Camera Optical Lens

Information

  • Patent Application
  • 20200057257
  • Publication Number
    20200057257
  • Date Filed
    November 14, 2018
    6 years ago
  • Date Published
    February 20, 2020
    4 years ago
Abstract
The present disclosure discloses a camera optical lens. The camera optical lens including, in an order from an object side to an image side, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. The first lens is made of plastic material, the second lens is made of plastic material, the third lens is made of glass material, the fourth lens is made of plastic material, the fifth lens is made of glass material, and the sixth lens is made of plastic material. The camera optical lens further satisfies specific conditions.
Description
FIELD OF THE PRESENT DISCLOSURE

The present disclosure relates to optical lens, in particular to a camera optical lens suitable for handheld devices such as smart phones and digital cameras and imaging devices.


DESCRIPTION OF RELATED ART

With the emergence of smart phones in recent years, the demand for miniature camera lens is increasing day by day, but the photosensitive devices of general camera lens are no other than Charge Coupled Device (CCD) or Complementary metal-Oxide Semiconductor Sensor (CMOS sensor), and as the progress of the semiconductor manufacturing technology makes the pixel size of the photosensitive devices shrink, coupled with the current development trend of electronic products being that their functions should be better and their shape should be thin and small, miniature camera lens with good imaging quality therefor has become a mainstream in the market. In order to obtain better imaging quality, the lens that is traditionally equipped in mobile phone cameras adopts a three-piece or four-piece lens structure. And, with the development of technology and the increase of the diverse demands of users, and under this circumstances that the pixel area of photosensitive devices is shrinking steadily and the requirement of the system for the imaging quality is improving constantly, the five-piece, six-piece and seven-piece lens structure gradually appear in lens design. There is an urgent need for ultra-thin wide-angle camera lenses which have good optical characteristics and the chromatic aberration of which is fully corrected.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the exemplary embodiments can be better understood with reference to the following drawings. The components in the drawing are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure.



FIG. 1 is a schematic diagram of a camera optical lens in accordance with a first embodiment of the present invention;



FIG. 2 shows the longitudinal aberration of the camera optical lens shown in FIG. 1;



FIG. 3 shows the lateral color of the camera optical lens shown in FIG. 1;



FIG. 4 presents a schematic diagram of the field curvature and distortion of the camera optical lens shown in FIG. 1;



FIG. 5 is a schematic diagram of a camera optical lens in accordance with a second embodiment of the present invention;



FIG. 6 presents the longitudinal aberration of the camera optical lens shown in FIG. 5;



FIG. 7 presents the lateral color of the camera optical lens shown in FIG. 5;



FIG. 8 presents the field curvature and distortion of the camera optical lens shown in FIG. 5;



FIG. 9 is a schematic diagram of a camera optical lens in accordance with a third embodiment of the present invention;



FIG. 10 presents the longitudinal aberration of the camera optical lens shown in FIG. 9;



FIG. 11 presents the lateral color of the camera optical lens shown in FIG. 9;



FIG. 12 presents the field curvature and distortion of the camera optical lens shown in FIG. 9.





DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

The present disclosure will hereinafter be described in detail with reference to several exemplary embodiments. To make the technical problems to be solved, technical solutions and beneficial effects of the present disclosure more apparent, the present disclosure is described in further detail together with the figure and the embodiments. It should be understood the specific embodiments described hereby is only to explain the disclosure, not intended to limit the disclosure.


Embodiment 1

As referring to FIG. 1, the present invention provides a camera optical lens 10. FIG. 1 shows the camera optical lens 10 of embodiment 1 of the present invention, the camera optical lens 10 comprises 6 lenses. Specifically, from the object side to the image side, the camera optical lens 10 comprises in sequence: an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6. Optical element like optical filter GF can be arranged between the sixth lens L6 and the image surface Si. The first lens L1 is made of plastic material, the second lens L2 is made of plastic material, the third lens L3 is made of glass material, the fourth lens L4 is made of plastic material, the fifth lens L5 is made of glass material, and the sixth lens L6 is made of plastic material.


Here, the focal length of the whole camera optical lens 10 is defined as f, the focal length of the first lens is defined as f1. The camera optical lens further satisfies the following condition: 0.5≤f1/f≤10. Condition 0.5≤f1/f≤10 fixes the positive refractive power of the first lens L1. If the lower limit of the set value is exceeded, although it benefits the ultra-thin development of lenses, but the positive refractive power of the first lens L1 will be too strong, problem like aberration is difficult to be corrected, and it is also unfavorable for wide-angle development of lens. On the contrary, if the upper limit of the set value is exceeded, the positive refractive power of the first lens L1 becomes too weak, it is then difficult to develop ultra-thin lenses. Preferably, the following condition shall be satisfied, 0.975≤f1/f≤8.772.


The refractive power of the third lens L3 is defined as n3. Here the following condition should satisfied: 1.7≤n3≤2.2. This condition fixes the refractive power of the third lens L3, and refractive power within this range benefits the ultra-thin development of lenses, and it also benefits the correction of aberration. Preferably, the following condition shall be satisfied, 1.704≤n3≤1.983.


The refractive power of the fifth lens L5 is defined as n5. Here the following condition should satisfied: 1.7≤n5≤2.2. This condition fixes the refractive power of the fifth lens L5, and refractive power within this range benefits the ultra-thin development of lenses, and it also benefits the correction of aberration. Preferably, the following condition shall be satisfied, 1.701≤n5≤1.953.


The thickness on-axis of the second lens L2 is defined as d3, and the total optical length of the camera optical lens 10 is defined as TTL. The following condition: 0.08≤d3/TTL≤0.2 should be satisfied. This condition fixes the ratio between the thickness on-axis of the second lens L2 and the total optical length TTL. When the condition is satisfied, it is beneficial for realization of the ultra-thin lens. Preferably, the condition 0.081≤d3/TTL≤0.145 shall be satisfied.


When the focal length of the camera optical lens 10 of the present invention, the focal length of each lens, the refractive power of the related lens, and the total optical length, the thickness on-axis and the curvature radius of the camera optical lens satisfy the above conditions, the camera optical lens 10 has the advantage of high performance and satisfies the design requirement of low TTL.


In this embodiment, the first lens L1 has a positive refractive power with a convex object side surface relative to the proximal axis and a concave image side surface relative to the proximal axis.


The curvature radius of the object side surface of the first lens L1 is defined as R1, the curvature radius of the image side surface of the first lens L1 is defined as R2. The camera optical lens 10 further satisfies the following condition: −27.99≤(R1+R2)/(R1−R2)≤−2.66, which fixes the shape of the first lens L1 and can effectively correct aberration of the camera optical lens. Preferably, the condition −17.50≤(R1+R2)/(R1−R2)≤−3.32 shall be satisfied.


The thickness on-axis of the first lens L1 is defined as d1. The following condition: 0.04≤d1/TTL≤0.12 should be satisfied. When the condition is satisfied, it is beneficial for realization of the ultra-thin lens. Preferably, the condition 0.06≤d1/TTL≤0.09 shall be satisfied.


In this embodiment, the second lens L2 has a positive refractive power with a convex object side surface and a concave image side surface relative to the proximal axis.


The focal length of the whole camera optical lens 10 is f, the focal length of the second lens L2 is f2. The following condition should be satisfied: 0.90≤f2/f≤5.07. When the condition is satisfied, the positive refractive power of the second lens L2 is controlled within reasonable scope, the spherical aberration caused by the first lens L1 which has positive refractive power and the field curvature of the system then can be reasonably and effectively balanced. Preferably, the condition 1.44≤f2/f≤4.05 should be satisfied.


The curvature radius of the object side surface of the second lens L2 is defined as R3, the curvature radius of the image side surface of the second lens L2 is defined as R4. The following condition should be satisfied: −3.49≤(R3+R4)/(R3−R4)≤−0.88, which fixes the shaping of the second lens L2. When beyond this range, with the development into the direction of ultra-thin and wide-angle lens, the problem like chromatic aberration is difficult to be corrected. Preferably, the following condition shall be satisfied, −2.18≤(R3+R4)/(R3−R4)≤−1.09.


The thickness on-axis of the third lens L3 is defined as d5. The following condition: 0.04≤d5/TTL≤0.18 should be satisfied. When the condition is satisfied, it is beneficial for realization of the ultra-thin lens. Preferably, the condition 0.07≤d5/TTL≤0.14 shall be satisfied.


In this embodiment, the third lens L3 has a negative refractive power with a convex object side surface and a concave image side surface relative to the proximal axis.


The focal length of the whole camera optical lens 10 is f, the focal length of the third lens L3 is f3. The following condition should be satisfied: −4.77≤f3/f≤−0.96, the field curvature of the system can be reasonably and effectively balanced for further improving the image quality. Preferably, the condition −2.98≤f3/f≤−1.20 should be satisfied.


The curvature radius of the object side surface of the third lens L3 is defined as R5, the curvature radius of the image side surface of the third lens L3 is defined as R6. The following condition should be satisfied: 1.29≤(R5+R6)/(R5−R6)≤4.39, which is beneficial for the shaping of the third lens L3, and bad shaping and stress generation due to extra large curvature of surface of the third lens L3 can be avoided. Preferably, the following condition shall be satisfied, 2.07≤(R5+R6)/(R5−R6)≤3.52.


In this embodiment, the fourth lens L4 has a positive refractive power with a convex object side surface and a convex image side surface relative to the proximal axis.


The focal length of the whole camera optical lens 10 is f, the focal length of the fourth lens L4 is f4. The following condition should be satisfied: 0.84≤f4/f≤2.84, When the condition is satisfied, the appropriate distribution of refractive power makes it possible that the system has better imaging quality and lower sensitivity. Preferably, the condition 1.34≤f4/f≤2.27 should be satisfied.


The curvature radius of the object side surface of the fourth lens L4 is defined as R7, the curvature radius of the image side surface of the fourth lens L4 is defined as R8. The following condition should be satisfied: −0.38≤(R7+R8)/(R7−R8)≤−0.12, which fixes the shaping of the fourth lens L4. When beyond this range, with the development into the direction of ultra-thin and wide-angle lens, the problem like chromatic aberration is difficult to be corrected. Preferably, the following condition shall be satisfied, −0.24≤(R7+R8)/(R7−R8)≤−0.14.


The thickness on-axis of the fourth lens L4 is defined as d7. The following condition: 0.03≤d7/TTL≤0.12 should be satisfied. When the condition is satisfied, it is beneficial for realization of the ultra-thin lens. Preferably, the condition 0.05≤d7/TTL≤0.09 shall be satisfied.


In this embodiment, the fifth lens L5 has a negative refractive power with a concave object side surface and a convex image side surface relative to the proximal axis.


The focal length of the whole camera optical lens 10 is f, the focal length of the fifth lens L5 is f5. The following condition should be satisfied: −5.24≤f5/f≤−1.51, which can effectively smooth the light angles of the camera and reduce the tolerance sensitivity. Preferably, the condition −3.28≤f5/f≤−1.88 should be satisfied.


The curvature radius of the object side surface of the fifth lens L5 is defined as R9, the curvature radius of the image side surface of the fifth lens L5 is defined as R10. The following condition should be satisfied: −5.86≤(R9+R10)/(R9−R10)≤−1.89, by which, the shape of the fifth lens L5 is fixed, further, with the development into the direction of ultra-thin and wide-angle lenses, problem like aberration of the off-axis picture angle is difficult to be corrected. Preferably, the following condition shall be satisfied, −3.66≤(R9+R10)/(R9−R10)≤−2.36.


The thickness on-axis of the fifth lens L5 is defined as d9. The following condition: 0.02≤d9/TTL≤0.09 should be satisfied. When the condition is satisfied, it is beneficial for realization of the ultra-thin lens. Preferably, the condition 0.04≤d9/TTL≤0.08 shall be satisfied.


In this embodiment, the sixth lens L6 has a positive refractive power with a convex object side surface and a concave image side surface relative to the proximal axis.


The focal length of the whole camera optical lens 10 is f, the focal length of the sixth lens L6 is f6. The following condition should be satisfied: 0.9≤f6/f≤4.22, When the condition is satisfied, the appropriate distribution of refractive power makes it possible that the system has better imaging quality and lower sensitivity. Preferably, the condition 1.43≤f6/f≤3.38 should be satisfied.


The curvature radius of the object side surface of the sixth lens L6 is defined as R11, the curvature radius of the image side surface of the sixth lens L6 is defined as R12. The following condition should be satisfied: −104.06≤(R11+R12)/(R11−R12)≤86.58, by which, the shape of the sixth lens L6 is fixed, further, with the development into the direction of ultra-thin and wide-angle lenses, problem like aberration of the off-axis picture angle is difficult to be corrected. Preferably, the following condition shall be satisfied, −65.04≤(R11+R12)/(R11−R12)≤69.26.


The thickness on-axis of the sixth lens L6 is defined as d11. The following condition: 0.07≤d11/TTL≤0.25 should be satisfied. When the condition is satisfied, it is beneficial for realization of the ultra-thin lens. Preferably, the condition 0.11≤d11/TTL≤0.20 shall be satisfied.


The focal length of the whole camera optical lens 10 is f, the combined focal length of the first lens L1 and the second lens L2 is f12. The following condition should be satisfied: 0.50≤f12/f≤2.28, which can effectively avoid the aberration and field curvature of the camera optical lens, and can suppress the rear focal length for realizing the ultra-thin lens. Preferably, the condition 0.79≤f12/f≤1.82 should be satisfied.


In this embodiment, the total optical length TTL of the camera optical lens 10 is less than or equal to 6.06 mm, it is beneficial for the realization of ultra-thin lenses. Preferably, the total optical length TTL of the camera optical lens 10 is less than or equal to 5.79 mm.


In this embodiment, the aperture F number of the camera optical lens 10 is less than or equal to 1.96. A large aperture has better imaging performance. Preferably, the aperture F number of the camera optical lens 10 is less than or equal to 1.92.


With such design, the total optical length TTL of the whole camera optical lens 10 can be made as short as possible, thus the miniaturization characteristics can be maintained.


In the following, an example will be used to describe the camera optical lens 10 of the present invention. The symbols recorded in each example are as follows. The unit of distance, radius and center thickness is mm.


TTL: Optical length (the distance on-axis from the object side surface of the first lens L1 to the image surface).


Preferably, inflexion points and/or arrest points can also be arranged on the object side surface and/or image side surface of the lens, so that the demand for high quality imaging can be satisfied, the description below can be referred for specific implementable scheme.


The design information of the camera optical lens 10 in the first embodiment of the present invention is shown in the following, the unit of the focal length, distance, radius and center thickness is mm.


The design information of the camera optical lens 10 in the first embodiment of the present invention is shown in the tables 1 and 2.














TABLE 1







R
d
nd
νd























S1

d0=
−0.307






R1
1.948
d1=
0.426
nd1
1.683
ν1
69.538


R2
3.124
d2=
0.114


R3
6.180
d3=
0.487
nd2
1.581
ν2
70.000


R4
22.737
d4=
0.038


R5
6.945
d5=
0.472
nd3
1.766
ν3
27.305


R6
3.072
d6=
0.205


R7
8.119
d7=
0.387
nd4
1.633
ν4
70.001


R8
−11.529
d8=
0.447


R9
−3.717
d9=
0.337
nd5
1.705
ν5
40.000


R10
−7.611
d10=
0.263


R11
1.274
d11=
0.791
nd6
1.550
ν6
41.239


R12
1.230
d12=
0.608


R13

d13=
0.210
ndg
1.517
νg
64.167


R14

d14=
0.604









Where:


In which, the meaning of the various symbols is as follows.


S1: Aperture;


R: The curvature radius of the optical surface, the central curvature radius in case of lens;


R1: The curvature radius of the object side surface of the first lens L1;


R2: The curvature radius of the image side surface of the first lens L1;


R3: The curvature radius of the object side surface of the second lens L2;


R4: The curvature radius of the image side surface of the second lens L2;


R5: The curvature radius of the object side surface of the third lens L3;


R6: The curvature radius of the image side surface of the third lens L3;


R7: The curvature radius of the object side surface of the fourth lens L4;


R8: The curvature radius of the image side surface of the fourth lens L4;


R9: The curvature radius of the object side surface of the fifth lens L5;


R10: The curvature radius of the image side surface of the fifth lens L5;


R11: The curvature radius of the object side surface of the sixth lens L6;


R12: The curvature radius of the image side surface of the sixth lens L6;


R13: The curvature radius of the object side surface of the optical filter GF;


R14: The curvature radius of the image side surface of the optical filter GF;


d: The thickness on-axis of the lens and the distance on-axis between the lens;


d0: The distance on-axis from aperture S1 to the object side surface of the first lens L1;


d1: The thickness on-axis of the first lens L1;


d2: The distance on-axis from the image side surface of the first lens L1 to the object side surface of the second lens L2;


d3: The thickness on-axis of the second lens L2;


d4: The distance on-axis from the image side surface of the second lens L2 to the object side surface of the third lens L3;


d5: The thickness on-axis of the third lens L3;


d6: The distance on-axis from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;


d7: The thickness on-axis of the fourth lens L4;


d8: The distance on-axis from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5;


d9: The thickness on-axis of the fifth lens L5;


d10: The distance on-axis from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;


d11: The thickness on-axis of the sixth lens L6;


d12: The distance on-axis from the image side surface of the sixth lens L6 to the object side surface of the optical filter GF;


d13: The thickness on-axis of the optical filter GF;


d14: The distance on-axis from the image side surface to the image surface of the optical filter GF;


nd: The refractive power of the d line;


nd1: The refractive power of the d line of the first lens L1;


nd2: The refractive power of the d line of the second lens L2;


nd3: The refractive power of the d line of the third lens L3;


nd4: The refractive power of the d line of the fourth lens L4;


nd5: The refractive power of the d line of the fifth lens L5;


nd6: The refractive power of the d line of the sixth lens L6;


ndg: The refractive power of the d line of the optical filter GF;


vd: The abbe number;


v1: The abbe number of the first lens L1;


v2: The abbe number of the second lens L2;


v3: The abbe number of the third lens L3;


v4: The abbe number of the fourth lens L4;


v5: The abbe number of the fifth lens L5;


v6: The abbe number of the sixth lens L6;


vg: The abbe number of the optical filter GF.


Table 2 shows the aspherical surface data of the camera optical lens 10 in the embodiment 1 of the present invention.












TABLE 2









Conic Index
Aspherical Surface Index
















k
A4
A6
A8
A10
A12
A14
A16



















R1
−1.5198E−01
−0.012438639
0.00619334
−0.012856191
0.014513705
−0.009721389
0.003966559
−0.001082812


R2
 3.3582E+00
−0.023346291
−0.046723045
0.039482015
0.00656162
−0.012953172
0.003392484
−0.001666146


R3
 7.4151E+00
0.022110692
−0.035197972
0.006313123
0.043748591
−0.024095196
−0.00097619
−1.01811E−05  


R4
−1.6517E+03
−0.017223667
0.014529808
−0.1260806
0.07494245
0.014833866
−0.014809209
0.000206949


R5
 1.6229E+01
−0.10866597
0.004623632
−0.037988987
−0.0325212
0.086477361
−0.031248055
0.000272991


R6
−1.7495E+01
−0.007977781
0.035854214
−0.13356883
0.19477568
−0.12972297
0.032881709
0.000690555


R7
−5.5619E+01
−0.023616411
−0.005286859
0.068318291
−0.061528172
−0.002847024
0.026789284
−0.010332606


R8
 5.6092E+01
−0.016751217
−0.074591933
0.12757561
−0.097363633
0.041642631
−0.00729754
−0.000160761


R9
−2.9918E+01
0.10060352
−0.29315569
0.3951076
−0.43810539
0.30500029
−0.11607969
0.018014357


R10
 1.0153E+01
−0.11121307
0.20777711
−0.2625787
0.1746405
−0.065168383
1.27E−02
−9.80E−04


R11
−7.2837E+00
−0.11121307
0.029253896
−0.00347372
4.12644E−05
4.61E−05
2.64E−06
−1.04E−06


R12
−4.7998E+00
−0.12721092
0.017755769
−0.002728024
0.000179374
2.31E−06
−7.35E−07 
 1.49E−08









Among them, K is a conic index, A4, A6, A8, A10, A12, A14, A16 are aspheric surface indexes.


IH: Image height






y=(x2/R)/[1+{1−(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16  (1)


For convenience, the aspheric surface of each lens surface uses the aspheric surfaces shown in the above condition (1). However, the present invention is not limited to the aspherical polynomials form shown in the condition (1).


Table 3 and table 4 show the inflexion points and the arrest point design data of the camera optical lens 10 lens in embodiment 1 of the present invention. In which, P1R1 and P1R2 represent respectively the object side surface and image side surface of the first lens L1, P2R1 and P2R2 represent respectively the object side surface and image side surface of the second lens L2, P3R1 and P3R2 represent respectively the object side surface and image side surface of the third lens L3, P4R1 and P4R2 represent respectively the object side surface and image side surface of the fourth lens L4, P5R1 and P5R2 represent respectively the object side surface and image side surface of the fifth lens L5, P6R1 and P6R2 represent respectively the object side surface and image side surface of the sixth lens L6. The data in the column named “inflexion point position” are the vertical distances from the inflexion points arranged on each lens surface to the optic axis of the camera optical lens 10. The data in the column named “arrest point position” are the vertical distances from the arrest points arranged on each lens surface to the optic axis of the camera optical lens 10.














TABLE 3







Inflexion point
Inflexion point
Inflexion point
Inflexion point



number
position 1
position 2
position 3




















P1R1






P1R2
1
1.085


P2R1
1
1.055


P2R2
1
0.345


P3R1
3
0.345
1.025
1.225


P3R2


P4R1
1
0.965


P4R2
2
1.085
1.225


P5R1
1
1.405


P5R2
1
1.635


P6R1
3
0.485
1.845
2.195


P6R2
1
0.635



















TABLE 4







Arrest point number
Arrest point position 1




















P1R1





P1R2



P2R1



P2R2
1
0.535



P3R1
1
0.575



P3R2



P4R1
1
1.135



P4R2



P5R1



P5R2



P6R1
1
0.995



P6R2
1
1.445











FIG. 2 and FIG. 3 show the longitudinal aberration and lateral color schematic diagrams after light with a wavelength of 486.1 nm, 587.6 nm and 656.3 nm passes the camera optical lens 10 in the first embodiment. FIG. 4 shows the field curvature and distortion schematic diagrams after light with a wavelength of 587.6 nm passes the camera optical lens 10 in the first embodiment, the field curvature S in FIG. 4 is a field curvature in the sagittal direction, T is a field curvature in the meridian direction.


Table 13 shows the various values of the embodiments 1, 2, 3 and the values corresponding with the parameters which are already specified in the conditions.


As shown in Table 13, the first embodiment satisfies the various conditions.


In this embodiment, the pupil entering diameter of the camera optical lens is 2.250 mm, the full vision field image height is 3.512 mm, the vision field angle in the diagonal direction is 78.81°, it has wide-angle and is ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.


Embodiment 2

Embodiment 2 is basically the same as embodiment 1, the meaning of its symbols is the same as that of embodiment 1, in the following, only the differences are described.


Table 5 and table 6 show the design data of the camera optical lens 20 in embodiment 2 of the present invention.














TABLE 5







R
d
nd
νd























S1

d0=
−0.315






R1
1.899
d1=
0.403
nd1
1.679
ν1
70.001


R2
3.169
d2=
0.141


R3
6.324
d3=
0.456
nd2
1.641
ν2
70.000


R4
33.275
d4=
0.060


R5
6.750
d5=
0.446
nd3
2.098
ν3
27.539


R6
3.254
d6=
0.185


R7
7.525
d7=
0.422
nd4
1.552
ν4
68.437


R8
−10.707
d8=
0.407


R9
−5.232
d9=
0.301
nd5
2.099
ν5
35.982


R10
−10.655
d10=
0.262


R11
1.417
d11=
0.914
nd6
1.559
ν6
40.000


R12
1.523
d12=
0.612


R13

d13=
0.210
ndg
1.517
νg
64.167


R14

d14=
0.608









Table 6 shows the aspherical surface data of each lens of the camera optical lens 20 in embodiment 2 of the present invention.












TABLE 6









Conic Index
Aspherical Surface Index
















k
A4
A6
A8
A10
A12
A14
A16



















R1
−1.8544E−01
−0.012955096
0.006106614
−0.012580614
0.014678634
−0.00967275
0.003965456
−0.001081531


R2
 3.4251E+00
−0.020759999
−0.04823534
0.037919533
0.005945225
−0.012789696
0.0037554
−0.001459157


R3
 7.5438E+00
0.020926821
−0.031466819
0.008446363
0.04264702
−0.025063157
1.2844E−05 
0.000716206


R4
 7.1188E+02
0.001443559
0.033584002
−0.11705262
0.075816641
0.013132468
−0.016384281
−0.000540223


R5
 2.4870E+01
−0.07972639
0.017772885
−0.039708132
−0.036039604
0.084348067
−0.031907964
0.000181901


R6
−1.9913E+01
−0.00565688
0.040352165
−0.14603363
0.19461966
−0.12516115
0.033948726
−0.000606407


R7
−4.0988E+01
−0.01471215
0.000378509
0.068632198
−0.062754251
−0.003758474
0.026787606
−0.009724667


R8
 5.3163E+01
−0.009126104
−0.08053106
0.1273326
−0.096306336
0.042346426
−0.007132326
−0.000314422


R9
−1.2536E+01
0.10874363
−0.28287574
0.39252915
−0.43964889
0.30478683
−0.11599626
0.018109453


R10
−3.0321E+00
−0.11257106
0.20624785
−0.26271666
0.17456454
−0.065173416
1.27E−02
−9.74E−04


R11
−9.6136E+00
−0.11257106
0.029532743
−0.003484065
3.59117E−05
4.49E−05
2.50E−06
−1.02E−06


R12
−4.4212E+00
−0.12140278
0.019004374
−0.002812888
0.000174153
2.03E−06
−7.01E−07 
 2.08E−08









Table 7 and table 8 show the inflexion points and the arrest point design data of the camera optical lens 20 lens in embodiment 2 of the present invention.














TABLE 7







Inflexion point
Inflexion point
Inflexion point
Inflexion point



number
position 1
position 2
position 3




















P1R1






P1R2
1
1.095


P2R1
1
1.135


P2R2
3
0.595
0.945
1.045


P3R1
3
0.435
1.005
1.155


P3R2
2
0.785
0.975


P4R1
1
1.055


P4R2
2
1.045
1.275


P5R1
1
1.395


P5R2
1
1.595


P6R1
3
0.465
1.795
2.185


P6R2
1
0.665





















TABLE 8







Arrest point
Arrest point
Arrest point
Arrest point



number
position 1
position 2
position 3




















P1R1






P1R2


P2R1


P2R2
3
0.865
1.025
1.055


P3R1
1
0.715


P3R2


P4R1
1
1.205


P4R2


P5R1


P5R2


P6R1
1
0.955


P6R2
1
1.465










FIG. 6 and FIG. 7 show the longitudinal aberration and lateral color schematic diagrams after light with a wavelength of 486.1 nm, 587.6 nm and 656.3 nm passes the camera optical lens 20 in the second embodiment. FIG. 8 shows the field curvature and distortion schematic diagrams after light with a wavelength of 587.6 nm passes the camera optical lens 20 in the second embodiment.


As shown in Table 13, the second embodiment satisfies the various conditions.


In this embodiment, the pupil entering diameter of the camera optical lens is 2.245 mm, the full vision field image height is 3.512 mm, the vision field angle in the diagonal direction is 78.93°, it has wide-angle and is ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.


Embodiment 3

Embodiment 3 is basically the same as embodiment 1, the meaning of its symbols is the same as that of embodiment 1, in the following, only the differences are described.


Table 9 and table 10 show the design data of the camera optical lens 30 in embodiment 3 of the present invention.














TABLE 9







R
d
nd
νd























S1

d0=
−0.179






R1
2.415
d1=
0.391
nd1
1.459
ν1
35.598


R2
2.786
d2=
0.070


R3
4.189
d3=
0.456
nd2
1.680
ν2
48.561


R4
30.970
d4=
0.044


R5
6.295
d5=
0.650
nd3
1.707
ν3
20.461


R6
3.091
d6=
0.204


R7
7.621
d7=
0.350
nd4
1.693
ν4
70.015


R8
−11.232
d8=
0.471


R9
−3.670
d9=
0.267
nd5
1.702
ν5
40.028


R10
−7.675
d10=
0.282


R11
1.199
d11=
0.785
nd6
1.615
ν6
39.971


R12
1.246
d12=
0.667


R13

d13=
0.210
ndg
1.517
νg
64.167


R14

d14=
0.663









Table 10 shows the aspherical surface data of each lens of the camera optical lens 30 in embodiment 3 of the present invention.












TABLE 10









Conic Index
Aspherical Surface Index
















k
A4
A6
A8
A10
A12
A14
A16



















R1
−3.1902E−01
−0.015896751
0.003828901
−0.014408759
0.013543529
−0.010259923
0.003735346
−0.001102772


R2
 3.2617E+00
−0.024983959
−0.046704887
0.039447921
0.005838062
−0.013925007
0.002524789
−0.002355692


R3
 7.5205E+00
0.023960399
−0.03690794
0.003400067
0.042630364
−0.024139721
−0.000928331
−1.6503E−05 


R4
−2.3642E+03
−0.020051392
0.023590107
−0.11882427
0.077000858
0.014927634
−0.015112994
−6.1741E−05 


R5
 1.9610E+01
−0.10004512
0.005405033
−0.040118726
−0.033158486
0.086630665
−0.030945003
0.000521193


R6
−1.7127E+01
−0.005471054
0.034988149
−0.13979597
0.19353905
−0.12982521
0.032124035
−0.000444628


R7
−4.4057E+01
−0.023008686
−0.004963476
0.06863315
−0.061349287
−0.002936645
0.026453272
−0.010693382


R8
 5.2064E+01
−0.016371054
−0.074397929
0.12766657
−0.097341283
0.041618524
−0.007348737
−0.000206263


R9
−2.5576E+01
0.10604876
−0.29134818
0.39391704
−0.43851139
0.30486485
−0.11615368
0.017964381


R10
 1.0635E+01
−0.11926273
0.20813538
−0.26234632
0.17470821
−0.065141812
1.27E−02
−9.74E−04


R11
−6.5457E+00
−0.11926273
0.029241566
−0.003488113
3.8952E−05
4.57E−05
2.58E−06
−1.05E−06


R12
−6.1773E+00
−0.12643371
0.017939861
−0.002739229
0.000178312
2.23E−06
−7.39E−07 
 1.51E−08









Table 11 and table 12 show the inflexion points and the arrest point design data of the camera optical lens 30 lens in embodiment 3 of the present invention.














TABLE 11







Inflexion point
Inflexion point
Inflexion point
Inflexion point



number
position 1
position 2
position 3




















P1R1
1
0.975




P1R2
1
1.045


P2R1
1
1.065


P2R2
3
0.325
1.015
1.145


P3R1
3
0.385
0.995
1.285


P3R2
2
0.735
1.265


P4R1
1
0.935


P4R2


P5R1
1
1.425


P5R2
1
1.555


P6R1
3
0.495
1.875
2.155


P6R2
1
0.595




















TABLE 12







Arrest point
Arrest point
Arrest point



number
position 1
position 2





















P1R1






P1R2



P2R1
1
1.225



P2R2
1
0.515



P3R1
2
0.635
1.145



P3R2
1
1.085



P4R1
1
1.115



P4R2



P5R1



P5R2



P6R1
1
1.025



P6R2
1
1.365











FIG. 10 and FIG. 11 show the longitudinal aberration and lateral color schematic diagrams after light with a wavelength of 486.1 nm, 587.6 nm and 656.3 nm passes the camera optical lens 30 in the third embodiment. FIG. 12 shows the field curvature and distortion schematic diagrams after light with a wavelength of 587.6 nm passes the camera optical lens 30 in the third embodiment.


As shown in Table 13, the third embodiment satisfies the various conditions.


In this embodiment, the pupil entering diameter of the camera optical lens is 2.067 mm, the full vision field image height is 3.512 mm, the vision field angle in the diagonal direction is 83.61°, it has wide-angle and is ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.













TABLE 13







Embodi-
Embodi-
Embodi-



ment 1
ment 2
ment 3



















f
4.275
4.265
3.927


f1
6.607
6.185
29.625


f2
14.441
12.111
7.075


f3
−7.593
−6.129
−9.374


f4
7.582
8.075
6.600


f5
−10.685
−9.631
−10.299


f6
12.028
8.900
7.035


f12
4.663
4.235
5.960


(R1 + R2)/(R1 − R2)
−4.311
−3.990
−13.997


(R3 + R4)/(R3 − R4)
−1.747
−1.469
−1.313


(R5 + R6)/(R5 − R6)
2.586
2.862
2.929


(R7 + R8)/(R7 − R8)
−0.174
−0.175
−0.192


(R9 + R10)/(R9 − R10)
−2.909
−2.930
−2.833


(R11 + R12)/(R11 − R12)
57.719
−27.707
−52.032


f1/f
1.545
1.450
7.543


f2/f
3.378
2.839
1.801


f3/f
−1.776
−1.437
−2.387


f4/f
1.773
1.893
1.680


f5/f
−2.499
−2.258
−2.622


f6/f
2.813
2.087
1.791


f12/f
1.091
0.993
1.518


d1
0.426
0.403
0.391


d3
0.487
0.456
0.456


d5
0.472
0.446
0.650


d7
0.387
0.422
0.350


d9
0.337
0.301
0.267


d11
0.791
0.914
0.785


Fno
1.900
1.900
1.900


TTL
5.389
5.427
5.510


d1/TTL
0.079
0.074
0.071


d3/TTL
0.090
0.084
0.083


d5/TTL
0.088
0.082
0.118


d7/TTL
0.072
0.078
0.063


d9/TTL
0.063
0.055
0.049


d11/TTL
0.147
0.168
0.142


n1
1.683
1.459
1.459


n2
1.581
1.680
1.680


n3
1.766
1.707
1.707


n4
1.633
1.693
1.693


n5
1.705
1.702
1.702


n6
1.550
1.615
1.615


v1
69.538
35.598
35.598


v2
70.000
48.561
48.561


v3
27.305
20.461
20.461


v4
70.001
70.015
70.015


v5
40.000
40.028
40.028


v6
41.239
39.971
39.971









It is to be understood, however, that even though numerous characteristics and advantages of the present exemplary embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms where the appended claims are expressed.

Claims
  • 1. A camera optical lens comprising, from an object side to an image side in sequence: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens; wherein the camera optical lens further satisfies the following conditions: 0.5≤f1/f≤10;1.7≤n3≤2.2;1.7≤n5≤2.2;0.08≤d3/TTL≤0.20;wheref: the focal length of the camera optical lens;f1: the focal length of the first lens;n3: the refractive power of the third lens;n5: the refractive power of the fifth lens;d3: the thickness on-axis of the second lens;TTL: the total optical length of the camera optical lens.
  • 2. The camera optical lens as described in claim 1 further satisfying the following conditions: 0.975≤f1/f≤8.772;1.704≤n3≤1.983;1.701≤n5≤1.953;0.081≤d3/TTL≤0.145.
  • 3. The camera optical lens as described in claim 1, wherein the first lens is made of plastic material, the second lens is made of plastic material, the third lens is made of glass material, the fourth lens is made of plastic material, the fifth lens is made of glass material, the sixth lens is made of plastic material.
  • 4. The camera optical lens as described in claim 1, wherein first lens has a positive refractive power with a convex object side surface and a concave image side surface; the camera optical lens further satisfies the following conditions: −27.99≤(R1+R2)/(R1−R2)≤−2.66;0.04≤d1/TTL≤0.12; whereR1: the curvature radius of object side surface of the first lens;R2: the curvature radius of image side surface of the first lens;d1: the thickness on-axis of the first lens;TTL: the total optical length of the camera optical lens.
  • 5. The camera optical lens as described in claim 4 further satisfying the following conditions: −17.50≤(R1+R2)/(R1−R2)≤−3.32;0.06≤d1/TTL≤0.09.
  • 6. The camera optical lens as described in claim 1, wherein the second lens has a positive refractive power with a convex object side surface and a concave image side surface; the camera optical lens further satisfies the following conditions: 0.90≤f2/f≤5.07;−3.49≤(R3+R4)/(R3−R4)≤−0.88; wheref: the focal length of the camera optical lens;f2: the focal length of the second lens;R3: the curvature radius of the object side surface of the second lens;R4: the curvature radius of the image side surface of the second lens.
  • 7. The camera optical lens as described in claim 6 further satisfying the following conditions: 1.44≤f2/f≤4.05;−2.18≤(R3+R4)/(R3−R4)≤−1.09.
  • 8. The camera optical lens as described in claim 1, wherein the third lens has a negative refractive power with a convex object side surface and a concave image side surface; the camera optical lens further satisfies the following conditions: −4.77≤f3/f≤−0.96;1.29≤(R5+R6)/(R5−R6)≤4.39;0.04≤d5/TTL≤0.18; wheref: the focal length of the camera optical lens;f3: the focal length of the third lens;R5: the curvature radius of the object side surface of the third lens;R6: the curvature radius of the image side surface of the third lens;d5: the thickness on-axis of the third lens;TTL: the total optical length of the camera optical lens.
  • 9. The camera optical lens as described in claim 8 further satisfying the following conditions: −2.98≤f3/f≤−1.20;2.07≤(R5+R6)/(R5−R6)≤3.52;0.07≤d5/TTL≤0.14.
  • 10. The camera optical lens as described in claim 1, wherein the fourth lens has a positive refractive power with a convex object side surface and a convex image side surface; the camera optical lens further satisfies the following conditions: 0.84≤f4/f≤2.84;−0.38≤(R7+R8)/(R7−R8)≤−0.12;0.03≤d7/TTL≤0.12; wheref: the focal length of the camera optical lens;f4: the focal length of the fourth lens;R7: the curvature radius of the object side surface of the fourth lens;R8: the curvature radius of the image side surface of the fourth lens;d7: the thickness on-axis of the fourth lens;TTL: the total optical length of the camera optical lens.
  • 11. The camera optical lens as described in claim 10 further satisfying the following conditions: 1.34≤f4/f≤2.27;−0.24≤(R7+R8)/(R7−R8)≤−0.14;0.05≤d7/TTL≤0.09.
  • 12. The camera optical lens as described in claim 1, wherein the fifth lens has a negative refractive power with a concave object side surface and a convex image side surface; the camera optical lens further satisfies the following conditions: −5.24≤f5/f≤−1.51;−5.86≤(R9+R10)/(R9−R10)≤−1.89;0.02≤d9/TTL≤0.09; wheref: the focal length of the camera optical lens;f5: the focal length of the fifth lens;R9: the curvature radius of the object side surface of the fifth lens;R10: the curvature radius of the image side surface of the fifth lens;d9: the thickness on-axis of the fifth lens;TTL: the total optical length of the camera optical lens.
  • 13. The camera optical lens as described in claim 12 further satisfying the following conditions: −3.28≤f5/f≤−1.88;−3.66≤(R9+R10)/(R9−R10)≤−2.36;0.04≤d9/TTL≤0.08.
  • 14. The camera optical lens as described in claim 1, wherein the sixth lens has a positive refractive power with a convex object side surface and a concave image side surface; the camera optical lens further satisfies the following conditions: 0.9≤f6/f≤4.22;−104.06≤(R11+R12)/(R11−R12)≤86.58;0.07≤d11/TTL≤0.25; wheref: the focal length of the camera optical lens;f6: the focal length of the sixth lens;R11: the curvature radius of the object side surface of the sixth lens;R12: the curvature radius of the image side surface of the sixth lens;d11: the thickness on-axis of the sixth lens;TTL: the total optical length of the camera optical lens.
  • 15. The camera optical lens as described in claim 14 further satisfying the following conditions: 1.43≤f6/f≤3.38;−65.04≤(R11+R12)/(R11−R12)≤69.26;0.11≤d11/TTL≤0.20.
  • 16. The camera optical lens as described in claim 1 further satisfying the following conditions: 0.50≤f12/f≤2.28; wheref12: the combined focal length of the first lens and the second lens;f: the focal length of the camera optical lens.
  • 17. The camera optical lens as described in claim 16 further satisfying the following conditions: 0.79≤f12/f≤1.82.
  • 18. The camera optical lens as described in claim 1, wherein the total optical length TTL of the camera optical lens is less than or equal to 6.06 mm.
  • 19. The camera optical lens as described in claim 18, wherein the total optical length TTL of the camera optical lens is less than or equal to 5.79 mm.
  • 20. The camera optical lens as described in claim 1, wherein the aperture F number of the camera optical lens is less than or equal to 1.96.
  • 21. The camera optical lens as described in claim 20, wherein the aperture F number of the camera optical lens is less than or equal to 1.92.
Priority Claims (2)
Number Date Country Kind
201810924579.9 Aug 2018 CN national
201810925270.1 Aug 2018 CN national