Camera Optical Lens

Information

  • Patent Application
  • 20220187575
  • Publication Number
    20220187575
  • Date Filed
    December 13, 2021
    2 years ago
  • Date Published
    June 16, 2022
    a year ago
Abstract
The present invention discloses a camera optical lens with six-piece lenses including, from an object side to an image side in sequence, a first lens having a negative refractive power, a second lens having a positive refractive power, a third lens having a positive refractive power, a fourth lens having a negative refractive power, a fifth lens having a positive refractive power, and a sixth lens having a negative refractive power. The camera optical lens satisfies the following conditions: 0.60≤d9/f≤0.80, −30.00≤R9/R11≤−10.00, and −5.00≤f1/f≤−2.00. The camera optical lens according to the present invention has excellent optical characteristics, such as large aperture, wide angle, and ultra-thin.
Description
FIELD OF THE PRESENT INVENTION

The present invention relates to the field of optical lens, and more particularly, to a camera optical lens suitable for handheld terminal devices, such as smart phones and digital cameras, monitors or PC lenses.


DESCRIPTION OF RELATED ART

In recent years, with the rise of various smart devices, the demand for miniaturized camera optics has been increasing, and the pixel size of photosensitive devices has shrunk, coupled with the development trend of electronic products with good functions, thin and portable appearance, Therefore, miniaturized imaging optical lenses with good image quality have become the mainstream in the current market. In order to obtain better imaging quality, a multi-piece lenses structure is often used. Moreover, with the development of technology and the increase of diversified needs of users, as the pixel area of the photosensitive device continues to shrink and the system's requirements for image quality continue to increase, the six-piece lenses structure gradually appears in the lens design. There is an urgent need for a wide-angle imaging lens with excellent optical characteristics, small size, and fully corrected aberrations.


SUMMARY

In the present invention, a cameral optical lens has excellent optical characteristics with large aperture, ultra-thin and wide angle.


According to one aspect of the present invention, a camera optical lens with six-piece lenses comprises, from an object side to an image side in sequence, a first lens having a negative refractive power, a second lens having a positive refractive power, a third lens having a positive refractive power, a fourth lens having a negative refractive power, a fifth lens having a positive refractive power, and a sixth lens having a negative refractive power. The camera optical lens satisfies the following conditions: 0.60≤d9/f≤0.80, −30.00−R9/R11≤−10.00, and −5.00≤f1/f≤−2.00. f denotes a focal length of the camera optical lens, f1 denotes a focal length of the first lens, R9 denotes a central curvature radius of an image side surface of the fifth lens, R11 denotes a central curvature radius of an object side surface of the sixth lens, and d9 denotes an on-axis thickness of the fifth lens.


As an improvement, the camera optical lens further satisfies the following conditions: −3.45≤(R1+R2)/(R1−R2)≤1.89, and 0.03≤d1/TTL≤0.13. R1 denotes a central curvature radius of an object side surface of the first lens, R2 denotes a central curvature radius of an image side surface of the first lens, d1 denotes an on-axis thickness of the first lens, and TTL denotes a total optical length from the object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.


As an improvement, the camera optical lens further satisfies the following conditions: −2.16≤(R1+R2)/(R1−R2)≤1.51, and 0.05≤d1/TTL≤0.10.


As an improvement, the second lens has an object side surface being convex in a paraxial region and an image side surface being concave in the paraxial region. The camera optical lens further satisfies the following conditions: 2.22≤f2/f≤32.64, −75.32≤(R3+R4)/(R3−R4)≤−2.22, and 0.02≤d3/TTL≤0.09. f2 denotes a focal length of the second lens, R3 denotes a central curvature radius of the object side surface of the second lens, R4 denotes a central curvature radius of the image side surface of the second lens, d3 denotes an on-axis thickness of the second lens, and TTL denotes a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.


As an improvement, the camera optical lens further satisfies the following conditions: 3.56≤f2/f≤26.11, −47.07≤(R3+R4)/(R3−R4)≤−2.77, and 0.03≤d3/TTL≤0.07.


As an improvement, the third lens has an image side surface being convex in a paraxial region. The camera optical lens further satisfies the following conditions: 0.70≤f3/f≤2.77, 0.25≤(R5+R6)/(R5−R6)≤1.72, and 0.04≤d5/TTL≤0.14. f3 denotes a focal length of the third lens, R5 denotes a central curvature radius of an object side surface of the third lens, R6 denotes a central curvature radius of the image side surface of the third lens, d5 denotes an on-axis thickness of the third lens, and TTL denotes a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.


As an improvement, the camera optical lens further satisfies the following conditions: 1.12≤f3/f≤2.22, 0.40≤(R5+R6)/(R5−R6)≤1.37, and 0.06≤d5/TTL≤0.11.


As an improvement, the fourth lens has an object side surface being convex in a paraxial region and an image side surface being concave in the paraxial region. The camera optical lens further satisfies the following conditions: −7.40≤f4/f≤−1.85, 0.69≤(R7+R8)/(R7−R8)≤4.80, and 0.02≤d7/TTL≤0.07. f4 denotes a focal length of the fourth lens, R7 denotes a central curvature radius of the object side surface of the fourth lens, R8 denotes a central curvature radius of the image side surface of the fourth lens, d7 denotes an on-axis thickness of the fourth lens, and TTL denotes a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.


As an improvement, the camera optical lens further satisfies the following conditions: −4.62≤f4/f≤−2.32, 1.10≤(R7+R8)/(R7−R8)≤3.84, and 0.03≤d7/TTL≤0.06.


As an improvement, the object side surface of the fifth lens is concave in a paraxial region and the fifth lens has an image side surface being convex in the paraxial region. The camera optical lens further satisfies the following conditions: 0.34≤f5/f≤1.07, 0.51≤(R9+R10)/(R9−R10)≤1.61, and 0.12≤d9/TTL≤0.45. f5 denotes a focal length of the fifth lens, R10 denotes a central curvature radius of the image side surface of the fifth lens, and TTL denotes a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.


As an improvement, the camera optical lens further satisfies the following conditions: 0.55≤f5/f≤0.86, 0.82≤(R9+R10)/(R9−R10)≤1.29, and 0.19≤d9/TTL≤60.36.


As an improvement, the object side surface of the sixth lens is convex in a paraxial region and the image side surface of the sixth lens is concave in the paraxial region. The camera optical lens further satisfies the following conditions: −2.01≤f6/f≤−0.63, 0.99≤(R11+R12)/(R11−R12)≤3.30, and 0.04≤d11/TTL≤0.15 where, f6 denotes a focal length of the sixth lens, R12 denotes a central curvature radius of the image side surface of the sixth lens, d11 denotes an on-axis thickness of the sixth lens, and TTL denotes a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.


As an improvement, the camera optical lens further satisfies the following conditions: −1.26≤f6/f≤−0.78, 1.59≤(R11+R12)/(R11−R12)≤2.64, and 0.07≤d11/TTL≤0.12.


As an improvement, the camera optical lens further satisfies the following condition: TTL/IH≤1.77. IH denotes an image height of the camera optical lens, and TTL denotes a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.


As an improvement, the camera optical lens further satisfies the following condition: TTL/IH≤1.72.


As an improvement, an FOV of the camera optical lens is greater than or equal to 112.96°. FOV denotes a field of view of the camera optical lens in a diagonal direction.


As an improvement, an FOV of the camera optical lens is greater than or equal to 114.11°. FOV denotes a field of view of the camera optical lens in a diagonal direction.


As an improvement, an FNO of the camera optical lens is less than or equal to 2.55. FNO denotes a ratio of an effective focal length of the camera optical lens to an entrance pupil diameter.


As an improvement, an FNO of the camera optical lens is less than or equal to 2.50.


As an improvement, the camera optical lens further satisfies the following condition: −28.14≤f12/f≤−2.30. f12 denotes a combined focal length of the first lens and the second lens.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to explain the technical solutions in the embodiments of the present invention more clearly, the following will briefly introduce the drawings that need to be used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, without creative work, other drawings can be obtained based on these drawings, among which:



FIG. 1 is a schematic diagram of a structure of a camera optical lens in accordance with Embodiment 1 of the present invention;



FIG. 2 is a schematic diagram of a longitudinal aberration of the camera optical lens shown in FIG. 1;



FIG. 3 is a schematic diagram of a lateral color of the camera optical lens shown in FIG. 1;



FIG. 4 is a schematic diagram of a field curvature and a distortion of the camera optical lens shown in FIG. 1;



FIG. 5 is a schematic diagram of a structure of a camera optical lens in accordance with Embodiment 2 of the present invention;



FIG. 6 is a schematic diagram of a longitudinal aberration of the camera optical lens shown in FIG. 5;



FIG. 7 is a schematic diagram of a lateral color of the camera optical lens shown in FIG. 5;



FIG. 8 is a schematic diagram of a field curvature and a distortion of the camera optical lens shown in FIG. 5;



FIG. 9 is a schematic diagram of a structure of a camera optical lens in accordance with Embodiment 3 of the present invention;



FIG. 10 is a schematic diagram of a longitudinal aberration of the camera optical lens shown in FIG. 9;



FIG. 11 is a schematic diagram of a lateral color of the camera optical lens shown in FIG. 9; and



FIG. 12 is a schematic diagram of a field curvature and a distortion of the camera optical lens shown in FIG. 9.





DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

In order to make the objects, technical solutions, and advantages of the present invention more apparent, the embodiments of the present invention will be described in detail below. However, it will be apparent to the one skilled in the art that, in the various embodiments of the present invention, a number of technical details are presented in order to provide the reader with a better understanding of the invention. However, the technical solutions claimed in the present invention can be implemented without these technical details and various changes and modifications based on the following embodiments.


Embodiment 1

As referring to the accompanying drawings, the present invention provides a camera optical lens 10. FIG. 1 shows the camera optical lens 10 according to embodiment 1 of the present invention. The camera optical lens 10 comprises six lenses. Specifically, from an object side to an image side, the camera optical lens 10 comprises in sequence: a first lens L1, a second lens L2, an aperture S1, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6. Optical elements like optical filter GF can be arranged between the sixth lens L6 and an image surface Si.


The first lens L1 is made of plastic material, the second lens L2 is made of plastic material, the third lens L3 is made of plastic material, the fourth lens L4 is made of plastic material, the fifth lens L5 is made of plastic material, and the sixth lens L6 is made of plastic material. In other optional embodiments, each lens may also be made of other materials.


In the present embodiment, an on-axis thickness of the fifth lens L5 is defined as d9, and a focal length of the camera optical lens 10 is defined as f. The camera optical lens 10 meets the following condition: 0.60≤d9/f≤0.80, which specifies a ratio of the on-axis thickness d9 of the fifth lens L5 to the focal length f of the camera optical lens 10. When the condition is satisfied, an aberration of the camera optical lens 10 is corrected, thereby improving an imaging quality.


A focal length of the first lens is defined as f1, and focal length of the camera optical lens 10 is defined as f, the optical lens meet the following condition: −5.00≤f1/f6≤2.00, which specifies a negative refractive power of the first lens L1. When the value is lower than −5.00, although the lens develops toward ultra-thin, the negative refractive power of the first lens L1 is too high, so that the aberration cannot be corrected and it is bad for producing wide angle lens. When the value is higher than −2.00, the negative refractive power of the first lens L1 is too weaker, the lens cannot develop toward ultra-thin.


A central curvature radius of an object side surface of the fifth lens L5 is defined as R9, and a central curvature radius of an object side surface of the sixth lens L6 is defined as R11. The camera optical lens 10 further satisfies the following condition: −30.00≤R9/R11≤−10.00. When the condition is satisfied, it can prevent the shape of the fifth lens L5 from being too curved, it is beneficial for producing the fifth lens L5 and reducing the aberration of the camera optical lens by controlling a ratio of the central curvature radius R9 of an object side surface of the fifth lens L5 to the central curvature radius R11 of an object side surface of the sixth lens L6.


In the present embodiment, the object side surface of the first lens L1 is convex in a paraxial region, an image side surface of the first lens L1 is concave in the paraxial region, and the first lens L1 has a negative refractive power. In other optional embodiments, the object side surface and the image side surface of the first lens L1 can also be arranged as other concave side surface or convex side surface, such as, concave object side surface and convex image side surface and so on.


A central curvature radius of an object side surface of the first lens L1 is defined as R1, and a central curvature radius of an image side surface of the first lens L1 is defined as R2. The camera optical lens 10 further satisfies the following condition: −3.45≤(R1+R2)/(R1−R2)≤1.89. This condition reasonably controls a shape of the first lens L1, so that the first lens L1 can effectively correct a spherical aberration of the system. Preferably, the following condition shall be satisfied, −2.16≤(R1+R2)/(R1−R2)≤1.51.


An on-axis thickness of the first lens L1 is defined as d1. A total optical length from the object side surface of the first lens L1 to the image surface Si of the camera optical lens 10 along an optical axis is defined as TTL. The camera optical lens 10 further satisfies the following condition: 0.03≤d1/TTL≤0.13. When the value is within this range, it benefits for realizing an ultra-thin effect. Preferably, the following condition shall be satisfied, 0.05≤d1/TTL≤0.10.


In the present embodiment, an object side surface of the second lens L2 is convex in the paraxial region, an image side surface of the second lens L2 is concave in the paraxial region, and the second lens L2 has a positive refractive power. In other optional embodiments, the object side surface and the image side surface of the second lens L2 can also be arranged as other concave side surface or convex side surface, such as, concave object side surface and convex image side surface and so on.


The focal length of the camera optical lens 10 is defined as f, and a focal length of the second lens L2 is defined as f2. The camera optical lens 10 further satisfies the following condition: 2.22≤f2/f≤32.64. It is beneficial for correcting the aberration of the camera optical lens 10 by controlling the positive refractive power of the second lens L2 being within reasonable range. Preferably, the following condition shall be satisfied, 3.565≤f2/f≤26.11.


A central curvature radius of the object side surface of the second lens L2 is defined as R3, and a central curvature radius of the image side surface of the second lens L2 is defined as R4. The camera optical lens 10 further satisfies the following condition: −75.32≤(R3+R4)/(R3−R4)≤−2.22, which specifies a shape of the second lens L2. When the condition is satisfied, as the camera optical lens 10 develops toward ultra-thin and wide-angle, it is beneficial for correcting an on-axis chromatic aberration. Preferably, the following condition shall be satisfied, −47.07≤(R3+R4)/(R3−R4)≤−2.77.


An on-axis thickness of the second lens L2 is defined as d3. The total optical length from the object side surface of the first lens L1 to the image surface Si of the camera optical lens 10 along the optical axis is defined as TTL. The camera optical lens 10 further satisfies the following condition: 0.02≤d3/TTL≤0.09. When the value is within this range, it is beneficial for producing ultra-thin lenses. Preferably, the following condition shall be satisfied, 0.03≤d3/TTL≤0.07.


In the present embodiment, an object side surface of the third lens L3 is convex in the paraxial region, an image side surface of the third lens L3 is convex in the paraxial region, and the third lens L3 has a positive refractive power. In other optional embodiments, the object side surface and the image side surface of the third lens L3 can also be arranged as other concave side surface or convex side surface, such as, concave object side surface and concave image side surface and so on.


The focal length of the camera optical lens 10 is defined as f, and a focal length of the third lens L3 is defined as f3. The camera optical lens 10 further satisfies the following condition: 0.70≤f3/f≤2.77. By a reasonable distribution of the refractive power, which makes it is possible that the camera optical lens 10 has the excellent imaging quality and a lower sensitivity. Preferably, the following condition shall be satisfied, 1.12≤f3/f≤2.22.


The central curvature radius of the object side surface of the third lens L3 is defined as R5, and a central curvature radius of the image side surface of the third lens L3 is defined as R6. The camera optical lens 10 further satisfies the following condition: 0.25≤(R5+R6)/(R5−R6)≤1.72, which specifies a shape of the third lens 13. It is beneficial for molding the third lens L3. When the condition is satisfied, a degree of deflection of light passing through the lens can be alleviated, and the aberration can be reduced effectively. Preferably, the following condition shall be satisfied, 0.40≤(R5+R6)/(R5−R6)≤1.37.


An on-axis thickness of the third lens L3 is defined as d5. The total optical length from the object side surface of the first lens L1 to the image surface Si of the camera optical lens 10 along the optical axis is defined as TTL. The camera optical lens 10 further satisfies the following condition: 0.04≤d5/TTL≤0.14, which benefits for realizing the ultra-thin effect. Preferably, the following condition shall be satisfied, 0.06≤d5/TTL≤0.11.


In the present embodiment, an object side surface of the fourth lens L4 is convex in the paraxial region, an image side surface of the fourth lens L4 is concave in the paraxial region, and the fourth lens L4 has a negative refractive power. In other optional embodiments, the object side surface and the image side surface of the fourth lens L4 can also be arranged as other convex side surface or concave side surface, such as, concave object side surface and convex image side surface and so on.


The focal length of the camera optical lens 10 is defined as f, and a focal length of the fourth lens L4 is defined as f4. The camera optical lens 10 further satisfies the following condition: −7.40≤f4/f≤−1.85. It is beneficial for realizing the better imaging quality and the lower sensitivity by controlling the refractive power being within reasonable range. Preferably, the following condition shall be satisfied, −4.62≤f4/f≤−2.32.


The curvature radius of the object side surface of the fourth lens L4 is defined as R7, and a central curvature radius of the image side surface of the fourth lens L4 is defined as R8. The camera optical lens further satisfies the following condition: 0.69≤(R7+R8)/(R7−R8)≤4.80, which specifies a shape of the fourth lens L4. When the condition is satisfied, as the development of ultra-thin and wide-angle lenses, it is beneficial for solving the problems, such as correcting an off-axis aberration. Preferably, the following condition shall be satisfied, 1.10≤(R7+R8)/(R7−R8)≤3.84.


An on-axis thickness of the fourth lens L4 is defined as d7. The total optical length from the object side surface of the first lens L1 to the image surface Si of the camera optical lens 10 along the optical axis is defined as TTL. The camera optical lens 10 further satisfies the following condition: 0.02≤d7/TTL≤0.07, which is beneficial for realizing the ultra-thin effect. Preferably, the following condition shall be satisfied, 0.03≤d7/TTL≤0.06.


In the present embodiment, the object side surface of the fifth lens L5 is concave in the paraxial region, an image side surface of the fifth lens L5 is convex in the paraxial region, and the fifth lens L5 has a positive refractive power. In other optional embodiments, the object side surface and the image side surface of the fifth lens L5 can also be arranged as other convex side surface or concave side surface, such as, convex object side surface and concave image side surface and so on.


The focal length of the camera optical lens 10 is defined as f, and a focal length of the fifth lens L5 is defined as f5. The camera optical lens 10 further satisfies the following condition: 0.34≤f5/f≤1.07. When the value is within this range, a light angle of the camera optical lens 10 can be smoothed effectively and the sensitivity of the tolerance can be reduced. Preferably, the following condition shall be satisfied, 0.55≤f5/f≤0.86.


The central curvature radius of the object side surface of the fifth lens L5 is defined as R9, and a central curvature radius of an image side surface of the fifth lens L5 is defined as R10. The camera optical lens further satisfies the following condition: 0.51≤(R9+R10)/(R9−R10)≤1.61, which specifies a shape of the fifth lens L5. When the value is within this range, as the development of the ultra-thin and wide-angle lenses, it is beneficial for correcting the off-axis aberration. Preferably, the following condition shall be satisfied, 0.82≤(R9+R10)/(R9−R10)≤1.29.


The on-axis thickness of the fifth lens L5 is defined as d9. The total optical length from the object side surface of the first lens L1 to the image surface Si of the camera optical lens 10 along the optical axis is defined as TTL. The camera optical lens 10 further satisfies the following condition: 0.12≤d9/TTL≤0.45. When the condition is satisfied, it is beneficial for realizing the ultra-thin effect. Preferably, the following condition shall be satisfied, 0.19≤d9/TTL≤0.36.


In the present embodiment, the object side surface of the sixth lens L6 is convex in the paraxial region, an image side surface of the sixth lens L6 is concave in the paraxial region, and the sixth lens L6 has a negative refractive power. In other optional embodiments, the object side surface and the image side surface of the sixth lens L6 can be arranged as other convex side surface or concave side surface, such as, concave object side surface and convex image side surface and so on.


The focal length of the camera optical lens 10 is defined as f, and a focal length of the sixth lens L6 is defined as f6. The camera optical lens further satisfies the following condition: −2.01≤f6/f≤−0.63. It is beneficial for realizing the better imaging quality and the lower sensitivity by controlling the refractive power being within reasonable range. Preferably, the following condition shall be satisfied, −1.26≤f6/f≤−0.78.


The central curvature radius of the object side surface of the sixth lens L6 is defined as R11, and a central curvature radius of the image side surface of the sixth lens L6 is defined as R12. The camera optical lens further satisfies the following condition: 0.99≤(R11+R12)/(R11−R12)≤3.30, which specifies a shape of the sixth lens L6. When the condition is satisfied, as the development of the ultra-thin and wide-angle lenses, it benefits for correcting the off-axis aberration. Preferably, the following condition shall be satisfied, 1.59≤(R11+R12)/(R11−R12)≤2.64.


An on-axis thickness of the sixth lens L6 is defined as d11. The total optical length from the object side surface of the first lens L1 to the image surface Si of the camera optical lens 10 along the optical axis is defined as TTL. The camera optical lens further satisfies the following condition: 0.04≤d11/TTL≤0.15, which is beneficial for realizing the ultra-thin effect. Preferably, the following condition shall be satisfied, 0.07≤d11/TTL≤0.12.


In the present embodiment, an image height of the camera optical lens 10 is defined as IH. The total optical length from the object side surface of the first lens L1 to the image surface Si of the camera optical lens 10 along an optical axis is defined as TTL. The camera optical lens 10 further satisfies the following condition: TTL/IH≤1.77, thereby achieving the ultra-thin performance. Preferably, the following condition shall be satisfied, TTL/IH≤1.72.


In the present embodiment, a field of view of the camera optical lens 10 in a diagonal direction is defined as FOV. The FOV is greater than or equal to 112.96°, thereby achieving the wide-angle performance. Preferably, the FOV is greater than or equal to 114.11°.


In the present embodiment, an F number (FNO) of the camera optical lens 10 is smaller than or equal to 2.55, thereby achieving a large aperture and good imaging performance. Preferably, the FNO of the camera optical lens 10 is smaller than or equal to 2.50.


In the present embodiment, the focal length of the camera optical lens 10 is f, and a combined focal length of the first lens L1 and the second lens L2 is defined as f12. The camera optical lens 10 further satisfies the following condition: −28.14≤f12/f≤−2.30. This condition can eliminate aberration and distortion of the camera optical lens 10, reduce a back focal length of the camera optical lens 10, and maintain the miniaturization of the camera lens system group. Preferably, the following condition shall be satisfied, −17.59≤f12/f≤−2.88.


When the above conditions are satisfied, which makes it is possible that the camera optical lens has the excellent optical performances, and meanwhile can meet design requirements of ultra-thin, wide-angle and large aperture. According the characteristics of the camera optical lens 10, it is particularly suitable for a mobile camera lens component and a WEB camera lens composed of high pixel CCD, CMOS.


The following examples will be used to describe the camera optical lens 10 of the present invention. The symbols recorded in each example will be described as follows. The focal length, on-axis distance, central curvature radius, on-axis thickness, inflexion point position, and arrest point position are all in units of mm.


TTL: the total optical length from the object side surface of the first lens L1 to the image surface Si of the camera optical lens 10 along the optical axis, the unit of TTL is mm.


F number (FNO): a ratio of an effective focal length of the camera optical lens 10 to an entrance pupil diameter (ENPD).


Preferably, inflexion points and/or arrest points can also be arranged on the object side surface and/or image side surface of the lens, so that the demand for high quality imaging can be satisfied, the description below can be referred for specific implementable scheme.


The design information of the camera optical lens 10 in Embodiment 1 of the present invention is shown in the tables 1 and 2.














TABLE 1







R
d
nd
νd























S1

d0=
−1.314






R1
19.546
d1=
0.500
nd1
1.5439
ν1
55.95


R2
2.248
d2=
0.413


R3
3.202
d3=
0.242
nd2
1.6150
ν2
25.92


R4
5.334
d4=
0.218


R5
6.764
d5=
0.506
nd3
1.5439
ν3
55.95


R6
−2.229
d6=
0.341


R7
5.658
d7=
0.240
nd4
1.6700
ν4
19.39


R8
2.622
d8=
0.115


R9
−23.778
d9=
1.365
nd5
1.5439
ν5
55.95


R10
−0.862
d10=
0.040


R11
2.366
d11=
0.601
nd6
1.6448
ν6
22.44


R12
0.798
d12=
0.497


R13

d13=
0.210
ndg
1.5163
νg
64.14


R14

d14=
0.602









where, the meaning of the various symbols is as follows.


S1: aperture;


R: curvature radius of an optical surface, a central curvature radius for a lens;


R1: central curvature radius of the object side surface of the first lens L1;


R2: central curvature radius of the image side surface of the first lens L1;


R3: central curvature radius of the object side surface of the second lens L2;


R4: central curvature radius of the image side surface of the second lens L2;


R5: central curvature radius of the object side surface of the third lens L3;


R6: central curvature radius of the image side surface of the third lens L3;


R7: central curvature radius of the object side surface of the fourth lens L4;


R8: central curvature radius of the image side surface of the fourth lens L4;


R9: central curvature radius of the object side surface of the fifth lens L5;


R10: central curvature radius of the image side surface of the fifth lens L5;


R11: central curvature radius of the object side surface of the sixth lens L6;


R12: central curvature radius of the image side surface of the sixth lens L6;


R13: central curvature radius of an object side surface of the optical filter GF;


R14: curvature radius of an image side surface of the optical filter GF;


d: on-axis thickness of a lens and an on-axis distance between lenses;


d0: on-axis distance from the aperture S1 to the object side surface of the first lens L1;


d1: on-axis thickness of the first lens L1;


d2: on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;


d3: on-axis thickness of the second lens L2;


d4: on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;


d5: on-axis thickness of the third lens L3;


d6: on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;


d7: on-axis thickness of the fourth lens L4;


d8: on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5;


d9: on-axis thickness of the fifth lens L5;


d10: on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;


d11: on-axis thickness of the sixth lens L6;


d12: on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the optical filter GF;


d13: on-axis thickness of the optical filter GF;


d14: on-axis distance from the image side surface of the optical filter GF to the image surface;


nd: refractive index of d line (d-line is green light with a wavelength of 550 nm);


nd1: refractive index of d line of the first lens L1;


nd2: refractive index of d line of the second lens L2;


nd3: refractive index of d line of the third lens L3;


nd4: refractive index of d line of the fourth lens L4;


nd5: refractive index of d line of the fifth lens L5;


nd6: refractive index of d line of the sixth lens L6;


ndg: refractive index of d line of the optical filter GF;


vd: abbe number;


v1: abbe number of the first lens L1;


v2: abbe number of the second lens L2;


v3: abbe number of the third lens L3;


v4: abbe number of the fourth lens L4;


v5: abbe number of the fifth lens L5;


v6: abbe number of the sixth lens L6;


v7: abbe number of the seventh lens L7;


vg: abbe number of the optical filter GF;


Table 2 shows the aspherical surface data of the camera optical lens 10 in Embodiment 1 of the present invention.












TABLE 2









Conic coefficient
Aspheric surface coefficients














k
A4
A6
A8
A10
A12





R1
0.0000E+00
 1.4249E−01
−9.6233E−02
7.8013E−02
−4.8661E−02 
2.1325E−02


R2
0.0000E+00
 2.3038E−01
 6.2067E−03
−3.9628E−01 
9.7129E−01
−1.0560E+00 


R3
2.6731E+00
−7.0720E−02
−2.8971E−01
7.1138E−01
−2.3248E+00 
4.5388E+00


R4
0.0000E+00
−6.0403E−02
 1.4968E−01
−1.5858E+00 
6.2738E+00
−1.0457E+01 


R5
−1.0000E+01 
−1.6035E−02
−3.7770E−02
0.0000E+00
0.0000E+00
0.0000E+00


R6
4.5097E+00
−1.2551E−01
−1.7460E−03
0.0000E+00
0.0000E+00
0.0000E+00


R7
0.0000E+00
−4.5644E−01
 3.5990E−01
−6.2871E−01 
7.1478E−01
−2.7687E−01 


R8
−3.7318E+00 
−3.4225E−01
 3.5216E−01
−3.8849E−01 
4.1191E−01
−2.6115E−01 


R9
−1.0000E+01 
−7.8794E−03
−7.3490E−02
1.7705E−01
−1.6669E−01 
8.0241E−02


R10
−1.0000E+00 
 2.7439E−01
−4.5097E−01
5.7134E−01
−5.0635E−01 
2.9868E−01


R11
0.0000E+00
−1.6686E−01
 1.7480E−02
3.7074E−02
−3.5092E−02 
1.6067E−02


R12
−4.0160E+00 
−8.6202E−02
 3.7077E−02
−1.1266E−02 
2.1982E−03
−2.6500E−04 













Conic coefficient
Aspheric surface coefficients













k
A14
A16
A18
A20





R1
0.0000E+00
−5.5612E−03
6.6125E−04
0.0000E+00
0.0000E+00


R2
0.0000E+00
 4.2750E−01
−3.7866E−02 
0.0000E+00
0.0000E+00


R3
2.6731E+00
−4.0031E+00
1.3191E+00
0.0000E+00
0.0000E+00


R4
0.0000E+00
 7.7302E+00
0.0000E+00
0.0000E+00
0.0000E+00


R5
−1.0000E+01 
 0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00


R6
4.5097E+00
 0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00


R7
0.0000E+00
−2.2065E−02
0.0000E+00
0.0000E+00
0.0000E+00


R8
−3.7318E+00 
 8.4087E−02
−1.0851E−02 
0.0000E+00
0.0000E+00


R9
−1.0000E+01 
−1.9361E−02
1.8656E−03
0.0000E+00
0.0000E+00


R10
−1.0000E+00 
−1.0896E−01
2.1965E−02
−1.8489E−03 
0.0000E+00


R11
0.0000E+00
−4.3978E−03
7.2604E−04
−6.6221E−05 
2.5325E−06


R12
−4.0160E+00 
 1.7842E−05
−5.1130E−07 
0.0000E+00
0.0000E+00









For convenience, an aspheric surface of each lens surface uses the aspheric surfaces shown in the below condition (1). However, the present invention is not limited to the aspherical polynomials form shown in the condition (1).






z=(cr2)/{1+[1−(k+1)(c2r2)]1/2}+A4r4+A6r6+A8r8+A10r10+A12r12+A14r14+A16r16+A18r18+A20r20  (1)


Where, K is a conic coefficient, A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspheric surface coefficients. c is the curvature at the center of the optical surface. r is a vertical distance between a point on an aspherical curve and the optic axis, and z is an aspherical depth (a vertical distance between a point on an aspherical surface, having a distance of r from the optic axis, and a surface tangent to a vertex of the aspherical surface on the optic axis).


Table 3 and Table 4 show design data of inflexion points and arrest points of respective lens in the camera optical lens 10 according to Embodiment 1 of the present invention. P1R1 and P1R2 represent the object side surface and the image side surface of the first lens L1, P2R1 and P2R2 represent the object side surface and the image side surface of the second lens L2, P3R1 and P3R2 represent the object side surface and the image side surface of the third lens L3, P4R1 and P4R2 represent the object side surface and the image side surface of the fourth lens L4, P5R1 and P5R2 represent the object side surface and the image side surface of the fifth lens L5, and P6R1 and P6R2 represent the object side surface and the image side surface of the sixth lens L6. The data in the column named “inflexion point position” refers to vertical distances from inflexion points arranged on each lens surface to the optical axis of the camera optical lens 10. The data in the column named “arrest point position” refers to vertical distances from arrest points arranged on each lens surface to the optical axis of the camera optical les 10













TABLE 3






Number of
Inflexion point
Inflexion
Inflexion point



inflexion points
position 1
point position 2
position 3







P1R1
0
/
/
/


P1R2
1
0.905
/
/


P2R1
2
0.435
0.825
/


P2R2
0
/
/
/


P3R1
1
0.525
/
/


P3R2
0
/
/
/


P4R1
1
0.195
/
/


P4R2
3
0.345
0.915
1.245


P5R1
1
0.815
/
/


P5R2
1
1.355
/
/


P6R1
3
0.505
2.015
2.085


P6R2
1
0.625
/
/





















TABLE 4








Number of
Arrest point
Arrest point




arrest points
position 1
position 2









P1R1
0
/
/



P1R2
0
/
/



P2R1
2
0.735
0.885



P2R2
0
/
/



P3R1
0
/
/



P3R2
0
/
/



P4R1
1
0.325
/



P4R2
2
0.675
1.165



P5R1
1
1.245
/



P5R2
0
/




P6R1
1
0.985
/



P6R2
1
1.825
/











FIG. 2 and FIG. 3 respectively illustrate a longitudinal aberration and a lateral color of light with wavelengths of 470 nm, 555 nm and 650 nm after passing the camera optical lens 10 according to Embodiment 1. FIG. 4 illustrates a field curvature and a distortion of light with a wavelength of 555 nm after passing the camera optical lens 10 according to Embodiment 1, in which a field curvature S is a field curvature in a sagittal direction and T is a field curvature in a tangential direction.


Table 13 shows various values of Embodiments 1, 2 and 3 and values corresponding to parameters which are specified in the above conditions.


As shown in Table 13, Embodiment 1 satisfies the above conditions.


In the present embodiment, the entrance pupil diameter (ENPD) of the camera optical lens 10 is 0.973 mm. The image height of 1.0H is 3.500 mm. The FOV is 115.60°. Thus, the camera optical lens 10 satisfies design requirements of large aperture, ultra-thin and wide-angle while the on-axis and off-axis aberrations are sufficiently corrected, thereby achieving excellent optical characteristics.


Embodiment 2

Embodiment 2 is basically the same as Embodiment 1, the meaning of its symbols is the same as that of Embodiment 1, in the following, only the differences are listed.


An object side surface of a first lens L1 is concave in a paraxial region, and an object side surface of a third lens L3 is concave in the paraxial region.



FIG. 5 shows a schematic diagram of a structure of a camera optical lens 20 according to Embodiment 2 of the present invention. Table 5 and table 6 show the design data of a camera optical lens 20 in Embodiment 2 of the present invention.














TABLE 5







R
d
nd
νd























S1

d0=
−1.191






R1
−16.216
d1=
0.500
nd1
1.5439
ν1
55.95


R2
5.441
d2=
0.295


R3
4.402
d3=
0.272
nd2
1.6150
ν2
25.92


R4
8.181
d4=
0.205


R5
−31.632
d5=
0.485
nd3
1.5439
ν3
55.95


R6
−2.122
d6=
0.309


R7
4.889
d7=
0.240
nd4
1.6700
ν4
19.39


R8
2.560
d8=
0.062


R9
−35.499
d9=
1.569
nd5
1.5439
ν5
55.95


R10
−0.828
d10=
0.040


R11
2.351
d11=
0.600
nd6
1.6448
ν6
22.44


R12
0.778
d12=
0.497


R13

d13=
0.210
ndg
1.5163
νg
64.14


R14

d14=
0.602









Table 6 shows aspherical surface data of each lens of the camera optical lens 20 in Embodiment 2 of the present invention.











TABLE 6






Conic coefficient
Aspheric surface coefficients






















k
A4
A6
A8
A10
A12





R1
  0.0000E+00
  1.7641E−01
−1.2185E−01
  8.8765E−02
−4.4476E−02
  1.3258E−02


R2
  0.0000E+00
  3.0040E−01
−1.3809E−01
−1.6122E−01
  6.7023E−01
−8.0681E−01


R3
  0.0000E+00
  5.0289E−02
−2.8042E−01
  5.3152E−01
−6.8188E−01
  3.6975E−01


R4
  0.0000E+00
  8.8432E−03
  3.0783E−02
−4.0054E−01
  2.9334E+00
−6.8198E+00


R5
  0.0000E+00
−7.9199E−02
−5.0016E−02
−1.8622E−01
  0.0000E+00
  0.0000E+00


R6
  0.0000E+00
−2.4489E−01
−3.3130E−02
  4.6923E−01
−3.3203E+00
  8.8151E+00


R7
  0.0000E+00
−4.9661E−01
  3.8878E−01
−7.6076E−01
  1.1893E+00
−1.1888E+00


R8
  0.0000E+00
−3.7795E−01
  3.8205E−01
−4.3298E−01
  4.2311E−01
−2.4210E−01


R9
  0.0000E+00
−1.1816E−02
  6.4141E−02
−7.6474E−02
  5.1088E−02
−1.8861E−02


R10
−1.0000E+00
  2.7994E−01
−4.3527E−01
  5.2101E−01
−4.3928E−01
  2.4813E−01


R11
  0.0000E+00
−1.7023E−01
  4.2930E−02
−4.0356E−03
−2.3016E−03
  6.8927E−04


R12
−3.9729E+00
−8.4171E−02
  3.5325E−02
−1.1300E−02
  2.5831E−03
−4.1706E−04






k
A14
A16
A18
A20





R1
  0.0000E+00
−1.7530E−03
  0.0000E+00
  0.0000E+00
  0.0000E+00



R2
  0.0000E+00
  2.9655E−01
  0.0000E+00
  0.0000E+00
  0.0000E+00



R3
  0.0000E+00
  0.0000E+00
  0.0000E+00
  0.0000E+00
  0.0000E+00



R4
  0.0000E+00
  6.2797E+00
  0.0000E+00
  0.0000E+00
  0.0000E+00



R5
  0.0000E+00
  0.0000E+00
  0.0000E+00
  0.0000E+00
  0.0000E+00



R6
  0.0000E+00
−1.1363E+01
  5.1281E+00
  0.0000E+00
  0.0000E+00



R7
  0.0000E+00
  1.3491E+00
−1.2186E+00
  4.2187E−01
  0.0000E+00



R8
  0.0000E+00
  6.8934E−02
−7.6551E−03
  0.0000E+00
  0.0000E+00



R9
  0.0000E+00
  3.7771E−03
−3.2827E−04
  0.0000E+00
  0.0000E+00



R10
−1.0000E+00
−8.6954E−02
  1.6961E−02
−1.3957E−03
  0.0000E+00



R11
  0.0000E+00
−1.8764E−05
−1.1770E−05
  9.4653E−07
  0.0000E+00



R12
−3.9729E+00
  4.4382E−05
−2.7099E−06
7  .0123E−08
  0.0000E+00









Table 7 and table 8 show design data of inflexion points and arrest points of respective lens in the camera optical lens 20 according to Embodiment 2 of the present invention.













TABLE 7






Number of
Inflexion point
Inflexion point
Inflexion point



inflexion points
position 1
position 2
position 3







P1R1
2
0.185
1.495
/


P1R2
1
0.885
/
/


P2R1
1
0.615
/
/


P2R2
0
/
/
/


P3R1
0
/
/
/


P3R2
0
/
/
/


P4R1
1
0.195
/
/


P4R2
3
0.345
0.995
1.105


P5R1
1
0.485
/
/


P5R2
1
1.265
/
/


P6R1
2
0.525
2.205
/


P6R2
1
0.625
/
/




















TABLE 8








Number of arrest points
Arrest point position 1









P1R1
1
0.315



P1R2
0
/



P2R1
0
/



P2R2
0
/



P3R1
0
/



P3R2
0
/



P4R1
1
0.335



P4R2
1
0.675



P5R1
1
0.765



P5R2
1
1.665



P6R1
1
0.995



P6R2
1
1.815











FIG. 6 and FIG. 7 respectively illustrate a longitudinal aberration and a lateral color of light with wavelengths of 470 nm, 555 nm and 650 nm after passing the camera optical lens 20 according to Embodiment 2. FIG. 8 illustrates a field curvature and a distortion of light with a wavelength of 555 nm after passing the camera optical lens 10 according to Embodiment 2, in which a field curvature S is a field curvature in a sagittal direction and T is a field curvature in a tangential direction.


As shown in Table 13, Embodiment 2 satisfies the above conditions.


In the present embodiment, an entrance pupil diameter (ENPD) of the camera optical lens is 0.958 mm. An image height of 1.0H is 3.500 mm. An FOV is 115.50°. Thus, the camera optical lens 20 satisfies design requirements of large aperture, ultra-thin and wide-angle while the on-axis and off-axis aberrations are sufficiently corrected, thereby achieving excellent optical characteristics.


Embodiment 3

Embodiment 3 is basically the same as Embodiment 1 and involves symbols having the same meanings as Embodiment 1, and only differences therebetween will be described in the following.


An object side surface of a first lens L1 is concave in a paraxial region, and an image side surface of a first lens L1 is convex in the paraxial region. An object side surface of a third lens L3 is concave in the paraxial region.



FIG. 9 shows a schematic diagram of a structure of a camera optical lens 30 according to Embodiment 3 of the present invention.


Tables 9 and 10 show design data of a camera optical lens 30 in Embodiment 3 of the present invention.














TABLE 9







R
d
nd
νd























S1

d0=
−1.060






R1
−4.356
d1=
0.501
nd1
1.5439
ν1
55.95


R2
−16.356
d2=
0.048


R3
2.856
d3=
0.337
nd2
1.6150
ν2
25.92


R4
3.011
d4=
0.251


R5
−61.760
d5=
0.450
nd3
1.5439
ν3
55.95


R6
−2.065
d6=
0.289


R7
10.779
d7=
0.240
nd4
1.6700
ν4
19.39


R8
3.127
d8=
0.040


R9
−65.562
d9=
1.776
nd5
1.5439
ν5
55.95


R10
−0.832
d10=
0.040


R11
2.193
d11=
0.608
nd6
1.6448
ν6
22.44


R12
0.782
d12=
0.511


R13

d13=
0.210
ndg
1.5163
νg
64.14


R14

d14=
0.591









Table 10 shows aspherical surface data of each lens of the camera optical lens 30 in Embodiment 3 of the present invention.












TABLE 10









Conic coefficient
Aspheric surface coefficients














k
A4
A6
A8
A10
A12





R1
0.0000E+00
 2.2275E−01
−2.0668E−01
 1.5705E−01
−7.8379E−02
2.2320E−02


R2
0.0000E+00
 8.4594E−01
−2.2494E+00
 4.4856E+00
−5.4701E+00
3.4004E+00


R3
0.0000E+00
 5.6756E−01
−1.9676E+00
 4.7272E+00
−6.1117E+00
3.2563E+00


R4
0.0000E+00
 8.1111E−02
 2.0786E−01
−2.0697E−02
−2.1460E−03
0.0000E+00


R5
0.0000E+00
−5.2197E−02
−4.5938E−03
 6.8988E−02
−2.9133E−01
−6.4538E−03 


R6
−6.4585E−04 
−2.0721E−01
 1.1508E−01
−3.1963E−01
 7.7184E−01
−1.0611E+00 


R7
0.0000E+00
−4.7353E−01
 2.0345E−01
 3.0459E−01
−2.7982E−01
2.5667E−02


R8
1.1140E−04
−3.4765E−01
 2.9167E−01
−9.8925E−02
 6.5093E−03
1.1362E−03


R9
0.0000E+00
 5.0605E−02
−1.8196E−02
−3.0460E−03
 9.9273E−03
−4.8961E−03 


R10
−1.0000E+00 
 2.3503E−01
−3.1816E−01
 3.5135E−01
−2.6788E−01
1.3582E−01


R11
1.3821E−04
−1.8687E−01
 7.1745E−02
−2.4651E−02
 3.8192E−03
−1.2252E−04 


R12
−3.9004E+00 
−9.0586E−02
 4.3993E−02
−1.6255E−02
 4.0240E−03
−6.5802E−04 













Conic coefficient
Aspheric surface coefficients













k
A14
A16
A18
A20





R1
0.0000E+00
−2.7580E−03
0.0000E+00
0.0000E+00
0.0000E+00


R2
0.0000E+00
−8.3634E−01
0.0000E+00
0.0000E+00
0.0000E+00


R3
0.0000E+00
−4.3797E−01
0.0000E+00
0.0000E+00
0.0000E+00


R4
0.0000E+00
 0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00


R5
0.0000E+00
−3.1401E−02
0.0000E+00
0.0000E+00
0.0000E+00


R6
−6.4585E−04 
 6.1135E−05
0.0000E+00
0.0000E+00
0.0000E+00


R7
0.0000E+00
−2.4880E−05
0.0000E+00
0.0000E+00
0.0000E+00


R8
1.1140E−04
 4.0343E−07
0.0000E+00
0.0000E+00
0.0000E+00


R9
0.0000E+00
 1.0657E−03
−9.0451E−05 
−5.1765E−09 
0.0000E+00


R10
−1.0000E+00 
−4.3500E−02
8.0020E−03
−6.3631E−04 
0.0000E+00


R11
1.3821E−04
−4.4329E−05
4.6532E−06
7.4224E−10
0.0000E+00


R12
−3.9004E+00 
 6.7784E−05
−3.9487E−06 
9.8122E−08
0.0000E+00









Table 11 and table 12 show Embodiment 3 design data of inflexion points and arrest points of respective lens in the camera optical lens 30 according to Embodiment 3 of the present invention.













TABLE 11






Number of
Inflexion point
Inflexion point
Inflexion



inflexion points
position 1
position 2
point position 3







P1R1
2
0.335
1.405
/


P1R2
2
0.085
0.775
/


P2R1
1
0.705
/
/


P2R2
0
/
/
/


P3R1
0
/
/
/


P3R2
0
/
/
/


P4R1
1
0.135
/
/


P4R2
3
0.315
0.845
1.095


P5R1
1
0.165
/
/


P5R2
1
1.305
/
/


P6R1
2
0.545
1.995
/


P6R2
1
0.625
/
/




















TABLE 12






Number of
Arrest point
Arrest point
Arrest point



arrest points
position 1
position 2
position 3







P1R1
2
0.335
1.405
/


P1R2
2
0.085
0.775
/


P2R1
1
0.705
/
/


P2R2
0
/
/
/


P3R1
0
/
/
/


P3R2
0
/
/
/


P4R1
1
0.135
/
/


P4R2
3
0.315
0.845
1.095


P5R1
1
0.165
/
/


P5R2
1
1.305
/
/


P6R1
2
0.545
1.995
/


P6R2
1
0.625
/
/










FIG. 10 and FIG. 11 respectively illustrate a longitudinal aberration and a lateral color of light with wavelengths of 470 nm, 555 nm and 650 nm after passing the camera optical lens 30 according to Embodiment 3. FIG. 12 illustrates a field curvature and a distortion of light with a wavelength of 555 nm after passing the camera optical lens 30 according to Embodiment 3, in which a field curvature S is a field curvature in a sagittal direction and T is a field curvature in a tangential direction.


Table 13 in the following lists values corresponding to the respective conditions. In the present Embodiment 3 in order to satisfy the above conditions.


In the present embodiment, an entrance pupil diameter (ENPD) of the camera optical lens is 0.906 mm. An image height of 1.0H is 3.500 mm. An FOV is 115.51°. Thus, the camera optical lens 30 satisfies design requirements of large aperture, ultra-thin and wide-angle while the on-axis and off-axis aberrations are sufficiently corrected, thereby achieving excellent optical characteristics.












TABLE 13





Parameters and





conditions
Embodiment 1
Embodiment 2
Embodiment 3


















d9/f
0.61
0.70
0.79


R9/R11
−10.05
−15.10
−29.89


f1/f
−2.10
−3.30
−4.92


f
2.237
2.242
2.242


f1
−4.699
−7.398
−11.034


f2
12.400
14.974
48.789


f3
3.132
4.140
3.902


f4
−7.464
−8.288
−6.597


f5
1.603
1.528
1.529


f6
−2.183
−2.104
−2.254


FNO
2.30
2.34
2.48


TTL
5.890
5.886
5.892


IH
3.500
3.500
3.500


FOV
115.60°
115.50°
115.51°









It is to be understood, however, that even though numerous characteristics and advantages of the present exemplary embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms where the appended claims are expressed.

Claims
  • 1. A camera optical lens with six-piece lenses, comprising, from an object side to an image side in sequence: a first lens having a negative refractive power, a second lens having a positive refractive power, a third lens having a positive refractive power, a fourth lens having a negative refractive power, a fifth lens having a positive refractive power, and a sixth lens having a negative refractive power; wherein the camera optical lens satisfies the following conditions: 0.60≤d9/f≤0.80;−30.00≤R9/R11≤−10.00; and−5.00≤f1/f≤−2.00;where,f: a focal length of the camera optical lens;f1: a focal length of the first lens;R9: a central curvature radius of an image side surface of the fifth lens;R11: a central curvature radius of an object side surface of the sixth lens; andd9: an on-axis thickness of the fifth lens.
  • 2. The camera optical lens according to claim 1 further satisfying the following conditions: −3.45≤(R1+R2)/(R1−R2)≤1.89; and0.03≤d1/TTL≤0.13;where,R1: a central curvature radius of an object side surface of the first lens;R2: a central curvature radius of an image side surface of the first lens;d1: an on-axis thickness of the first lens; andTTL: a total optical length from the object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.
  • 3. The camera optical lens according to claim 2 further satisfying the following conditions: −2.16≤(R1+R2)/(R1−R2)≤1.51; and0.05≤d1/TTL≤0.10.
  • 4. The camera optical lens according to claim 1, wherein, the second lens has an object side surface being convex in a paraxial region and an image side surface being concave in the paraxial region; the camera optical lens further satisfies the following conditions: 2.22≤f2/f≤32.64;−75.32≤(R3+R4)/(R3−R4)≤−2.22; and0.02≤d3/TTL≤0.09;where,f2: a focal length of the second lens;R3: a central curvature radius of the object side surface of the second lens;R4: a central curvature radius of the image side surface of the second lens;d3: an on-axis thickness of the second lens; andTTL: a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.
  • 5. The camera optical lens according to claim 4 further satisfying the following conditions: 3.56≤f2/f≤26.11;−47.07≤(R3+R4)/(R3−R4)≤−2.77; and0.03≤d3/TTL≤0.07.
  • 6. The camera optical lens according to claim 1, wherein, the third lens has an image side surface being convex in a paraxial region; the camera optical lens further satisfies the following conditions: 0.70≤f3/f≤2.77;0.25≤(R5+R6)/(R5−R6)≤1.72; and0.04≤d5/TTL≤0.14;where,f3: a focal length of the third lens;R5: a central curvature radius of an object side surface of the third lens;R6: a central curvature radius of the image side surface of the third lens;d5: an on-axis thickness of the third lens; andTTL: a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.
  • 7. The camera optical lens according to claim 6 further satisfying the following conditions: 1.12≤f3/f≤2.22;0.40≤(R5+R6)/(R5−R6)≤1.37; and0.06≤d5/TTL≤0.11.
  • 8. The camera optical lens according to claim 1, wherein, the fourth lens has an object side surface being convex in a paraxial region and an image side surface being concave in the paraxial region; the camera optical lens further satisfies the following conditions: −7.40≤f4/f≤−1.85;0.69≤(R7+R8)/(R7−R8)≤4.80; and0.02≤d7/TTL≤0.07;where,f4: a focal length of the fourth lens;R7: a central curvature radius of the object side surface of the fourth lens;R8: a central curvature radius of the image side surface of the fourth lens;d7: an on-axis thickness of the fourth lens; andTTL: a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.
  • 9. The camera optical lens according to claim 8 further satisfying the following conditions: −4.62≤f4/f≤−2.32;1.10≤(R7+R8)/(R7−R8)≤3.84; and0.03≤d7/TTL≤0.06.
  • 10. The camera optical lens according to claim 1, wherein, the object side surface of the fifth lens is concave in a paraxial region and the fifth lens has an image side surface being convex in the paraxial region; the camera optical lens further satisfies the following conditions: 0.34≤f5/f≤1.07;0.51≤(R9+R10)/(R9−R10)≤1.61; and0.12≤d9/TTL≤0.45;where,f5: a focal length of the fifth lens;R10: a central curvature radius of the image side surface of the fifth lens; andTTL: a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.
  • 11. The camera optical lens according to claim 10 further satisfying the following conditions: 0.55≤f5/f≤0.86;0.82≤(R9+R10)/(R9−R10)≤1.29; and0.19≤d9/TTL≤0.36.
  • 12. The camera optical lens according to claim 1, wherein, the object side surface of the sixth lens is convex in a paraxial region and the image side surface of the sixth lens is concave in the paraxial region; the camera optical lens further satisfies the following conditions: −2.01≤f6/f≤−0.63;0.99≤(R11+R12)/(R11−R12)≤3.30; and0.04≤d11/TTL≤0.15where,f6: a focal length of the sixth lens;R12: a central curvature radius of the image side surface of the sixth lens;d11: an on-axis thickness of the sixth lens; andTTL: a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.
  • 13. The camera optical lens according to claim 12 further satisfying the following conditions: 1.26≤f6/f≤−0.78;1.59≤(R11+R12)/(R11−R12)≤2.64; and0.07≤d11/TTL≤0.12.
  • 14. The camera optical lens according to claim 1 further satisfying the following condition: TTL/IH≤1.77;where,IH: an image height of the camera optical lens; andTTL: a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis.
  • 15. The camera optical lens according to claim 14 further satisfying the following condition: TTL/IH≤1.72.
  • 16. The camera optical lens according to claim 1, wherein an FOV of the camera optical lens is greater than or equal to 112.96°, where,FOV: a field of view of the camera optical lens in a diagonal direction.
  • 17. The camera optical lens according to claim 14, wherein an FOV of the camera optical lens is greater than or equal to 114.11°, where,is FOV: a field of view of the camera optical lens in a diagonal direction.
  • 18. The camera optical lens according to claim 1, wherein an FNO of the camera optical lens is less than or equal to 2.55, where,FNO: a ratio of an effective focal length of the camera optical lens to an entrance pupil diameter.
  • 19. The camera optical lens according to claim 1, wherein an FNO of the camera optical lens is less than or equal to 2.50.
  • 20. The camera optical lens according to claim 1 further satisfying the following condition: −28.14≤f12/f≤−2.30;where,f12: a combined focal length of the first lens and the second lens.
Priority Claims (1)
Number Date Country Kind
202011461876.8 Dec 2020 CN national