This disclosure relates to a camera mirror system having night vision.
Some types of cameras, such as an RGB camera, will not display a visible image from a low-light or no-light environment. One approach to providing a visible image at night is to illuminate the camera's field of view with infrared light-emitting diodes (IR LED).
IR LED systems generate heat as they consume power. If the heat is not sufficiently dissipated, an overheating condition may occur, which can cause damage to the circuitry or generate malfunctions in the system. Solutions have been proposed which cycle the IR LEDs on and off. This may be undesirable for rear facing camera mirror systems of the type employed on commercial trucks.
In one exemplary embodiment, a camera mirror system for a vehicle includes a camera having a field of view. The camera has a lens that is configured to focus light on an image capture unit and a filter switch that are each arranged in an optical path provided between the lens and the image capture unit. The filter switch has an infrared (IR) filter that is movable into and out of the optical path in response to a IR filter command. A display is in communication with the camera and is configured to display the field of view. An IR light-emitting diode (LED) is configured to illuminate the field of view in response to an IR LED command. A controller is in communication with the image capture unit, the filter switch and the IR LED. The controller is configured to provide the IR filter command and the IR LED command in response to a limited-use night vision condition based upon a factor other than an amount of atmospheric light.
In a further embodiment of any of the above, the field of view corresponds to a rear-facing field view. The IR LED is configured to illuminate alongside a vehicle trailer.
In a further embodiment of any of the above, the display is configured to display Class II and Class IV views.
In a further embodiment of any of the above, the factor is a predetermined speed threshold.
In a further embodiment of any of the above, the factor is a gear position.
In a further embodiment of any of the above, the factor is a transitory lighting condition.
In a further embodiment of any of the above, the transitory light condition is a low light condition on one side of the vehicle compared to an opposite side of the vehicle.
In a further embodiment of any of the above, the image capture unit includes an RCCB filter. A green light is determined by subtracting a red light and a blue light from a clear filter portion.
In a further embodiment of any of the above, the controller provides the IR LED command and the IR filter command simultaneously.
In a further embodiment of any of the above, the controller turns off the IR LED and removes the IR filter from the optical path simultaneously after a predetermined time.
In another exemplary embodiment, a method of managing night vision for a vehicle camera mirror system includes the step of filtering light from a field of view of a camera lens to an image capture unit. The method also includes the step of detecting a limited-use night vision condition based upon a factor other than an amount of atmospheric light. The method further includes the step of powering an infrared light-emitting diode (IR LED) to shine IR light in the field of view in response to the detecting step. The method further includes the step of actuating an IR filter to filter IR light from the lens to the image capture unit in response to the detecting step. The method further includes the step of displaying a night vision image from the image capture unit.
In a further embodiment of any of the above, the powering step includes illuminating alongside a vehicle trailer.
In a further embodiment of any of the above, the displaying step includes displaying Class II and Class IV views illuminated by the IR LED.
In a further embodiment of any of the above, the factor is a predetermined speed threshold.
In a further embodiment of any of the above, the factor is a gear position.
In a further embodiment of any of the above, the factor is a transitory lighting condition.
In a further embodiment of any of the above, the transitory light condition is a low light condition on one side of the vehicle compared to an opposite side of the vehicle.
In a further embodiment of any of the above, the filtering step includes using an RCCB filter that is arranged in a Bayer filter pattern. A green light is determined by subtracting a red light and a blue light from a clear filter portion.
In a further embodiment of any of the above, the powering and actuating steps are performed simultaneously.
In a further embodiment of any of the above, the method includes a step of removing the IR filter from an optical path of the image capture unit simultaneously with powering off the IR LED after a predetermined time.
The disclosure can be further understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
The embodiments, examples and alternatives of the preceding paragraphs, the claims, or the following description and drawings, including any of their various aspects or respective individual features, may be taken independently or in any combination. Features described in connection with one embodiment are applicable to all embodiments, unless such features are incompatible.
A schematic view of a commercial vehicle 10 is illustrated in
A rearward facing camera 22 is arranged within a camera housing 20 of the camera arm. The camera 22 provides a field of view 23 (
Some regulations governing mirror replacement systems require that certain objects be displayed to the driver in color. Some examples include stop signs and emergency lights. To this end, it is desirable to provide a night vision system that both illuminates the field of view 23 but is also able to provide a display to the driver in the necessary colors. Referring to
The disclosed camera system employs night vision by activating the IR LED in low light conditions. In one example, an RGB filter is used in the camera 22. The RBG filter provides low light sensitivity such that it may be desirable to activate the night vision at 6 lux, for example, to provide the desired visibility to the driver. It may be desirable to increase the low light sensitivity of the camera to reduce the need for night vision. One such example camera 22 is shown in
With continuing reference to
Use of the IR LED for night vision purpose is limited as the diodes within the image capture unit 32 may become saturated from the IR light. The filter switch 40 may be of the type disclosed in United States Publication No. 2018/0180833, for example, which is incorporated herein by reference in its entirety.
A controller 34 communicates with the display 18, the IR LED 24, the image capture unit 32 and the filter switch 40. A controller 34 is configured to activate night vision in response to a manual input from a switch 36, or automatically when certain conditions are present. In one example, the filter switch 40 is activated simultaneously with the IR LEDs 24 powering on. This places the IR filter of the filter switch 40 between the lens 42 and the image capture unit 32.
A schematic illustration of the RCCB filter 26 is illustrated in
In addition to the improved low light sensitivity provided as described above, which reduces the need for night vision, limited-use night vision conditions may also be used to reduce the need for the IR LED 24. Various inputs 48 from the CAN bus, for example, relating to these conditions may be provided to the controller 34. In one example, the inputs 48 relate to speed, gear position, and/or ambient light. Other inputs may also be provided.
In one example, night vision is activated when the vehicle speed is below a predetermined speed threshold, for example, 5 mph, providing improved visibility to the driver during low speed maneuvers. In another example, when a reverse gear is detected, night vision may be activated to provide improved visibility surrounding the trailer when backing up. Ambient light condition may also be detected to activate the night vision during certain transitory lighting conditions, such as when the vehicle is in a shadow on one side but where a typical ambient light sensor located at the front of the vehicle near the instrument cluster would not detect a low light condition that would activate the night vision system. In this manner, the limited-use night vision conditions employ night vision based upon a factor other than an amount of atmospheric light, for example, based upon daylight conditions only.
In operation, referring to
It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom. Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.
Although the different examples have specific components shown in the illustrations, embodiments of this invention are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.
Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of the claims. For that reason, the following claims should be studied to determine their true scope and content.
This application claims priority to U.S. Provisional Application No. 62/780,460, which was filed on Dec. 17, 2018, and is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/082922 | 11/28/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/126396 | 6/25/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9227568 | Hubbell | Jan 2016 | B1 |
20020167589 | Schofield et al. | Nov 2002 | A1 |
20040017282 | Eguchi et al. | Jan 2004 | A1 |
20050041435 | Moisel | Feb 2005 | A1 |
20060125919 | Camilleri et al. | Jun 2006 | A1 |
20060197019 | Satou | Sep 2006 | A1 |
20080068520 | Minikey, Jr. et al. | Mar 2008 | A1 |
20090072996 | Schoepp | Mar 2009 | A1 |
20110193967 | Matsumoto | Aug 2011 | A1 |
20150145007 | Chieh | May 2015 | A1 |
Number | Date | Country |
---|---|---|
101135570 | Mar 2008 | CN |
102529812 | Jul 2012 | CN |
2002308012 | Oct 2002 | JP |
2004123043 | Apr 2004 | JP |
2005500537 | Jan 2005 | JP |
2006182041 | Jul 2006 | JP |
2007015660 | Jan 2007 | JP |
2007171154 | Jul 2007 | JP |
2009219042 | Sep 2009 | JP |
2009286227 | Dec 2009 | JP |
2010125893 | Jun 2010 | JP |
20050026128 | Mar 2005 | KR |
2016007799 | Jan 2016 | WO |
2016018022 | Feb 2016 | WO |
Entry |
---|
International Preliminary Report on Patentability for International Application No. PCT/EP2019/082922 mailed Jul. 1, 2021. |
Chinese Office Action for Chinese Application No. 201980083210.2 mailed Aug. 26, 2022. |
International Search Report and Written Opinion for International Application No. PCT/EP2019/082922 mailed Mar. 24, 2020. |
Number | Date | Country | |
---|---|---|---|
20220055540 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
62780460 | Dec 2018 | US |