The present disclosure relates to the field of optical lenses, and more particularly, to a camera optical lens suitable for portable terminal devices such as smart phones and digital cameras, and suitable for imaging devices such as monitors and PC lenses.
With development of camera lenses, higher and higher requirements are put forward for imaging of the lens. The “night scene photography” and “background blur” of the lens have also become important indicators to measure an imaging of the lens. The structures in the related art have insufficient refractive power distribution, lens spacing and lens shape settings, resulting in insufficient ultra-thin and wide-angle lenses. Moreover, the rotationally symmetric aspherical surface cannot correct aberrations well. A free-form surface is a non-rotationally symmetric surface, which can better balance aberrations and improve the imaging quality; besides, processing of the free-form surface has been gradually mature. With the increasing requirements for imaging of the lens, it is very important to provide a free-curve surface in the design of a lens, especially in the design of a wide-angle and ultra-wide-angle lens
In view of the above-mentioned problems, a purpose of the present disclosure is to provide a camera optical lens, which has a wide angle and ultra-thinness, as well as excellent optical performance.
A camera optical lens is provided and includes, from an object side to an image side, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, and an eighth lens. At least one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens, or the eighth lens has a free-form surface. The first lens has a negative refractive power, the third lens has a positive refractive power, an object-side surface of the second lens is convex at a paraxial position, and an image-side surface of the eighth lens is concave at a paraxial position.
As an improvement, the camera optical lens satisfies:
2.90≤d11/d12≤12.00,
where d11 is an on-axis thickness of the sixth lens, and d12 is an on-axis distance from an image-side surface of the sixth lens to an object-side surface of the seventh lens.
As an improvement, the camera optical lens satisfies:
−4.11≤f1/f≤−1.06;
−1.23≤(R1+R2)/(R1−R2)≤1.07; and
0.03≤d1/TTL≤0.14,
where f is a focal length of the camera optical lens, f1 is a focal length of the first lens, R1 is a curvature radius of an object-side surface of the first lens, R2 is a curvature radius of an image-side surface of the first lens, d1 is an on-axis thickness of the first lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis.
As an improvement, the camera optical lens satisfies:
−28.20≤f2/f≤9.00;
−14.44≤(R3+R4)/(R3−R4)≤18.89; and
0.02≤d3/TTL≤0.07,
where f is a focal length of the camera optical lens, f2 is a focal length of the second lens, R3 is a curvature radius of an object-side surface of the second lens, R4 is a curvature radius of an image-side surface of the second lens, d3 is an on-axis thickness of the second lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis.
As an improvement, the camera optical lens satisfies:
0.53≤f3/f≤3.49;
−1.39≤(R5+R6)/(R5−R6)≤−0.10; and
0.02≤d5/TTL≤0.12,
where f is a focal length of the camera optical lens, f3 is a focal length of the third lens, R5 is a curvature radius of an object-side surface of the third lens, R6 is a curvature radius of an image-side surface of the third lens, d5 is an on-axis thickness of the third lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis.
As an improvement, the camera optical lens satisfies:
0.87≤f4/f≤7.27;
0.45≤(R7+R8)/(R7−R8)≤6.80; and
0.03≤d7/TTL≤0.12,
where f is a focal length of the camera optical lens, f4 is a focal length of the fourth lens, R7 is a curvature radius of an object-side surface of the fourth lens, R8 is a curvature radius of an image-side surface of the fourth lens, d7 is an on-axis thickness of the fourth lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis.
As an improvement, the camera optical lens satisfies:
−8.06≤f5/f≤−1.80;
0.21≤(R9+R10)/(R9−R10)≤6.13; and
0.02≤d9/TTL≤0.06,
where f is a focal length of the camera optical lens, f5 is a focal length of the fifth lens, R9 is a curvature radius of an object-side surface of the fifth lens, R10 is a curvature radius of an image-side surface of the fifth lens, d9 is an on-axis thickness of the fifth lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis.
As an improvement, the camera optical lens satisfies:
−5.51≤f6/f≤2.97;
−1.09≤(R11+R12)/(R11−R12)≤0.60; and
0.04≤d11/TTL≤0.16,
where f is a focal length of the camera optical lens, f6 is a focal length of the sixth lens, R11 is a curvature radius of an object-side surface of the sixth lens, R12 is a curvature radius of an image-side surface of the sixth lens, d11 is an on-axis thickness of the sixth lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis.
As an improvement, the camera optical lens satisfies:
0.41≤f7/f≤1.99;
0.26≤(R13+R14)/(R13−R14)≤5.59; and
0.04≤d13/TTL≤0.20,
where f is a focal length of the camera optical lens, f7 is a focal length of the seventh lens, R13 is a curvature radius of an object-side surface of the seventh lens, R14 is a curvature radius of an image-side surface of the seventh lens, d13 is an on-axis thickness of the seventh lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis.
As an improvement, the camera optical lens satisfies:
−2.74≤f8/f≤−0.81;
1.14≤(R15+R16)/(R15−R16)≤4.00; and
0.03≤d15/TTL≤0.16,
where f is a focal length of the camera optical lens, f8 is a focal length of the eighth lens, R15 is a curvature radius of an object-side surface of the eighth lens, R16 is a curvature radius of the image-side surface of the eighth lens, d15 is an on-axis thickness of the eighth lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis.
With the camera optical lens of the present disclosure, the lens has good optical performance with ultra-thinness and a wide angle. Meanwhile, at least one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens, or the eighth lens has a free-form surface, thereby effectively correcting aberration and improving the performance of the optical system. It is suitable for mobile phone camera lens assembly and WEB camera lens composed of imaging elements for high-pixel such as CCD and CMOS.
Many aspects of the exemplary embodiment can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
In order to better illustrate the purpose, technical solutions and advantages of the present disclosure, the embodiments of the present disclosure will be described in details as follows with reference to the accompanying drawings. However, it should be understood by those skilled in the art that, technical details are set forth in the embodiments of the present disclosure so as to better illustrate the present disclosure. However, the technical solutions claimed in the present disclosure can be achieved without these technical details and various changes and modifications based on the following embodiments.
With reference to
As an improvement, the first lens L1 is made of a plastic material, the second lens L2 is made of a plastic material, the third lens L3 is made of a plastic material, the fourth lens L4 is made of a plastic material, the fifth lens L5 is made of a plastic material, the sixth lens L6 is made of a plastic material, the seventh lens L7 is made of a plastic material, and the eighth lens L8 is made of a plastic material. In other embodiments, each lens can be made of another material.
As an improvement, at least one of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, or the eighth lens L8 includes a free-form surface, and the free-form surface contributes to correction of aberrations such as astigmatism, field curvature, and distortion of a wide-angle optical system.
The first lens has a negative refractive power, which is beneficial to achieving a wide angle of the system.
The third lens has a positive refractive power, which is beneficial to improving the imaging performance of the system.
An object-side surface of the second lens L2 is convex at the paraxial position, which specifies a shape of the second lens L2. Within a condition, the field curvature of the system is corrected and the image quality is improved.
An image-side surface of the eight lens L8 is concave at the paraxial position, which specifies a shape of the eighth lens L8. With a condition, the field curvature of the system is corrected and the image quality is improved.
As an improvement, the camera optical lens satisfies the following condition: 2.90≤d11/d12≤12.00, where d11 denotes an on-axis thickness of the sixth lens, and d12 denotes an on-axis distance from an image-side surface of the sixth lens to an object-side surface of the seventh lens. With this condition, a total length of the system.
As an improvement, the first lens L1 has a negative refractive power and includes an object-side surface being concave at a paraxial position and an image-side surface being concave at the paraxial position.
As an example, the camera optical lens satisfies the following condition: −4.11≤f1/f≤−1.06, where f denotes a focal length of the camera optical lens, f1 denotes a focal length of the first lens. This condition specifies a ratio of the focal length of the first lens L1 to the focal length f. With this condition, the first lens L1 has an appropriate negative refractive power, which reduces aberration of the system and is beneficial to achieving ultra-thinness and a wide angle lenses. As an example, the camera optical lens satisfies the following condition: −2.57≤f1/f≤−1.33.
As an example, the camera optical lens satisfies the following condition: −1.23≤(R1+R2)/(R1−R2)≤1.07, where R1 denotes a curvature radius of an object-side surface of the first lens, and R2 denotes a curvature radius of an image-side surface of the first lens. A shape of the first lens L1 is reasonably controlled, so that the first lens L1 can effectively correct spherical aberration of the system. As an example, the camera optical lens satisfies the following condition: −0.77≤(R1+R2)/(R1−R2)≤0.86.
As an example, the camera optical lens satisfies the following condition: 0.03≤d1/TTL≤0.14, where d1 denotes an on-axis thickness of the first lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis. With this condition, it is beneficial to achieving ultra-thinness. As an example, the camera optical lens satisfies the following condition: 0.05≤d1/TTL≤0.11.
As an improvement, the second lens L2 has a positive refractive power, the second lens L2 includes an object-side surface being convex at a paraxial position and an image-side surface being concave at the paraxial position. In other embodiments, the second lens L2 can have a negative refractive power.
As an improvement, the camera optical lens satisfies the following condition: −28.20≤f2/f≤9.00, where f denotes a focal length of the camera optical lens, and f2 denotes a focal length of the second lens. By controlling the refractive power of the second lens L2 with the condition, aberration of the optical system can be corrected. As an example, the camera optical lens satisfies the following condition: −17.62≤f2/f≤7.20.
As an example, the camera optical lens satisfies the following condition: −14.44≤(R3+R4)/(R3−R4)≤18.89, where R3 denotes a curvature radius of an object-side surface of the second lens, and R4 denotes a curvature radius of an image-side surface of the second lens. This condition specifies a shape of the second lens L2. With this condition and the development of ultra-thinness and wide-angle lenses, on-axis color aberration can be corrected. As an example, the camera optical lens satisfies the following condition: −9.03≤(R3+R4)/(R3−R4)≤15.11.
As an example, the camera optical lens satisfies the following condition: 0.02≤d3/TTL≤0.07, where d3 denotes an on-axis thickness of the second lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis. With this condition, it is beneficial to achieving ultra-thinness. As an example, the camera optical lens satisfies the following condition: 0.03≤d3/TTL≤0.06.
As an improvement, the third lens L3 has a positive refractive power and includes an object-side surface being convex at a paraxial position and an image-side surface being convex at the paraxial position.
As an example, the camera optical lens satisfies the following condition: 0.53≤f3/f≤3.49, where f denotes a focal length of the camera optical lens, and f3 denotes a focal length of the third lens. Reasonable distribution of refractive power enables the system to have better imaging quality and lower sensitivity. As an example, the camera optical lens satisfies the following condition: 0.84≤f3/f≤2.79.
As an example, the camera optical lens satisfies the following condition: −1.39≤(R5+R6)/(R5−R6)≤−0.10, where R5 denotes a curvature radius of an object-side surface of the third lens, and R6 denotes a curvature radius of an image-side surface of the third lens. This condition specifies a shape of the third lens L3. With this condition, it is beneficial to alleviating a degree of deflection of light passing through the lens, and effectively reducing aberration. As an example, the camera optical lens satisfies the following condition: −0.87≤(R5+R6)/(R5−R6)≤−0.12.
As an example, the camera optical lens satisfies the following condition: 0.02≤d5/TTL≤0.12, where d5 denotes an on-axis thickness of the third lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis. With this condition, it is beneficial to achieving ultra-thinness. As an example, the camera optical lens satisfies the following condition: 0.04≤d5/TTL≤0.09.
As an example, the fourth lens L4 has a positive refractive power and includes an object-side surface being concave at a paraxial position and an image-side surface being convex at the paraxial position. In other embodiments, the fourth lens L4 can have a negative refractive power.
As an example, the camera optical lens satisfies the following condition: 0.87≤f4/f≤7.27, where f denotes a focal length of the camera optical lens, and f4 denotes a focal length of the fourth lens. This condition specifies a ratio of the focal length of the fourth lens L4 to the focal length f of the system. With this condition, the performance of the optical system can be improved. As an example, the camera optical lens satisfies the following condition: 1.40≤f4/f≤5.81.
As an example, the camera optical lens satisfies the following condition: 0.45≤(R7+R8)/(R7−R8)≤6.80, where R7 denotes a curvature radius of an object-side surface of the fourth lens, and R8 denotes a curvature radius of an image-side surface of the fourth lens. This condition specifies a shape of the fourth lens L4. With this condition and the development of ultra-thin and wide-angle lenses, it is beneficial to correcting problems such as aberration of an off-axis angle. As an example, the camera optical lens satisfies the following condition: 0.72≤(R7+R8)/(R7−R8)≤5.44.
As an example, the camera optical lens satisfies the following condition: 0.03≤d7/TTL≤0.12, where d7 denotes an on-axis thickness of the fourth lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis. With this condition, it is beneficial to achieving ultra-thinness. As an example, the camera optical lens satisfies the following condition: 0.05≤d7/TTL≤0.10.
As an improvement, the fifth lens L5 has a negative refractive power includes an object-side surface being concave at a paraxial position and an image-side surface being concave at the paraxial position. In other embodiments, the fifth lens L5 can have a positive refractive power.
As an improvement, the camera optical lens satisfies the following condition: −8.06≤f5/f≤−1.80, where f denotes a focal length of the camera optical lens 10, and f5 denotes a focal length of the fifth lens L5. The limitation on the fifth lens L5 can effectively smooth the light angle of the camera lens and reduce the tolerance sensitivity. As an example, the camera optical lens satisfies the following condition: −5.04≤f5/f≤−2.25.
As an improvement, the camera optical lens satisfies the following condition: 0.21≤(R9+R10)/(R9−R10)≤6.13, where R9 denotes a curvature radius of an object-side surface of the fifth lens, and R10 denotes a curvature radius of an image-side surface of the fifth lens. This condition specifies a shape of the fifth lens L5. With this condition and the development of ultra-thin and wide-angle lenses, it is beneficial to correcting the problems such as aberration of an off-axis angle. As an example, the camera optical lens satisfies the following condition: 0.34≤(R9+R10)/(R9−R10)≤4.90.
As an improvement, the camera optical lens satisfies the following condition: 0.02≤d9/TTL≤0.06, where d9 denotes an on-axis thickness of the fifth lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis. With this condition, it is beneficial to achieving ultra-thinness. As an example, the camera optical lens satisfies the following condition: 0.03≤d9/TTL≤0.05.
As an improvement, the sixth lens L6 has a negative refractive power and includes an object-side surface being concave at a paraxial position and an image-side surface being concave at the paraxial position. In other embodiments, the sixth lens L6 can have a positive refractive power.
As an improvement, the camera optical lens satisfies the following condition: −5.51≤f6/f≤2.97, where f denotes a focal length of the camera optical lens, and f6 denotes a focal length of the sixth lens. Reasonable distribution of refractive power enables the system to have better imaging quality and lower sensitivity. As an example, the camera optical lens satisfies the following condition: −3.44≤f6/f≤2.38.
As an improvement, the camera optical lens satisfies the following condition: −1.09≤(R11+R12)/(R11−R12)≤0.60, where R11 denotes a curvature radius of an object-side surface of the sixth lens, and R12 denotes a curvature radius of an image-side surface of the sixth lens. This condition specifies a shape of the sixth lens L6. With this condition and the development of ultra-thin and wide-angle lenses, it is beneficial to correcting problems such as aberration of an off-axis angle. As an example, the camera optical lens satisfies the following condition: −0.68≤(R11+R12)/(R11−R12)≤0.48.
As an improvement, the camera optical lens satisfies the following condition: 0.04≤d11/TTL≤0.16, where d11 denotes an on-axis thickness of the sixth lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis. With this condition, it is beneficial to achieving ultra-thinness. As an example, the camera optical lens satisfies the following condition: 0.07≤d11/TTL≤0.13.
As an improvement, the seventh lens L7 has a positive refractive power and includes an object-side surface being convex at a paraxial position and an image-side surface being convex at the paraxial position. In other optional embodiments, the seventh lens L7 can have a negative refractive power.
As an improvement, the camera optical lens satisfies the following condition: 0.41≤f7/f≤1.99, where f denotes a focal length of the camera optical lens, and f7 denotes a focal length of the seventh lens. Reasonable distribution of refractive power enables the system to have better imaging quality and lower sensitivity. As an example, the camera optical lens satisfies the following condition: 0.66≤f7/f≤1.59.
As an improvement, the camera optical lens satisfies the following condition: 0.26≤(R13+R14)/(R13−R14)≤5.59, where R13 denotes a curvature radius of an object-side surface of the seventh lens, and R14 denotes a curvature radius of an image-side surface of the seventh lens. This condition specifies a shape of the seventh lens L7. With this condition and the development of ultra-thin and wide-angle lenses, it is beneficial to correcting problems such as aberration of an off-axis angle. As an example, the camera optical lens satisfies the following condition: 0.41≤(R13+R14)/(R13−R14)≤4.47.
As an example, the camera optical lens satisfies the following condition: 0.04≤d13/TTL≤0.20, where d13 denotes an on-axis thickness of the seventh lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis. With this condition, it is beneficial to achieving ultra-thinness. As an example, the camera optical lens satisfies the following condition: 0.06≤d13/TTL≤0.16.
As an improvement, the eighth lens L8 has a negative refractive power and includes an object-side surface being convex at a paraxial position and an image-side surface being concave at the paraxial position. In other embodiments, the eighth lens L8 can have a positive refractive power.
As an improvement, the camera optical lens satisfies the following condition: −2.74≤f8/f≤−0.81, where f denotes a focal length of the camera optical lens, and f8 denotes a focal length of the eighth lens. Reasonable distribution of refractive power enables the system to have better imaging quality and lower sensitivity. As an example, the camera optical lens satisfies the following condition: −1.72≤f8/f≤−1.01.
As an improvement, the camera optical lens satisfies the following condition: 1.14≤(R15+R16)/(R15−R16)≤4.00, where R15 denotes a curvature radius of an object-side surface of the eighth lens, and R16 denotes a curvature radius of the image-side surface of the eighth lens. This condition specifies a shape of the eighth lens L8. With this condition and the development of ultra-thin and wide-angle lenses, it is beneficial to correcting problems such as aberration of an off-axis angle. As an example, the camera optical lens satisfies the following condition: 1.82≤(R15+R16)/(R15−R16)≤3 0.20.
As an improvement, the camera optical lens satisfies the following condition: 0.03≤d15/TTL≤0.16, where d15 denotes an on-axis thickness of the eighth lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image plane of the camera optical lens along an optic axis. With this condition, it is beneficial to achieving ultra-thinness. As an example, the camera optical lens satisfies the following condition: 0.05≤d15/TTL≤0.13.
As an improvement, an F number FNO of the camera optical lens 10 is smaller than or equal to 2.0, which can realize a large aperture and good imaging performance.
As an improvement, a ratio of the optical length TTL of the camera optical lens 10 to a full FOV image height IH (in a diagonal direction) is TTL/IH≤2.07, which is beneficial to achieving ultra-thinness. The field of view (FOV) in the diagonal direction is larger than or equal to 119°, which is beneficial to achieving a wide angle.
When the above-mentioned condition is satisfied, the camera optical lens 10 has good optical performance, and when the free-form surface is adopted, the designed image plane area can be matched with an actual use area, thereby improving the image quality of the effective area to the greatest extent; and according to the characteristics of the camera optical lens 10, the camera optical lens 10 is suitable for a mobile phone camera lens assembly and a WEB camera lens composed of imaging elements for high pixels such as CCD and CMOS.
The camera optical lens 10 of the present disclosure will be described in the following by examples. The reference signs described in each example are as follows. The unit of the focal length, the on-axis distance, the central curvature radius, and the on-axis thickness is mm.
TTL: the optical length (an on-axis distance from the object-side surface of the first lens L1 to the image plane Si), in a unit of mm.
FNO: a ratio of an effective focal length of the camera optical lens 10 to an entrance pupil diameter.
Table 1 and Table 2 show design data of the camera optical lens 10 according to the Embodiment 1 of the present disclosure. Herein, the object-side surface and image-side surface of the eighth lens L8 are free-form surfaces.
Table 2 shows aspherical data of each lens in the camera optical lens 10 according to the Embodiment 1 of the present disclosure
z=(cr2)/{1+[1−(k+1)(c2r2)]1/2}+A4r4+A6r6+A8r8+A10r10+A12r12+A14r14+A16r16+A18r18+A20r20 (1),
where k represents a Conic coefficient, A4, A6, A8, A10, A12, A14, A16, A18, and A20 represent aspherical coefficients, c represents the curvature at the center of the optical surface, r represents a vertical distance between a point on an aspherical curve and the optic axis, and Z represents an aspherical depth (a vertical distance between a point on an aspherical surface, having a distance of r from the optic axis, and a surface tangent to a vertex of the aspherical surface on the optic axisoptic axisoptic axis).
For convenience, the aspherical surface of each lens adopts the aspherical surface shown in the above equation (1). However, the present disclosure is not limited to the aspherical polynomial form shown in the condition (1).
Table 3 shows free-form surface data of the camera optical lens 10 according to the Embodiment 1 of the present disclosure.
where k represents a conic coefficient, Bi represents a free-form surface coefficient, c represents the curvature at the center of the optical surface, r represents a vertical distance between the a point on the free-form surface and the optic axis, x represents the x-direction component of r, y represents the y-direction component of r, and z represents aspherical depth (a vertical distance between a point on an aspherical surface, having a distance of r from the optic axis, and a surface tangent to a vertex of the aspherical surface on the optic axis).
For convenience, each free-form surface is an extended polynomial surface shown in the above equation (2). However, the present disclosure is not limited to the free-form surface defined by the polynomial form expressed by the equation (2).
The following Table 16 shows values corresponding to various numerical values in each of Examples 1, 2, 3, 4 and 5 and the parameters already specified in the condition.
As shown in Table 16, the Embodiment 1 satisfies respective condition.
As an improvement, an entrance pupil diameter ENPD of the camera optical lens 10 is 1.000 mm, the full FOV image height IH (in a diagonal direction) is 6.000 mm, the image height in an x direction is 4.800 mm, the image height in a y direction is 3.600 mm, and the imaging effect is the best in this rectangular area; the FOV in a diagonal direction is 1=119.99°, the FOV in the x direction is 107.15°, and the FOV in the y direction is 90.37°. The camera optical lens 10 satisfies the design requirements of a wide angle and ultra-thinness, and its on-axis and off-axis color aberration is sufficiently corrected, and the camera optical lens 10 has excellent optical characteristics.
The Embodiment 2 is basically the same as the Embodiment 1, and the reference signs in the Embodiment 2 are the same as those in the Embodiment 1, and only a difference thereof will be described in the following.
As an improvement, the object-side surface of the fourth lens L4 is convex at the paraxial position.
Tables 4 and Table. 5 show design data of the camera optical lens 20 according to the Embodiment 2 of the present disclosure. Herein, the object-side surface and the image-side surface of the first lens L1 are free-form surfaces.
Table 5 shows aspherical data of each lens in the camera optical lens 20 according to the Embodiment 2 of the present disclosure.
Table 6 shows the free-form surface data in the camera optical lens 20 according to the Embodiment 2 of the present disclosure.
As shown in Table 16, the Embodiment 2 satisfies respective condition.
As an improvement, the entrance pupil diameter ENPD of the camera optical lens 20 is 1.000 mm, the full FOV image height IH (in a diagonal direction) is 6.000 mm, the image height in an x direction is 4.800 mm, the image height in a y direction is 3.600 mm, and the imaging effect is the best in this rectangular area; the FOV in a diagonal direction is 120.00°, the FOV in the x direction is 107.11°, and the FOV in they direction is 90.59°. The camera optical lens 20 satisfies the design requirements of a wide angle and ultra-thinness, and its on-axis and off-axis color aberration is sufficiently corrected, and the camera optical lens 20 has excellent optical characteristics.
The Embodiment 3 is basically the same as the Embodiment 1, and the reference signs in the Embodiment 3 are the same as those in the Embodiment 1, and only a difference thereof will be described in the following.
As an improvement, the second lens L2 has a negative refractive power, the sixth lens L6 has a positive refractive power, the object-side surface of the fifth lens is a protruded surface at a paraxial position, the object-side surface of the sixth lens L6 is convex at the paraxial position, the image-side surface of the sixth lens L6 is convex at the paraxial position, the object-side surface of the seventh lens L7 is concave at the paraxial position, and the image-side surface of the seventh lens L7 is convex at the paraxial position.
The aperture S1 is located between the first lens L1 and the second lens L2.
Table 7 and Table 8 show design data of the camera optical lens 30 according to the Embodiment 3 of the present disclosure. Herein, the object-side surface and the image-side surface of the eighth lens L8 are free-form surfaces.
Table 8 shows aspherical data of each lens in the camera optical lens 30 according to the Embodiment 3 of the present disclosure.
Table 9 shows free-form surface data of the camera optical lens 30 according to the Embodiment 3 of the present disclosure.
The following Table 16 lists the respective numerical value corresponding to each condition in this embodiment according to the above-mentioned condition. Obviously, the imaging optical system according to this embodiment satisfies the above-mentioned condition.
As an improvement, the entrance pupil diameter ENPD of the camera optical lens 30 is 1.033 mm, the full FOV image height IH (in a diagonal direction) is 6.000 mm, the image height in an x direction is 4.800 mm, the image height in a y direction is 3.600 mm, and the imaging effect is the best in this rectangular area; the FOV in a diagonal direction is 121.81°, the FOV in the x direction is 98.92°, and the FOV in the y direction is 79.03°. The camera optical lens 30 satisfies the design requirements of a wide angle and ultra-thinness, and its on-axis and off-axis color aberration is sufficiently corrected, and the camera optical lens 30 has excellent optical characteristics.
The Embodiment 4 is basically the same as the Embodiment 1, and the reference signs in the Embodiment 4 are the same as those in the Embodiment 1, and only a difference thereof will be described in the following.
As an improvement, the second lens L2 has a negative refractive power, the sixth lens L6 has a positive refractive power, the object-side surface of the fifth lens L5 is convex at a paraxial position, the object-side surface of the sixth lens L6 is convex at a paraxial position, the image-side surface of the sixth lens L6 is convex at a paraxial position, and the object-side surface of the seventh lens L7 is concave at a paraxial position.
The aperture S1 is located between the first lens L1 and the second lens L2.
Table 10 and Table 11 show design data of the camera optical lens 40 according to the Embodiment 4 of the present disclosure. Herein, the object-side surface and the image-side surface of the first lens L1 are free-form surfaces.
Table 11 shows aspherical data of each lens in the camera optical lens 40 according to the Embodiment 4 of the present disclosure.
Table 12 shows free-form surface data in the camera optical lens 40 according to the Embodiment 4 of the present disclosure.
The following Table 16 lists the respective numerical value corresponding to each condition in this embodiment according to the above-mentioned condition. Obviously, the imaging optical system according to this embodiment satisfies the above-mentioned condition.
As an improvement, the entrance pupil diameter ENPD of the camera optical lens 40 is 1.049 mm, the full FOV image height IH (in a diagonal direction) is 6.000 mm, the image height in an x direction is 4.800 mm, the image height in a y direction is 3.600 mm, and the imaging effect is the best in this rectangular area; the FOV in a diagonal direction is 120.98°, the FOV in the x direction is 97.73°, and the FOV in the y direction is 78.09°. The camera optical lens 40 satisfies the design requirements of a wide angle and ultra-thinness, and its on-axis and off-axis color aberration is sufficiently corrected, and the camera optical lens 40 has excellent optical characteristics.
The Embodiment 5 is basically the same as the Embodiment 1, and the reference signs in the Embodiment 5 are the same as those in the Embodiment 1, and only a difference thereof will be described in the following.
As an improvement, the second lens L2 has a negative refractive power, the sixth lens L6 has a positive refractive power, the object-side surface of the fifth lens is convex at a paraxial position, the object-side surface of the sixth lens L6 is convex at a paraxial position, the image-side surface of the sixth lens L6 is convex at a paraxial position, and the object-side surface of the seventh lens L7 is concave at a paraxial position.
The aperture S1 is located between the first lens L1 and the second lens L2.
Table 13 and Table 14 show design data of the camera optical lens 50 according to the Embodiment 5 of the present disclosure. Herein, the object-side surface and the image-side surface of the second lens L2 are free-form surfaces.
Table 14 shows aspherical data of each lens in the camera optical lens 50 according to the Embodiment 5 of the present disclosure.
Table 15 shows free-form surface data of the camera optical lens 50 according to the Embodiment 5 of the present disclosure.
The following Table 16 lists the respective numerical value corresponding to each condition in this embodiment according to the above-mentioned condition. Obviously, the imaging optical system according to this embodiment satisfies the above-mentioned condition.
As an improvement, the entrance pupil diameter ENPD of the camera optical lens 50 is 1.058 mm, the full FOV image height IH (in a diagonal direction) is 6.000 mm, the image height in an x direction is 4.800 mm, the image height in a y direction is 3.600 mm, and the imaging effect is the best in this rectangular area; the FOV in a diagonal direction is 121.87°, the FOV in the x direction is 98.34°, and the FOV in the y direction is 77.89°. The camera optical lens 50 satisfies the design requirements of a wide angle and ultra-thinness, and its on-axis and off-axis color aberration is sufficiently corrected, and the camera optical lens 40 has excellent optical characteristics.
The above description merely illustrates some embodiments of the present disclosure. It should be noted that those skilled in the art may make improvements without departing from a creative concept of the present disclosure, and all these improvements shall fall into a protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202010727551.3 | Jul 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20190056568 | Huang | Feb 2019 | A1 |
20200012078 | Kuo | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
110007444 | Jul 2019 | CN |
110824664 | Feb 2020 | CN |
111367047 | Jul 2020 | CN |
Entry |
---|
Thompson et al. “Freeform Optical Surfaces: A Revolution in Imaging Optical Design,” Jun. 2012, pp. 31-35 (Year: 2012). |
Number | Date | Country | |
---|---|---|---|
20220026673 A1 | Jan 2022 | US |