The present disclosure relates to the field of optical lens, particular, to a camera optical lens suitable for handheld devices, such as smart phones and digital cameras, and imaging devices, such as monitors or PC lenses.
With the emergence of smart phones in recent years, the demand for miniature camera lens is increasing day by day, but in general the photosensitive devices of camera lens are nothing more than Charge Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor Sensor (CMOS sensor), and as the progress of the semiconductor manufacturing technology makes the pixel size of the photosensitive devices become smaller, plus the current development trend of electronic products towards better functions and thinner and smaller dimensions, miniature camera lens with good imaging quality therefore have become a mainstream in the market.
In order to obtain better imaging quality, the lens that is traditionally equipped in mobile phone cameras adopts a three-piece or four-piece lens structure. Also, with the development of technology and the increase of the diverse demands of users, and as the pixel area of photosensitive devices is becoming smaller and smaller and the requirement of the system on the imaging quality is improving constantly, a five-piece structure gradually appear in lens designs. Although the five-piece lens already has good optical performance, its focal power, lens spacing and lens shape are still unreasonable, resulting in the lens structure still cannot meet the design requirements of a large aperture, ultra-thin and a wide angle while having good optical performance.
Therefore, it is necessary to provide an imaging optical lens that has better optical performance and meets design requirements of a large aperture, a wide angle and ultra-thin.
An objective of the present disclosure is to provide a camera optical lens, which has excellent optical performances, and meanwhile can meet design requirements of a large aperture, a wide angle and ultra-thin.
To solve the above problems, some embodiments of the present disclosure is to provides a camera optical lens including five-piece lenses, from an object side to an image side, the five-piece lenses are: a first lens having a positive refractive power, a second lens having a positive refractive power, a third lens, a fourth lens having a positive refractive power, and a fifth lens having a negative refractive power.
The camera optical lens satisfies conditions of −8.00≤f1/f5≤−3.00, R3/R4≤-2.00, and 3.00≤(R7+R8)/(R7−R8)≤15.00. Herein f1 denotes a focal length of the first lens, f5 denotes a focal length of the fifth lens, R3 denotes a curvature radius of an object-side surface of the second lens, R4 denotes a curvature radius of an image-side surface of the second lens, R7 denotes a curvature radius of an object-side surface of the fourth lens, and R8 denotes a curvature radius of an image-side surface of the fourth lens.
Preferably, the camera optical lens further satisfies a condition of 2.50≤d2/d4≤6.00. Herein d2 denotes an on-axis distance from an image-side surface of the first lens to the object-side surface of the second lens, and d4 denotes an on-axis distance from the image-side surface of the second lens to an object-side surface of the third lens.
Preferably, the camera optical lens further satisfies a condition of 3.00≤d7/d8≤8.00. Herein d7 denotes an on-axis thickness of the fourth lens, and d8 denotes an on-axis distance from the image-side surface of the fourth lens to an object-side surface of the fifth lens.
Preferably, the camera optical lens further satisfies conditions of 2.15≤f1/f≤12.34, −20.23≤(R1+R2 )/(R1−R2 )≤−3.64, and 0.03≤d1/TTL≤0.13. Herein f denotes a focal length of the camera optical lens, R1 denotes a curvature radius of an object-side surface of the first lens, R2 denotes a curvature radius of an image-side surface of the first lens, d1 denotes an on-axis thickness of the first lens, and TTL denotes a total optical length from the object-side surface of the first lens to an image surface of the camera optical lens along an optical axis.
Preferably, the camera optical lens further satisfies conditions of 0.63≤f2/f≤2.45, 0.17≤(R3+R4)/(R3−R4)≤1.50, and 0.04≤d3/TTL≤0.16. Herein f2 denotes a focal length of the second lens, and d3 denotes an on-axis thickness of the second lens.
Preferably, the camera optical lens further satisfies conditions of −92.53≤f3/f≤65.50, 14.19≤(R5+R6)/(R5−R6)≤3250.50, and 0.03≤d5/TTL≤0.09. Herein f3 denotes a focal length of the third lens, R5 denotes a curvature radius of an object-side surface of the third lens, R6 denotes a curvature radius of an image-side surface of the third lens, and d5 denotes an on-axis thickness of the third lens.
Preferably, the camera optical lens further satisfies conditions of 0.53≤f4/f≤3.16, and 0.09≤d7/TTL≤0.28. Herein f4 denotes a focal length of the fourth lens, and d7 denotes an on-axis thickness of the fourth lens.
Preferably, the camera optical lens further satisfies conditions of −2.86≤f5/f≤−0.69, 1.09≤(R9+R10)/(R9−R10)≤4.32, and 0.07≤d9/TTL≤0.28. Herein R9 denotes a curvature radius of an object-side surface of the fifth lens, R10 denotes a curvature radius of an image-side surface of the fifth lens, and d9 denotes an on-axis thickness of the fifth lens.
Preferably, the camera optical lens further satisfies a condition of FOV>104.00°. Herein FOV denotes an field of view of the camera optical lens.
Preferably, the camera optical lens further satisfies a condition of TTL/IH≤1.40. Herein IH denotes an image height of the camera optical lens.
Advantageous effects of the present disclosure are that, the camera optical lens has excellent optical performances, and also has a large aperture, a wide angle, and is ultra-thin. The camera optical lens is especially suitable for mobile camera lens components and WEB camera lens composed of high pixel CCD, CMOS.
In order to more clearly illustrate the technical solutions in the embodiments of the present disclosure, the following will briefly describe the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present disclosure. For a person of ordinary skill in the art, other drawings may be obtained from these drawings without creative work.
To make the objectives, technical solutions, and advantages of the present disclosure clearer, embodiments of the present disclosure are described in detail with reference to accompanying drawings in the following. A person of ordinary skill in the art should understand that, in the embodiments of the present disclosure, many technical details are provided to make readers better understand the present disclosure. However, even without these technical details and any changes and modifications based on the following embodiments, technical solutions required to be protected by the present disclosure may be implemented.
Embodiment 1
Referring to the drawings, the present disclosure provides a camera optical lens 10.
In the embodiment, the first lens L1 has a positive refractive power, the second lens L2 has a positive refractive power, the third lens L3 has a positive refractive power, the fourth lens L4 has a positive refractive power, and the fifth lens L5 has a negative refractive power.
In the embodiment, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 are all made of plastic material. In other embodiments, each lens may also be of another material.
In the embodiment, a focal length of the first lens L1 is defined as f1, a focal length of the fifth lens L5 is defined as f5, and the camera optical lens 10 satisfies a condition of −8.00≤f1/f5≤−3.00, which stipulates a ratio of the focal length f1 of the first lens L1 to the focal length f5 of the fifth lens L5. By a reasonable distribution of the focal length, which makes the camera optical lens has an excellent imaging quality and a lower sensitivity.
A curvature radius of an object-side surface of the second lens L2 is defined as R3, a curvature radius of an image-side surface of the second lens L2 is defined as R4, and the camera optical lens 10 further satisfies condition of R3/R4≤−2.00, which stipulates a shape of the second lens L2. Within this range, a degree of deflection of light passing through the lens can be alleviated, and aberrations can be reduced effectively.
A curvature radius of an object-side surface of the fourth lens L4 is defined as R7, a curvature radius of an image-side surface of the fourth lens L4 is defined as R8, and the camera optical lens 10 further satisfies a condition of 3.00≤(R7+R8)/(R7−R8)≤15.00, which stipulates a shape of the fourth lens L4, within this range, it is beneficial to correct a problem of an off-axis aberration.
An on-axis distance from an image-side surface of the first lens L1 to the object-side surface of the second lens L2 is defined as d2, an on-axis distance from the image-side surface of the second lens L2 to an object-side surface of the third lens L3 is defined as d4, and the camera optical lens 10 further satisfies a condition of 2.50≤d2/d4≤6.00, which stipulates a ratio of the on-axis distance d2 from the image-side surface of the first lens L1 to the object-side surface of the second lens L2, to the on-axis distance d4 from the image-side surface of the second lens L2 to the object-side surface of the third lens L3. Within this range, it is beneficial to reduce a total optical length and thereby realizing an ultra-thin effect.
An on-axis thickness of the fourth lens L4 is defined as d7, an on-axis distance from the image-side surface of the fourth lens L4 to an object-side surface of the fifth lens L5 is defined as d8, and the camera optical lens 10 further satisfies a condition of 3.00≤d7/d8≤8.00, which stipulates a ratio of the on-axis thickness d7 of the fourth lens L4 to the on-axis distance d8 from the image-side surface of the fourth lens L4 to an object-side surface of the fifth lens L5. Within this range, it is beneficial to reduce a total optical length and thereby realizing an ultra-thin effect.
In the embodiment, the object-side surface of the first lens L1 is convex in a paraxial region, and an image-side surface of the first lens L1 is concave in the paraxial region.
A focal length of the camera optical lens 10 is defined as f, and the camera optical lens 10 further satisfies a condition of 2.15≤f1/f≤12.34, which stipulates a ratio of the focal length f1 of the first lens L1 to the focal length f of the camera optical lens 10. Within this range, the first lens has a positive refractive power, which is beneficial to reduce an aberration of a system, and also to a development of ultra-thin and a wide angel lens. Preferably, the camera optical lens 10 further satisfies a condition of 3.44≤f1/f≤9.88.
A curvature radius of the object-side surface of the first lens L1 is defined as R1, a curvature radius of the image-side surface of the first lens L1 is defined as R2 , and the camera optical lens 10 further satisfies a condition of −20.23≤(R1+R2 )/(R1−R2 )≤−3.64. By reasonably controlling a shape of the first lens L1, so that the first lens L1 can effectively correct a spherical aberration of the system. Preferably, the camera optical lens 10 further satisfies a condition of −12.64≤(R1+R2 )/(R1−R2 )≤−4.55.
An on-axis thickness of the first lens L1 is defined as d1, a total optical length from the object-side surface of the first lens L1 to an image surface of the camera optical lens 10 along an optical axis is defined as TTL, and the camera optical lens 10 satisfies a condition of 0.03≤d1/TTL≤0.13. Within this range, it is beneficial to achieve ultra-thin. Preferably, the camera optical lens 10 further satisfies a condition of 0.05≤d1/TTL≤0.10.
In the embodiment, the object-side surface of the second lens L2 is convex in the paraxial region, and the image-side surface of the second lens L2 is convex in the paraxial region.
A focal length of the second lens L2 is defined as f2, and the camera optical lens 10 further satisfies a condition of 0.63≤f2/f≤2.45. By controlling the focal length of the second lens L2 within a reasonably range, it is beneficial to correct aberrations of the system. Preferably, the camera optical lens 10 further satisfies a condition of 1.01≤f2/f≤1.96.
Preferably, the camera optical lens 10 further satisfies a condition of 0.17≤(R3+R4)/(R3−R4)≤1.50, which stipulates a shape of the second lens L2. Within this range, a development towards ultra-thin and a wide angel lens would facilitate correcting a problem of on-axis chromatic aberration. Preferably, the camera optical lens 10 further satisfies a condition of 0.27≤(R3+R4)/(R3−R4)≤1.20.
An on-axis thickness of the second lens L2 is defined as d3, and the camera optical lens 10 further satisfies a condition of 0.04≤d3/TTL≤0.16. Within this range, it is beneficial to achieve ultra-thin. Preferably, the camera optical lens 10 further satisfies a condition of 0.07≤d3/TTL≤0.13.
In the embodiment, the object-side surface of the third lens L3 is convex in the paraxial region, and the image-side surface of the third lens L3 is concave in the paraxial region.
A focal length of the third lens L3 is defined as f3, and the camera optical lens 10 further satisfies a condition of −92.53≤f3/f≤65.50. By a reasonable distribution of the focal length, which makes the system has an excellent imaging quality and a lower sensitivity.
A curvature radius of the object-side surface of the third lens is defined as R5, a curvature radius of the image-side surface of the third lens is defined as R6, and the camera optical lens 10 further satisfies a condition of 14.19≤(R5+R6)/(R5−R6)≤3250.50, which stipulates a shape of the third lens L3, within this range, a degree of deflection of light passing through the lens can be alleviated, and aberrations can be reduced effectively. Preferably, the camera optical lens 10 further satisfies a condition of 22.70≤(R5+R6)/(R5−R6)≤2600.40.
An on-axis thickness of the third lens L3 is defined as d5, and the camera optical lens 10 further satisfies a condition of 0.03≤d5/TTL≤0.09. Within this range, it is beneficial to achieve ultra-thin. Preferably, the camera optical lens 10 further satisfies a condition of 0.05≤d5/TTL≤0.07.
In the embodiment, the object-side surface of the fourth lens L4 is concave in the paraxial region, and the image-side surface of the fourth lens L4 is convex in the paraxial region.
A focal length of the fourth lens L4 is defined as f4, and the camera optical lens 10 further satisfies a condition of 0.53≤f4/f≤3.16. By a reasonable distribution of the focal length, which makes the system has an excellent imaging quality and a lower sensitivity. Preferably, the camera optical lens 10 further satisfies a condition of 0.84≤f4/f≤2.53.
A curvature radius of the object-side surface of the fourth lens L4 is d7, and the camera optical lens 10 further satisfies a condition of 0.09≤d7/TTL≤0.28. Within this range, it is beneficial to achieve ultra-thin. Preferably, the camera optical lens 10 further satisfies a condition of 0.14≤d7/TTL≤0.22.
In the embodiment, an object-side surface of the fifth lens L5 is convex in the paraxial region, and an image-side surface of the fifth lens L5 is concave in the paraxial region. It should be noted that, in other embodiments, the object-side surface and the image-side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 may also be set to other concave or convex distribution situations.
A focal length of the fifth lens L5 is defined as f5, and the camera optical lens 10 further satisfies a condition of −2.86≤f5/f≤−0.69. By stipulating the fifth lens L5, which can effectively smooth light angle of the camera lens and reduce tolerance sensitivity. Preferably, the camera optical lens 10 further satisfies a condition of −1.79≤f5/f≤−0.86.
A curvature radius of the object-side surface of the fifth lens L5 is defined as R9, a curvature radius of the image-side surface of the fifth lens L5 is defined as R10, and the camera optical lens 10 further satisfies a condition of 1.09≤(R9+R10)/(R9−R10)≤4.32, which stipulates a shape of the fifth lens L5. Within this range, a development towards ultra-thin and a wide angle lenses would facilitate correcting a problem of an off-axis aberration. Preferably, the camera optical lens 10 further satisfies a condition of 1.74≤(R9+R10)/(R9−R10)≤3.45.
An on-axis thickness of the fifth lens L5 is defined as d9, and the camera optical lens 10 further satisfies a condition of 0.07≤d9/TTL≤0.28. Within this range, it is beneficial to achieve ultra-thin. Preferably, the camera optical lens 10 further satisfies a condition of 0.12≤d9/TTL≤0.22.
In the embodiment, an field of view the camera optical lens 10 is defined as FOV, and the camera optical lens 10 further satisfies a condition of FOV>104.00°, thereby achieving a wide angle, and the camera optical lens has excellent imaging performances.
In the embodiment, an image height of the camera optical lens 10 is defined as IH, and the camera optical lens 10 further satisfies a condition of TTL/IH≤1.40, which is beneficial to achieve ultra-thin.
In the embodiment, a combined focal length of the first lens L1 and the second lens L2 is defined as f12, and the camera optical lens 10 further satisfies a condition of 0.52≤f12/f≤2.14. Within this range, it can eliminate an aberration and a distortion of the camera optical lens and reduce a back focal length of the camera optical lens, thereby maintaining miniaturization of the camera optical lens. Preferably, the camera optical lens 10 further satisfies a condition of 0.84≤f12/f≤1.71.
When satisfying above conditions, which makes the camera optical lens has excellent optical performances, and meanwhile can meet design requirements of a large aperture, a wide angle and ultra-thin. According the characteristics of the camera optical lens, it is particularly suitable for a mobile camera lens component and a WEB camera lens composed of high pixel CCD, CMOS.
In the following, embodiments will be used to describe the camera optical lens 10 of the present disclosure. The symbols recorded in each embodiment will be described as follows. The focal length, on-axis distance, curvature radius, on-axis thickness, inflexion point position, and arrest point position are all in units of mm.
TTL: Optical length (the total optical length from the object-side surface of the first lens L1 to the image surface Si of the camera optical lens along the optical axis) in mm.
The F number (FNO) means a ratio of an effective focal length of the camera optical lens to an entrance pupil diameter (ENPD).
Preferably, inflexion points and/or arrest points can be arranged on the object-side surface and the image-side surface of the lens, so as to satisfy the demand for high quality imaging. The description below can be referred for specific implementations.
Table 1 and Table 2 show design data of the camera optical lens 10 shown in
Herein, meanings of various symbols will be described as follows.
S1: aperture.
R: curvature radius of an optical surface, a central curvature radius for a lens.
R1: curvature radius of the object-side surface of the first lens L1.
R2: curvature radius of the image-side surface of the first lens L1.
R3: curvature radius of the object-side surface of the second lens L2.
R4: curvature radius of the image-side surface of the second lens L2.
R5: curvature radius of the object-side surface of the third lens L3.
R6: curvature radius of the image-side surface of the third lens L3.
R7: curvature radius of the object-side surface of the fourth lens L4.
R8: curvature radius of the image-side surface of the fourth lens L4.
R9: curvature radius of the object-side surface of the fifth lens L5.
R10: curvature radius of the image-side surface of the fifth lens L5.
R11: curvature radius of an object-side surface of the optical filter (GF).
R12: curvature radius of an image-side surface of the optical filter (GF).
d: on-axis thickness of a lens and an on-axis distance between lens.
d0: on-axis distance from the aperture S1 to the object-side surface of the first lens L1.
d1: on-axis thickness of the first lens L1.
d2: on-axis distance from the image-side surface of the first lens L1 to the object-side surface of the second lens L2.
d3: on-axis thickness of the second lens L2.
d4: on-axis distance from the image-side surface of the second lens L2 to the object-side surface of the third lens L3.
d5: on-axis thickness of the third lens L3.
d6: on-axis distance from the image-side surface of the third lens L3 to the object-side surface of the fourth lens L4.
d7: on-axis thickness of the fourth lens L4.
d8: on-axis distance from the image-side surface of the fourth lens L4 to the object-side surface of the fifth lens L5.
d9: on-axis thickness of the fifth lens L5.
d10: on-axis distance from the image-side surface of the fifth lens L5 to the object-side surface of the optical filter (GF).
d11: on-axis thickness of the optical filter (GF).
d12: on-axis distance from the image-side surface of the optical filter (GF) to the image surface Si.
nd: refractive index of a d line.
nd1: refractive index of the d line of the first lens L1.
nd2: refractive index of the d line of the second lens L2.
nd3: refractive index of the d line of the third lens L3.
nd4: refractive index of the d line of the fourth lens L4.
nd5: refractive index of the d line of the fifth lens L5.
ndg: refractive index of the d line of the optical filter (GF).
vd: abbe number.
v1: abbe number of the first lens L1.
v2: abbe number of the second lens L2.
v3: abbe number of the third lens L3.
v4: abbe number of the fourth lens L4.
v5: abbe number of the fifth lens L5.
vg: abbe number of the optical filter (GF).
Table 2 shows aspherical surface data of each lens of the camera optical lens 10 in Embodiment 1 of the present disclosure.
Herein, K is a conic coefficient, and A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric surface coefficients.
y=(x2/R)/{1+[1−(k+1)(x2/R2)]1/2}+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16+A18x18+A20x20 (1).
Herein, x is a vertical distance between a point on an aspheric curve and the optical axis, and y is a depth of the aspheric surface (the vertical distance between the point x from the optical axis on the aspheric surface and a tangent plane tangent to a vertex on the optical axis of the aspheric surface).
For convenience, an aspheric surface of each lens surface uses the aspheric surfaces shown in the above condition (1). However, the present disclosure is not limited to the aspherical polynomials form shown in the condition (1).
Table 3 and Table 4 show design data of inflexion points and arrest points of the camera optical lens 10 according to Embodiment 1 of the present disclosure. Herein P1R1 and P1R2 represent the object-side surface and the image-side surface of the first lens L1, P2R1 and P2R2 represent the object-side surface and the image-side surface of the second lens L2, P3R1 and P3R2 represent the object-side surface and the image-side surface of the third lens L3, P4R1 and P4R2 represent the object-side surface and the image-side surface of the fourth lens L4, P5R1 and P5R2 represent the object-side surface and the image-side surface of the fifth lens L5. The data in the column named “inflexion point position” refer to vertical distances from inflexion points arranged on each lens surface to the optical axis of the camera optical lens 10. The data in the column named “arrest point position” refer to vertical distances from arrest points arranged on each lens surface to the optical axis of the camera optical lens 10.
Table 13 in the following shows various values of Embodiments 1, 2, and 3, and also values corresponding to parameters which are specified in the above conditions.
As shown in Table 13, Embodiment 1 satisfies the above conditions.
In the embodiment, an entrance pupil diameter (ENPD) of the camera optical lens 10 is 1.253 mm, an image height IH of 1.0H is 3.125 mm, an FOV (field of view) in a diagonal direction is 105.00°. Thus, the camera optical lens can meet the design requirements of a large aperture, a wide angle and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, thereby achieving excellent optical characteristics.
Embodiment 2
Table 5 and Table 6 show design data of a camera optical lens 20 in Embodiment 2 of the present disclosure.
Table 6 shows aspherical surface data of each lens of the camera optical lens 20 in Embodiment 2 of the present disclosure.
Table 7 and table 8 show design data of inflexion points and arrest points of each lens of the camera optical lens 20 lens according to Embodiment 2 of the present disclosure.
As shown in Table 13, Embodiment 2 satisfies the above conditions.
In the embodiment, an entrance pupil diameter (ENPD) of the camera optical lens 20 is 1.244 mm, an image height IH of 1.0H is 3.125 mm, an FOV (field of view) in the diagonal direction is 104.80°. Thus, the camera optical lens can meet the design requirements of a large aperture, a wide angle and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, thereby achieving excellent optical characteristics.
Embodiment 3
In the embodiment, the third lens L3 has a negative refractive power.
Table 9 and Table 10 show design data of a camera optical lens 30 in Embodiment 3 of the present disclosure.
Table 10 shows aspherical surface data of each lens of the camera optical lens 30 in Embodiment 3 of the present disclosure.
Table 11 and Table 12 show design data inflexion points and arrest points of the respective lenses in the camera optical lens 30 according to Embodiment 3 of the present disclosure.
Table 13 in the following shows various values of Embodiment 3, and also values corresponding to parameters which are specified in the above conditions. Obviously, the camera optical lens 30 satisfies above conditions.
In the embodiment, an entrance pupil diameter (ENPD) of the camera optical lens 30 is 1.256 mm, an image height IH of 1.0H is 3.125 mm, an FOV (field of view) in the diagonal direction is 105.00°. The camera optical lens can meet the design requirements of a large aperture, a wide angle and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, thereby achieving excellent optical characteristics.
The above is only illustrates some embodiments of the present disclosure, in practice, one having ordinary skill in the art can make various modifications to these embodiments in forms and details without departing from the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202010998918.5 | Sep 2020 | CN | national |