the four static crimps. At each of the static crimps is an electrical contact or terminal formed by the trace and poly layers. Formed dimples extending from the upper surface of the static FPC member engage the back surface of the spring crimp circuit member, and function as sliding interface bearings to enable low friction movement of the spring crimp circuit member with respect to the static FPC. The traces on the static FPC also couple terminal pads to electrical pad locations on the static FPC that are electrically and mechanically coupled to the spring crimp circuit member (e.g., to provide electrical signals to an auto focus (AF) assembly and to provide a common or ground signal path to the SST layer of the spring crimp circuit member. Vias couple the respective traces on the static FPC to portions of the SST layer that are connected to the feet.
The spring crimp circuit is a one-piece member in the illustrated embodiments and includes a central member for supporting a lens or auto focus system, and one or more spring arms (two in the illustrated embodiment) extending from the central member. The spring crimp member has two moving crimps on each of two diagonal corners of the member (4 moving crimps in all). Pedestals or feet in the SST layer (on the ends of the spring arms opposite the central member in the illustrated embodiment) are configured to be welded or otherwise attached to corresponding locations on the static FPC. Traces on the spring crimp member are configured to be electrically coupled to traces on the static FPC (e.g., through the feet) and couple signals to terminal pads such as the auto focus (AF) terminal pads. In the illustrated embodiment, the SST layer of the spring crimp circuit is used as a signal path to the ends of the SMA wires attached to the moving crimps. Electrical connection between the corresponding terminal pad and trace on the static FPC to the SST layer of the spring crimp circuit is provided by the connection between the feet of the spring arms and the SST layer of the static FPC (i.e., the SST layers of the two members are electrically coupled, and are at a common ground potential in embodiments).
Suspensions in accordance with the invention having traces on the moving member flexure arms offer important advantages. They can for example, be efficiently fabricated and assembled. The traces are effective structures for coupling electrical signals to structures mounted to the plate or other portions of the moving member.
As shown, the limiter 210 includes an engaged structure such as opening 212 on or in the plate 60′ of the moving member 14′, and a stop 214 on the support member 12′ (e.g., on a planar portion of the support member). An engagement portion 206 of the stop 214 is fixedly positioned with respect to the support member 12′ and extends into the opening 212. A first diameter of the opening 212 is greater than a second diameter of the engagement portion 206, allowing a limited range of motion of the moving member 14′ with respect to the support member 12′ (e.g., in directions generally parallel to the major planar surfaces of the moving member and support member). Features of limiter 210 such as the shapes, sizes and locations of the opening 212 and stop 214 are configured to prevent displacement of the moving member 14′ with respect to the support member 12′ that might cause damage to the suspension 10′ components or other components, such as a lens, mounted to the suspension. The engagement portion 206 can move within a predetermined range of movement, but engages the engaged structure such as the wall portions of the plate 60′ defining the opening 212 to limit the range of relative movement.
In embodiments, the engagement portion 206 is on a spacer portion 208. The spacer portion 208, which can be integral with and/or formed from the same material as the engagement portion 206, is larger than the engagement portion in embodiments, and provides a base for the engagement portion to extend or otherwise position the engagement portion away from the major planar surface of the support member 12′. The engagement portion 206 is on an end of the spacer portion 208 opposite the major planar surface of the support member 12′. In embodiments, the stop 214 can be a separately manufactured polymer member that is attached to the support member 12′ (e.g., by adhesive). In other embodiments the stop 214 can be a metal member formed from one or more layers of the support member 12′ (e.g., from the base layer 16′), or a separately manufactured member that is attached to the support member during assembly (e.g., by welding). In still other embodiments the stop 214 can be integral with other suspension components such as the bearing such as that shown at 100. Although two limiters 210 are shown in the illustrated embodiment, other embodiments have more or fewer limiters. Opening 212 can be a through hole as shown in the illustrated embodiment, or a recess or pocket (e.g., formed by partial etching). In still other embodiments the opening 212 can be on the support member 12′ and the stop 214 can be on the moving member 14′. Limiters such as 210 provide important advantages. For example, they can prevent damage to the suspension or components mounted thereto (e.g., when the device in which it is incorporated is dropped). Suspensions including the limiters can also be efficiently manufactured.
In embodiments, the suspension assembly comprises: (1) a support member including a wire attach structure; (2) a moving member coupled to the support member, including: (i) a plate; (ii) flexure arms extending from the plate and coupled to the support member; and (iii) a wire attach structure; (3) a bearing supporting the plate of the moving member for movement with respect to the support member; (4) a shape memory alloy wire coupled to and extending between the wire attach structures of the support member and the moving member; and (5) a limiter to limit a range of movement of the moving member with respect to the support member, the limiter including: (i) an opening in one of the moving member plate and the support member, wherein the opening has a first diameter; and (ii) a stop on the other of the moving member plate and the support member, the stop including an engagement portion extending into the opening, wherein the engagement portion has a second diameter that is less than the first diameter. In embodiments, the stop further includes a spacer portion, and wherein the engagement portion is on an end of the spacer portion. In embodiments, the spacer portion is formed from the support member. In embodiments, the spacer portion is formed as a member separate from the support member, and is mounted to the support member. In embodiments, the opening is a through hole in the plate of the moving member.
Although the invention has been described with reference to preferred embodiments, those of skill in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the invention. For example, although the illustrated embodiments include the traces on the sides of the flexure arms opposite the support member (i.e., on the top side of the traces), other embodiments can alternatively or in addition include traces on the sides of the flexure arms facing the moving member (i.e., on the bottom side of the traces). Although described in connection with certain suspension assembly embodiments, bearings 200 and 100 can be incorporated in other suspension assembly embodiments. Bearings in accordance with embodiments of the invention can be used in combination, and/or in connection with or as an alternative to ball bearings to provide for relative movement between suspension components. Features of bearings 100 and 200 can be combined with each other.
This application is a continuation of U.S. patent application Ser. No. 14/951,051, filed Nov. 24, 2015, entitled Camera Lens Suspension with Polymer Bearings, which is incorporated herein by reference in its entirety and for all purposes, and which claims the benefit of the following U.S. Provisional Applications, both which are incorporated herein by reference in their entirety and for all purposes: No. 62/086,595, filed on Dec. 2, 2014, entitled Improvements to Optical Image Stabilization (OIS) Camera Lens Suspension, and No. 62/129,562, filed on Mar. 6, 2015, entitled Two-Piece Camera Lens Suspension with Integrated Electrical Leads.
Number | Name | Date | Kind |
---|---|---|---|
3587432 | Koch | Jun 1971 | A |
3734386 | Hazel | May 1973 | A |
3776447 | Simmons et al. | Dec 1973 | A |
4140265 | Morino | Feb 1979 | A |
4437603 | Kobayashi et al. | Mar 1984 | A |
4781319 | Deubzer et al. | Nov 1988 | A |
4984581 | Stice | Jan 1991 | A |
5477463 | Tamura | Dec 1995 | A |
5831820 | Huang | Nov 1998 | A |
5840417 | Bolger | Nov 1998 | A |
6149742 | Carpenter et al. | Nov 2000 | A |
6279215 | Nomoto | Aug 2001 | B1 |
6916115 | Vallance et al. | Jul 2005 | B1 |
7384531 | Peltoma et al. | Jun 2008 | B1 |
7388733 | Swanson et al. | Jun 2008 | B2 |
7679647 | Stavely et al. | Mar 2010 | B2 |
7929252 | Hentges et al. | Apr 2011 | B1 |
8144430 | Hentges et al. | Mar 2012 | B2 |
8169746 | Rice et al. | May 2012 | B1 |
8218958 | Sato | Jul 2012 | B2 |
8350959 | Topliss et al. | Jan 2013 | B2 |
8388773 | Luntz et al. | Mar 2013 | B2 |
8421908 | Kosaka et al. | Apr 2013 | B2 |
8570384 | Brown | Oct 2013 | B2 |
8602665 | Kamatani | Dec 2013 | B2 |
8848064 | Topliss et al. | Sep 2014 | B2 |
8885299 | Bennin et al. | Nov 2014 | B1 |
9175671 | Howarth | Nov 2015 | B2 |
9366879 | Miller | Jun 2016 | B1 |
9454016 | Ladwig et al. | Sep 2016 | B1 |
9479699 | Brown et al. | Oct 2016 | B2 |
9541769 | Ladwig et al. | Jan 2017 | B2 |
20040036479 | Thomsen | Feb 2004 | A1 |
20050115235 | Mernoe | Jun 2005 | A1 |
20080183257 | Imran et al. | Jul 2008 | A1 |
20080231955 | Otsuka | Sep 2008 | A1 |
20090295986 | Topliss et al. | Dec 2009 | A1 |
20100074607 | Topliss et al. | Mar 2010 | A1 |
20100074608 | Topliss | Mar 2010 | A1 |
20110249131 | Topliss et al. | Oct 2011 | A1 |
20120154614 | Moriya et al. | Jun 2012 | A1 |
20120174574 | Kotanagi et al. | Jul 2012 | A1 |
20130016427 | Sugawara | Jan 2013 | A1 |
20130221071 | Kim et al. | Aug 2013 | A1 |
20130222685 | Topliss et al. | Aug 2013 | A1 |
20130292856 | Braun et al. | Nov 2013 | A1 |
20130300880 | Brown et al. | Nov 2013 | A1 |
20130338730 | Shiroff et al. | Dec 2013 | A1 |
20140055630 | Gregory et al. | Feb 2014 | A1 |
20150135703 | Eddington et al. | May 2015 | A1 |
20150304561 | Howarth et al. | Oct 2015 | A1 |
20150346507 | Howarth | Dec 2015 | A1 |
20150365568 | Topliss et al. | Dec 2015 | A1 |
20160154252 | Miller et al. | Jun 2016 | A1 |
20160227088 | Brown et al. | Aug 2016 | A1 |
20160258425 | Ladwig et al. | Sep 2016 | A1 |
20160294141 | Davis et al. | Oct 2016 | A1 |
20170131562 | Ladwig et al. | May 2017 | A1 |
20170160559 | Ladwig et al. | Jun 2017 | A1 |
20170219842 | Howarth et al. | Aug 2017 | A1 |
20170336646 | Miller et al. | Nov 2017 | A1 |
20170357076 | Scheele et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2 732 331 | May 2014 | EP |
2013153400 | Oct 2013 | WO |
2013175197 | Nov 2013 | WO |
2014076463 | May 2014 | WO |
2014083318 | Jun 2014 | WO |
2015132571 | Sep 2015 | WO |
2016009200 | Jan 2016 | WO |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2015/062576, dated Mar. 2, 2016, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2015/062713, dated Mar. 2, 2016, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2015/063363, dated Feb. 12, 2016, 15 pages. |
International Search Report and Written Opinion issued in PCT/US2015/066939, dated Mar. 14, 2016, 11 pages. |
International Preliminary Report on Patentability in International Application No. PCT/US2015/062576, dated Jun. 15, 2017. |
International Preliminary Report on Patentability in International Application No. PCT/US2015/062713, dated Jun. 15, 2017. |
International Preliminary Report on Patentability in International Application No. PCT/US2015/063363, dated Jun. 15, 2017. |
International Search Report and Written Opinion in International Application No. PCT/US2016/021230, dated Jun. 3, 2016. |
International Preliminary Report on Patentability in International Application No. PCT/US2016/021230, dated Sep. 21, 2017. |
International Search Report and Written Opinion in International Application No. PCT/US2016/025194, dated Jun. 30, 2016. |
International Search Report and Written Opinion in International Application No. PCT/US2016/054274, dated Dec. 13, 2016. |
Office Action in U.S. Appl. No. 14/956,612, dated Jan. 4, 2018. |
Office Action in U.S. Appl. No. 15/063,151, dated Feb. 21, 2018. |
Office Action in U.S. Appl. No. 15/276,115, dated Sep. 18, 2017. |
Office Action in U.S. Appl. No. 15/400,516, dated Sep. 21, 2017. |
Office Action in U.S. Appl. No. 15/400,516, dated Dec. 15, 2017. |
Notice of Allowance in U.S. Appl. No. 15/276,115, dated Mar. 26, 2018. |
Extended European Search Report in European Application No. 15866032.4, dated Mar. 22, 2018. |
Extended European Search Report in European Application No. 15864743.8, dated Mar. 22, 2018. |
Extended European Search Report in European Application No. 15865383.2, dated Mar. 22, 2018. |
International Search Report and Written Opinion in International Application No. PCT/US2017/033517, dated Aug. 4, 2017. |
International Search Report and Written Opinion in International Application No. PCT/US2017/036884, dated Oct. 19, 2017. |
Notice of Allowance in U.S. Appl. No. 15/400,516, dated May 4, 2018. |
Office Action in U.S. Appl. No. 15/599,449, dated Jan. 25, 2018. |
Number | Date | Country | |
---|---|---|---|
20160259178 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62129562 | Mar 2015 | US | |
62086595 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14951051 | Nov 2015 | US |
Child | 15156545 | US |