The present disclosure belongs to the technical field of optics, and in particular relates to a camera module and an assembling method.
With the continuous development of photoelectric imaging sensors and image processing system platforms, higher and higher demands are imposed on image processing algorithms, making resolutions of cameras become higher and higher. Especially in non-consumer product fields including on-vehicle field and security camera field, low-pixel products have been gradually phased out. With the continuous upgrading of the pixels of the photoelectric imaging sensors, a resolution power of a lens in the camera is required to be higher and higher. However, as compared with the photoelectric imaging sensor, a resolution power margin of the lens becomes smaller and smaller, that is, a focal depth range of a camera module becomes smaller and smaller, which therefore requires the precision of assembling the camera module to be higher. In addition, the camera modules in the non-consumer product fields are all basically fixed-focus modules (non-autofocus). When the temperature changes, an optimal imaging plane of the lens will drift. Moreover, operating temperature conditions of such modules are relatively harsh (for example, a temperature range of −40° C. to +85° C. is generally required in the on-vehicle field). If it is desired to make the camera module maintain good performance in the full temperature range, the camera module is required to have a higher precision during assembly (not only the performance at normal temperature needs to be ensured, but also back focus temperature drift of the lens under low temperature and high temperature conditions needs to be considered, which makes the assembly margin to be even smaller when assembling at normal temperature).
It can be seen from the above that: 1) as the pixels of the photoelectric imaging sensor are upgraded, the resolution power margin of the lens becomes smaller relative to the photoelectric imaging sensor, and the focal depth range of the module becomes smaller; and 2) for the fixed-focus camera module, the position of back focus of the lens (the optimal imaging plane of the lens) is different under different temperature conditions, that is, when the temperature changes, the camera module will be out of focus. Considering the above two points, when the camera module is being assembled, it is required that the position of the imaging plane of the lens and a photosensitive position of the photoelectric imaging sensor coincide as much as possible and the deviation be as small as possible, that is, a higher precision of assembling the camera module is required.
For cameras that require high-precision assembly, the AA process is generally used in the industry for camera assembling. In the AA process, AA glue is an indispensable key factor: through the AA technology, after the lens and a circuit board are calibrated to the best relative positions, it is the AA glue that connects and fixes the lens and the circuit board or a base so that the lens and the circuit board are finally always kept at the best relative positions (the imaging plane of the lens coincides with a photosensitive surface of the photoelectric imaging sensor on the circuit board). However, the AA glue has a characteristic that it shrinks after curing, and the shrinkage amount is different when the thickness of the glue is different; the larger the thickness of the glue is, the larger the shrinkage amount will be. On the other hand, even if the thickness of the glue is the same, due to the difference in curing conditions (UV exposure curing, thermal curing), the shrinkage amount of the glue will still be different; the larger the thickness of the glue is, the larger the difference in the shrinkage amount will be. For the shrinkage of the glue, this shrinkage amount will usually be taken into consideration, and a fixed compensation amount is preset for compensation in case of the AA process. However, generally, each camera module has a different thickness of the glue, so the shrinkage amount of the glue is also different. As such, when performing the compensation in case of the AA process, the compensation is performed according to the fixed compensation amount. For some camera modules, the compensation is too much, and for some camera modules, the compensation is too little, which will lead to inconsistency of the resolution powers of the camera modules, making it impossible to effectively ensure that the resolution powers of all the camera modules can reach a qualified level. Moreover, for the camera modules requiring extremely high precision of assembling as mentioned above, the traditional technology of AA glue shrinkage amount compensation can no longer meet this extremely high precision requirement. Therefore, for camera modules that require high-precision assembly, solving the inconsistency of AA glue thickness is very critical. It is necessary to implement a certain method to enable good consistency of the glue thickness of the camera modules while keeping the glue thickness small (a smaller glue thickness means a smaller shrinkage amount and a smaller difference in the shrinkage amount), so that the glue shrinkage amount of each module is basically the same, and a fixed compensation amount for glue shrinkage can be used for compensation in case of the AA process.
The reason for the inconsistency of AA glue thickness is due to the deviations of various components of the camera module, the main one of which is the deviation of optical lens (specifically presented as optical back focus deviation and optical axis inclination deviation). The optical lens is assembled by several glasses, and further includes structural parts (spacers, lens barrels, etc.). There are tolerances between all the glasses and the structural parts, which leads to an inconsistent position of an optical focal plane of the optical lens relative to an adhesive surface of the glue, thereby directly resulting in the inconsistent thickness of the glue. In addition, a height deviation of the photoelectric imaging sensor and a height deviation of the base directly affect the size of AA gap, thereby affecting the thickness of the AA glue.
An object of the present disclosure is to solve the above problems and provide a camera module and an assembling method, so as to solve the problem that the resolution power cannot be guaranteed due to the inconsistent glue thickness of the same batch of camera modules.
In order to achieve the above object, the present disclosure provides a camera module, which includes a lens, a connector, a circuit board, and a photoelectric imaging sensor arranged on the circuit board; in the direction of an optical axis, the connector includes a first connection part fixedly connected with the lens, and a second connection part connected with the circuit board; a correction plane is provided on a side of the first connection part that faces the second connection part, or a correction plane is provided on a side of the second connection part that is close to the circuit board; the correction plane is parallel with an imaging plane of the lens, and a connection glue layer of a predetermined thickness is provided between the correction plane and the second connection part or between the correction plane and the circuit board.
According to an aspect of the present disclosure, the connection glue layer is provided between the correction plane and the second connection part, and there exists d=F+h−H;
where d represents the thickness of the connection glue layer, F represents a distance from the correction plane to the imaging plane, h represents a height of a photosensitive surface of the photoelectric imaging sensor from an upper surface of the circuit board, and H represents a height of the second connection part.
According to an aspect of the present disclosure, the connection glue layer is provided between the correction plane and the circuit board, and there exists d=F+h;
where d represents the thickness of the connection glue layer, F represents a distance from the correction plane to the imaging plane, and h represents a height of a photosensitive surface of the photoelectric imaging sensor from an upper surface of the circuit board.
According to an aspect of the present disclosure, the second connection part is assembled with the circuit board, and the correction plane is provided on the side of the first connection part that faces the second connection part.
According to an aspect of the present disclosure, the first connection part and the second connection part are integrally formed, and the correction plane is provided on the side of the second connection part that is close to the circuit board.
According to an aspect of the present disclosure, the first connection part is a lens flange, the second connection part is a lens base, the lens is assembled with the second connection part through the first connection part, and the correction plane is provided on the side of the second connection part that is close to the circuit board.
The present disclosure also provides an assembling method for the above-described camera module, which includes the steps of:
S1: assembling the lens with the connector having a size margin;
S2: determining a height h of a photosensitive surface of the photoelectric imaging sensor from an upper surface of the circuit board;
S3: setting the thickness d of the connection glue layer;
S4: determining the imaging plane of the lens; and
S5: according to the value of h obtained in the step S2 and the set value of d, and taking the imaging plane of the lens as a reference, performing material removal processing on the first connection part or the second connection part to obtain the correction plane which is a free end and which is parallel with the imaging plane, and fixing the first connection part and the second connection part through the connection glue layer or fixing the second connection part and the circuit board through the connection glue layer.
According to an aspect of the present disclosure, the assembling method includes:
measuring a height H of the second connection part, and in the direction of the optical axis, assembling the lens with the first connection part, and assembling the circuit board and the second connection part into one component;
measuring the height h of the photosensitive surface of the photoelectric imaging sensor from the upper surface of the circuit board;
setting the thickness d of the connection glue layer;
determining the imaging plane of the lens;
according to the set d and the measured H and h, and taking the imaging plane as a reference, performing material removal processing on the first connection part to obtain the correction plane which is parallel with the imaging plane, and making a distance F from the correction plane to the imaging plane be F=H+d−h; and
fixedly connecting the correction plane of the first connection part and the second connection part through the connection glue layer.
According to an aspect of the present disclosure, the assembling method includes:
in the direction of the optical axis, assembling the lens, the first connection part and the second connection part into one component, or selecting the first connection part and the second connection part as a connector of an integrally formed structure to form one component with the lens;
measuring the height h of the photosensitive surface of the photoelectric imaging sensor from the upper surface of the circuit board;
setting the thickness d of the connection glue layer;
determining the imaging plane of the lens;
according to the set d and the measured h, and taking the imaging plane as a reference, performing material removal processing on the second connection part to obtain the correction plane which is parallel with the imaging plane, and making a distance F from the correction plane to the imaging plane be F=d-h; and
fixedly connecting the circuit board and the correction plane of the second connection part through the connection glue layer.
According to an aspect of the present disclosure, the method of performing material removal processing on the first connection part or the second connection part to obtain the correction plane includes slicing, turning, cutting, milling or chemical etching.
According to a solution of the present disclosure, a correction plane is provided on a side of the first connection part that faces the second connection part, or a correction plane is provided on a side of the second connection part that faces the circuit board; the correction plane is parallel with the imaging plane of the lens, and is perpendicular to the actual optical axis of the lens, so that a gap between a lower side face of the first connection part and the second connection part (the base) is consistent, or a gap between a lower side face of the second connection part and the circuit board is consistent, thereby ensuring that in the AA process, the thickness of the filled glue is consistent, and the shrinkage amount of the glue is consistent, which solves the problem of poor resolution power of the camera module caused by the inconsistent thickness of the filled glue.
In an aspect of the present disclosure, the thickness of the connection glue layer between the correction plane and the second connection part or the circuit board is set to be the same, so that the thickness of the connection glue layer in all the camera modules is the same, and that the shrinkage amounts of all the camera modules are the same, which is advantageous for improving the consistency of the product.
According to a solution of the present disclosure, the connection part of the present disclosure is provided with a sufficient size margin. By sufficient size margin, it means that according to the concept of the present disclosure, for different camera modules, in case that the connection glue layer d is set to be consistent, regardless of what the optical axis deviation angle of the camera module and the position deviation of the imaging plane of the lens are, the corresponding correction plane can be found according to F=H+d-h or F=d-h, and then the material margin is removed to obtain the camera modules of the consistent glue thickness.
In order to more clearly illustrate the embodiments of the present disclosure or the technical solutions in the prior art, drawings required to be used in the embodiments will be briefly described below. Obviously, the drawings in the following description show only some of the embodiments of the present disclosure, and those skilled in the art can also obtain other drawings based on these drawings without creative efforts.
When describing the embodiments of the present disclosure, the orientations or positional relationships described by the terms “longitudinal”, “transverse”, “upper”, “lower”, “front”, “rear”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inner” and “outer” are based on the orientations or positional relationships shown in the related drawings. These terms are merely used for the sake of facilitating describing the present disclosure and simplifying the description, and do not indicate or imply that the device or element involved must have a particular orientation, or must be constructed or operated in a particular orientation. Therefore, the above terms should not be construed as limiting the present disclosure.
The present disclosure will be described in detail below with reference to the drawings and specific embodiments. It is impossible to describe all the embodiments exhaustively herein, but the embodiments of the present disclosure are not limited to the following embodiments.
As shown in
As shown in
However, as shown in
The camera module of the present disclosure solves this problem very well. As shown in
As shown in
As shown in
On the other hand, as shown in Table 1, due to the different positions of the imaging planes of different camera modules, the thicknesses of the filled glues as required (the connection glue layers) are different, and the shrinkage amounts of the connection glue layers of different thicknesses are different during operation, so that the quality of the camera module cannot be guaranteed. Specifically, the larger the thickness of the glue is, the larger the shrinkage amount will be, and the larger the difference in the shrinkage amount will be. For the module described in the present disclosure, a focal depth range of the module is generally within a few microns. If the thickness of the glue is too large and the difference in the shrinkage amount is far larger than the focal depth range, then it cannot be ensured that the module will have good performance after the AA assembly.
As shown in
As shown in
As shown in
As shown in
The present disclosure also provides a method for assembling the above-described camera module, which includes the steps of: S1: assembling the lens with the connector having a size margin; S2: determining a height h of a photosensitive surface of the photoelectric imaging sensor from an upper surface of the circuit board; S3: setting the thickness d of the connection glue layer; S4: determining the imaging plane of the lens; and S5: according to the value of h obtained in the step S2 and the set value of d, and taking the imaging plane of the lens as a reference, performing material removal processing on the first connection part or the second connection part to obtain the correction plane which is a free end and which is parallel with the imaging plane, and fixing the first connection part and the second connection part through the connection glue layer or fixing the second connection part and the circuit board through the connection glue layer.
Specifically, according to an embodiment of the present disclosure, the assembling method of the present disclosure includes: measuring a height H of the second connection part, and assembling the circuit board and the second connection part into one component; measuring the height h of the photosensitive surface of the photoelectric imaging sensor from the upper surface of the circuit board; setting the thickness d of the connection glue layer; determining the imaging plane of the lens; according to the obtained H, h and d, and taking the imaging plane as a reference, performing material removal processing on the first connection part to obtain the correction plane which is parallel with the imaging plane, and making a distance F from the correction plane to the imaging plane be F=H+d-h; and fixedly connecting the correction plane of the first connection part and the second connection part through the connection glue layer.
According to a second embodiment of the present disclosure, the assembling method of the present disclosure includes: assembling the lens, the first connection part and the second connection part into one component, or selecting the first connection part and the second connection part as a connector of an integrally formed structure to form one component with the lens; measuring the height h of the photosensitive surface of the photoelectric imaging sensor from the upper surface of the circuit board; setting the thickness d of the connection glue layer; determining the imaging plane of the lens; according to the obtained h and d, and taking the imaging plane as a reference, performing material removal processing on the second connection part to obtain the correction plane which is parallel with the imaging plane, and making a distance F from the correction plane to the imaging plane be F=d−h; and fixedly connecting the circuit board and the correction plane of the second connection part through the connection glue layer.
It should be noted that the connection part of the present disclosure is provided with sufficient size margin. By sufficient size margin, it means that according to the concept of the present disclosure, for different camera modules, in case that the connection glue layer d is set to be consistent, regardless of what the optical axis deviation angle of the camera module and the position deviation of the imaging plane of the lens are, the corresponding correction plane can be found according to F=H+d−h or F=d−h, and then the material margin is removed to obtain the camera modules of the consistent glue thickness.
In the assembling method for the camera module of the present disclosure, the method of performing material removal processing on the first connection part or the second connection part to obtain the correction plane includes slicing, turning, cutting, milling or chemical etching.
Described above is only one embodiment of the present disclosure, which is not intended to limit the present disclosure. For those skilled in the art, various modifications and changes can be made to the present disclosure. Any modification, equivalent substitution, improvement or the like made within the spirit and principle of the present disclosure are intended to be included in the scope of protection of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202010486713.9 | Jun 2020 | CN | national |
This application is a bypass continuation application of PCT application no.: PCT/CN2020/099083. This application claims priorities from PCT Application PCT/CN2020/099083, filed Jun. 30, 2020, and Chinese patent application No. 202010486713.9, titled “CAMERA MODULE AND ASSEMBLING METHOD”, filed with the Chinese National Intellectual Property Administration on Jun. 1, 2020, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2020/099083 | Jun 2020 | US |
Child | 17958822 | US |