Camera optical lens

Information

  • Patent Grant
  • 11442246
  • Patent Number
    11,442,246
  • Date Filed
    Tuesday, November 12, 2019
    5 years ago
  • Date Issued
    Tuesday, September 13, 2022
    2 years ago
Abstract
The present disclosure discloses a camera optical lens. The camera optical lens including, in an order from an object side to an image side, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. The camera optical lens further satisfies following conditions: 1.10≤f1/f≤3.00; and 3.50≤R7/d7≤6.50; where f denotes a focal length of the optical camera lens; f1 denotes a focal length of the first lens; R7 denotes a curvature radius of an object side surface of the fourth lens and d7 denotes an on-axis thickness of the fourth lens. The camera optical lens can achieve a high performance while obtaining a low TTL.
Description
FIELD OF THE PRESENT INVENTION

The present invention relates to the field of optical lens, and more particularly, to a camera optical lens suitable for handheld terminal devices, such as smart phones and digital cameras, and imaging devices, such as monitors or PC lenses.


DESCRIPTION OF RELATED ART

With the emergence of smart phones in recent years, the demand for miniature camera lens is increasing day by day, but in general the photosensitive devices of camera lens are nothing more than Charge Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor Sensor (CMOS sensor), and as the progress of the semiconductor manufacturing technology makes the pixel size of the photosensitive devices become smaller, plus the current development trend of electronic products towards better functions and thinner and smaller dimensions, miniature camera lenses with good imaging quality therefore have become a mainstream in the market. In order to obtain better imaging quality, the lens that is traditionally equipped in mobile phone cameras adopts a three-piece or four-piece lens structure. Also, with the development of technology and the increase of the diverse demands of users, and as the pixel area of photosensitive devices is becoming smaller and smaller and the requirement of the system on the imaging quality is improving constantly, the five-piece, six-piece and seven-piece lens structures gradually appear in lens designs. There is an urgent need for ultra-thin and wide-angle camera lenses with good optical characteristics and fully corrected chromatic aberration.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a structure of a camera optical lens in accordance with Embodiment 1 of the present invention;



FIG. 2 is a schematic diagram of a longitudinal aberration of the camera optical lens shown in FIG. 1;



FIG. 3 is a schematic diagram of a lateral color of the camera optical lens shown in FIG. 1;



FIG. 4 is a schematic diagram of a field curvature and a distortion of the camera optical lens shown in FIG. 1;



FIG. 5 is a schematic diagram of a structure of a camera optical lens in accordance with Embodiment 2 of the present invention;



FIG. 6 is a schematic diagram of a longitudinal aberration of the camera optical lens shown in FIG. 5;



FIG. 7 is a schematic diagram of a lateral color of the camera optical lens shown in FIG. 5;



FIG. 8 is a schematic diagram of a field curvature and a distortion of the camera optical lens shown in FIG. 5;



FIG. 9 is a schematic diagram of a structure of a camera optical lens in accordance with Embodiment 3 of the present invention;



FIG. 10 is a schematic diagram of a longitudinal aberration of the camera optical lens shown in FIG. 9;



FIG. 11 is a schematic diagram of a lateral color of the camera optical lens shown in FIG. 9; and



FIG. 12 is a schematic diagram of a field curvature and a distortion of the camera optical lens shown in FIG. 9.





DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

In order to make the objects, technical solutions, and advantages of the present invention more apparent, the embodiments of the present invention will be described in detail below. However, it will be apparent to the one skilled in the art that, in the various embodiments of the present invention, a number of technical details are presented in order to provide the reader with a better understanding of the invention. However, the technical solutions claimed in the present invention can be implemented without these technical details and various changes and modifications based on the following embodiments.


Embodiment 1

As referring to the accompanying drawings, the present invention provides a camera optical lens 10. FIG. 1 shows the camera optical lens 10 according to Embodiment 1 of the present invention, the camera optical lens 10 comprises six lenses. Specifically, from an object side to an image side, the camera optical lens 10 comprises in sequence: an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6. Optical elements like optical filter GF can be arranged between the sixth lens L6 and an image surface Si.


The first lens L1 is made of plastic material, the second lens L2 is made of plastic material, the third lens L3 is made of plastic material, the fourth lens L4 is made of plastic material, the fifth lens L5 is made of plastic material, and the sixth lens L6 is made of plastic material.


Here, a focal length of the camera optical lens 10 is defined as f, and a focal length of the first lens L1 is defined as f1. The camera optical lens further satisfies the following condition: 1.10≤f1/f≤3.00, which defines the positive refractive power of the first lens L1. If the value of f1/f exceeds the lower limit of the above condition, although it is beneficial for developing toward ultra-thin lenses, the positive refractive power of the first lens L1 would be too strong to correct an aberration of the camera optical lens, and it is bad for wide-angle development of lenses. On the contrary, if the value of f1/f exceeds the upper limit of the above condition, the positive refractive power of the first lens L1 becomes too weak to develop ultra-thin lenses. Preferably, the following condition shall be satisfied, 1.11≤f1/f≤2.97.


An on-axis thickness of the fourth lens L4 is defined as d7, and a curvature radius of an object side surface of the fourth lens L4 is defined as R7. The camera optical lens further satisfies the following condition: 3.50≤R7/d7≤6.50. When the value is within the range, it benefits for correcting an abberation of the optical system. Preferably, the following condition shall be satisfied, 3.52≤R7/d7≤6.50.


A total optical length from an object side surface of the first lens to the image surface of the camera optical lens along an optical axis is defined as TTL. When the focal length of the optical camera lens, the focal length of the first lens, the curvature radius of the object side surface of the fourth lens, the on-axis thickness of the fourth lens satisfy the above conditions, the camera optical lens has the advantage of high performance and meets the design demand on low TTL.


In the embodiment, the first lens L1 has a positive refractive power. An object side surface of the first lens L1 is convex in a paraxial region, and an image side surface of the first lens L1 is concave in the paraxial region.


A curvature radius of the object side surface of the first lens L1 is defined as R1, and a curvature radius of the image side surface of the first lens L1 is defined as R2. The camera optical lens 10 further satisfies the following condition: −21.74≤(R1+R2)/(R1−R2)≤−1.69. This condition reasonably controls a shape of the first lens, so that the first lens can effectively correct a spherical aberration of the system. Preferably, the following condition shall be satisfied, −13.59≤(R1+R2)/(R1−R2)≤−2.12.


An on-axis thickness of the first lens L1 is defined as d1. The camera optical lens further satisfies the following condition: 0.05≤d1/TTL≤0.24, which benefits for developing ultra-thin lenses. Preferably, the following condition shall be satisfied, 0.07≤d1/TTL≤0.19.


In the embodiment, an object side surface of the second lens L2 is convex in the paraxial region, and an image side surface of the second lens L2 is concave in the paraxial region. The second lens L2 has a negative refractive power.


The focal length of the camera optical lens 10 is defined as f, and a focal length of the second lens L2 is defined as f2. The camera optical lens further satisfies the following condition: −84.19≤f2/f≤−3.57. The negative spherical aberration and the amount of field curvature caused by the first lens L1 that has the positive refractive power can be reasonably and effectively balanced by controlling the negative refractive power of the second lens L2 being within a reasonable scope. Preferably, the following condition shall be satisfied, −52.62≤f2/f≤−4.46.


A curvature radius of the object side surface of the second lens L2 is defined as R3, and a curvature radius of the image side surface of the second lens L2 is defined as R4. The camera optical lens further satisfies the following condition: 5.98≤(R3+R4)/(R3−R4)≤47.80, which defines a shape of the second lens L2. When the value is within the range, as the camera optical lens develops toward ultra-thin and wide-angle, it is beneficial to correct the problem of an axial chromatic aberration. Preferably, the following condition shall be satisfied, 9.57≤(R3+R4)/(R3−R4)≤38.24.


An on-axis thickness of the second lens L2 is defined as d3. The camera optical lens further satisfies the following condition: 0.02≤d3/TTL≤0.06, which benefits for developing ultra-thin lenses. Preferably, the following condition shall be satisfied, 0.03≤d3/TTL≤0.05.


In the embodiment, an image side surface of the third lens L3 is concave in the paraxial region, and the third lens L3 has a negative refractive power.


The focal length of the camera optical lens 10 is defined as f, and the focal length of the third lens L3 is defined as f3. The camera optical lens further satisfies the following condition: −57.47≤f3/f≤−1.64. The appropriate distribution of the refractive power leads to a better imaging quality and a lower sensitivity. Preferably, the following condition shall be satisfied, −35.92≤f3/f≤−2.05.


A curvature radius of an object side surface of the third lens L3 is defined as R5, a curvature radius of the image side surface of the third lens L3 is defined as R6. The camera optical lens further satisfies the following condition: 0.15≤(R5+R6)/(R5−R6)≤35.53. This can effectively control a shape of the third lens L3, thereby facilitating shaping of the third lens L3 and avoiding bad shaping and generation of stress due to the overly large surface curvature of the third lens L3. Preferably, the following condition shall be satisfied, 0.23≤(R5+R6)/(R5−R6)≈28.43.


An on-axis thickness of the third lens L3 is defined as d5. The camera optical lens further satisfies the following condition: 0.03≤d5/TTL≤0.09, which benefits for developing ultra-thin lenses. Preferably, the following condition shall be satisfied, 0.04≤d5/TTL≤0.07.


In the embodiment, the object side surface of the fourth lens L4 is convex in the paraxial region, an image side surface of the fourth lens L4 is concave in the paraxial region, and the fourth lens L4 has a positive refractive power.


The focal length of the camera optical lens 10 is defined as f, and a focal length of the fourth lens L4 is defined as f4. The camera optical lens further satisfies the following condition: 0.99≤f4/f≤5.26. An appropriate distribution of the refractive power leads to a better imaging quality and a lower sensitivity. Preferably, the following condition shall be satisfied, 1.59≤f4/f≤4.21.


The curvature radius of the object side surface of the fourth lens L4 is defined as R7, and a curvature radius of the image side surface of the fourth lens L4 is defined as R8. The camera optical lens further satisfies the following condition: −16.07≤(R7+R8)/(R7−R8)≤−4.81, which defines a shape of the fourth lens L4. When the value is within the range, as the development of ultra-thin and wide-angle lens, it benefits for solving the problems, such as correcting an off-axis aberration. Preferably, the following condition shall be satisfied, −10.04≤(R7+R8)/(R7−R8)≤−6.02.


The on-axis thickness of the fourth lens L4 is defined as d7. The camera optical lens further satisfies the following condition: 0.04≤d7/TTL≤0.15, which benefits for developing ultra-thin lenses. Preferably, the following condition shall be satisfied, 0.06≤d7/TTL≤0.12.


In the embodiment, an image side surface of the fifth lens L5 is convex in the paraxial region, and the fifth lens L5 has a positive refractive power.


The focal length of the camera optical lens 10 is defined as f, and a focal length of the fifth lens L5 is defined as f5. The camera optical lens further satisfies the following condition: −0.40≤f5/f≤2.66, which can effectively make a light angle of the camera lens be gentle, and the sensitivity of the tolerance can be reduced. Preferably, the following condition shall be satisfied, 0.64≤f5/f≤2.13.


A curvature radius of an object side surface of the fifth lens L5 is defined as R9, and a curvature radius of the image side surface of the fifth lens L5 is defined as R10. The camera optical lens further satisfies the following condition: 0.43≤(R9+R10)/(R9−R10)≤3.50, which defines a shape of the fifth lens L5. When the value is within the range, as the development of ultra-thin and wide-angle lens, it benefits for solving the problems, such as correcting the off-axis aberration. Preferably, the following condition shall be satisfied, 0.70≤(R9+R10)/(R9−R10)≤2.80.


An on-axis thickness of the fifth lens L5 is defined as d9. The camera optical lens further satisfies the following condition: 0.05≤d9/TTL≤0.16, which benefits for developing ultra-thin lenses. Preferably, the following condition shall be satisfied, 0.07≤d9/TTL≤0.13.


In the embodiment, an image side surface of the sixth lens L6 is concave in the paraxial region, and the sixth lens L6 has a negative refractive power.


The focal length of the camera optical lens 10 is defined as f, a focal length of the sixth lens L6 is defined as f6. The camera optical lens further satisfies the following condition: −3.17≤f6/f≤−0.44. The appropriate distribution of the refractive power leads to a better imaging quality and a lower sensitivity. Preferably, the following condition shall be satisfied, −1.98≤f6/f≤−0.55.


A curvature radius of an object side surface of the sixth lens L6 is defined as R11, and a curvature radius of the image side surface of the sixth lens L6 is defined as R12. The camera optical lens further satisfies the following condition: 0.19≤(R11+R12)/(R11−R12)≤5.78, which defines a shape of the sixth lens L5. When the value is within the range, as the development of ultra-thin and wide-angle lens, it benefits for solving the problems, such as correcting the off-axis aberration. Preferably, the following condition shall be satisfied, 0.31≤(R11+R12)/(R11−R12)≤4.62.


An on-axis thickness of the sixth lens L6 is defined as d11. The camera optical lens further satisfies the following condition: 0.04≤d11/TTL≤0.15, which benefits for developing ultra-thin lenses. Preferably, the following condition shall be satisfied, 0.06≤d11/TTL≤0.12.


In this embodiment, the focal length of camera optical lens 10 is defined as f, and a combined focal length of the first lens L1 and the second lens L2 is defined as f12. The camera optical lens further satisfies the following condition: 0.61≤f12/f≤4.45. With such configuration, the abberation and distortion of the camera optical lens can be eliminated while suppressing a back focal length of the camera optical lens, thereby maintaining miniaturization of the camera lens system. Preferably, the following condition shall be satisfied, 0.98≤f12/f≤3.56.


In this embodiment, the total optical length TTL of the camera optical lens 10 is less than or equal to 6.33 mm, it benefits for developing ultra-thin lenses. Preferably, the total optical length TTL of the camera optical lens 10 is less than or equal to 6.04 mm.


In this embodiment, an F number of the camera optical lens 10 is less than or equal to 2.01. The camera optical lens 10 has a large F number and a better imaging performance. Preferably, the F number of the camera optical lens 10 is less than or equal to 1.97.


With such design, the total optical length TTL of the camera optical lens 10 can be made as short as possible, thus the miniaturization characteristics can be maintained.


In the following, examples will be used to describe the camera optical lens 10 of the present invention. The symbols recorded in each example will be described as follows. The focal length, on-axis distance, curvature radius, on-axis thickness, inflexion point position, and arrest point position are all in units of mm.


TTL: the total optical length from the object side surface of the first lens to the image surface of the camera optical lens along the optical axis, the unit of TTL is mm.


Preferably, inflexion points and/or arrest points can also be arranged on the object side surface and/or image side surface of the lens, so that the demand for high quality imaging can be satisfied, the description below can be referred for specific implementable scheme.


The design information of the camera optical lens 10 in Embodiment 1 of the present invention is shown in the tables 1 and 2.














TABLE 1







R
d
nd
νd





















S1

d0=
−0.607
















R1
1.896
d1=
0.921
nd1
1.5444
ν1
55.82


R2
4.360
d2=
0.113


R3
4.212
d3=
0.246
nd2
1.6700
ν2
19.39


R4
3.562
d4=
0.461


R5
−18.410
d5=
0.300
nd3
1.5444
ν3
55.82


R6
10.104
d6=
0.071


R7
2.817
d7=
0.434
nd4
1.6153
ν4
25.94


R8
3.618
d8=
0.443


R9
32.244
d9=
0.626
nd5
1.5444
ν5
55.82


R10
−2.255
d10=
0.658


R11
−5.743
d11=
0.435
nd6
1.5438
ν6
56.03


R12
2.548
d12=
0.340


R13

d13=
0.210
ndg
1.5168
νg
64.17


R14

d14=
0.444









where, the meaning of the various symbols is as follows.


S1: aperture;


R: curvature radius of an optical surface, a central curvature radius for a lens;


R1: curvature radius of the object side surface of the first lens L1;


R2: curvature radius of the image side surface of the first lens L1;


R3: curvature radius of the object side surface of the second lens L2;


R4: curvature radius of the image side surface of the second lens L2;


R5: curvature radius of the object side surface of the third lens L3;


R6: curvature radius of the image side surface of the third lens L3;


R7: curvature radius of the object side surface of the fourth lens L4;


R8: curvature radius of the image side surface of the fourth lens L4;


R9: curvature radius of the object side surface of the fifth lens L5;


R10: curvature radius of the image side surface of the fifth lens L5;


R11: curvature radius of the object side surface of the sixth lens L6;


R12: curvature radius of the image side surface of the sixth lens L6;


R13: curvature radius of an object side surface of the optical filter GF;


R14: curvature radius of an image side surface of the optical filter GF;


d: on-axis thickness of a lens and an on-axis distance between lenses;


d0: on-axis distance from the aperture S1 to the object side surface of the first lens L1;


d1: on-axis thickness of the first lens L1;


d2: on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;


d3: on-axis thickness of the second lens L2;


d4: on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;


d5: on-axis thickness of the third lens L3;


d6: on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;


d7: on-axis thickness of the fourth lens L4;


d8: on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5;


d9: on-axis thickness of the fifth lens L5;


d10: on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;


d11: on-axis thickness of the sixth lens L6;


d12: on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the optical filter GF;


d13: on-axis thickness of the optical filter GF;


d14: on-axis distance from the image side surface of the optical filter GF to the image surface;


nd: refractive index of d line;


nd1: refractive index of d line of the first lens L1;


nd2: refractive index of d line of the second lens L2;


nd3: refractive index of d line of the third lens L3;


nd4: refractive index of d line of the fourth lens L4;


nd5: refractive index of d line of the fifth lens L5;


nd6: refractive index of d line of the sixth lens L6;


ndg: refractive index of d line of the optical filter GF;


vd: abbe number;


v1: abbe number of the first lens L1;


v2: abbe number of the second lens L2;


v3: abbe number of the third lens L3;


v4: abbe number of the fourth lens L4;


v5: abbe number of the fifth lens L5;


v6: abbe number of the sixth lens L6;


vg: abbe number of the optical filter GF;


Table 2 shows the aspherical surface data of the camera optical lens 10 in Embodiment 1 of the present invention.












TABLE 2









Conic




coefficient
Aspheric surface coefficients
















k
A4
A6
A8
A10
A12
A14
A16



















R1
−2.6770E−01
 1.6924E−03
1.1989E−02
−1.3615E−02
8.5973E−03
−2.1572E−03
0.0000E+00
0.0000E+00


R2
−6.1391E+00
−5.1090E−02
2.1473E−02
−2.7861E−02
3.2634E−02
−1.7473E−02
3.3567E−03
0.0000E+00


R3
 4.9364E+00
−8.5973E−02
−3.7033E−02 
 1.2124E−01
−1.0376E−01 
 5.3518E−02
−1.7492E−02 
2.9762E−03


R4
 5.2025E+00
−4.1706E−02
−3.9884E−02 
 1.7463E−01
−2.7411E−01 
 2.8045E−01
−1.6038E−01 
3.8875E−02


R5
 2.6132E+00
 6.7816E−03
−1.8419E−02 
 2.3839E−02
−1.3795E−01 
 1.9881E−01
−1.2655E−01 
3.0636E−02


R6
 2.0044E+00
−2.7625E−01
5.8363E−01
−7.8562E−01
6.0787E−01
−2.7854E−01
6.6252E−02
−5.3943E−03 


R7
−2.8103E+01
−2.3123E−01
3.6331E−01
−4.0121E−01
2.7828E−01
−1.2801E−01
3.5437E−02
−4.2560E−03 


R8
−1.3208E+01
−1.2608E−01
8.2317E−02
−3.9002E−02
6.6961E−03
 8.4797E−04
−3.1055E−04 
1.3340E−05


R9
−5.7397E+01
−1.2046E−02
−3.5256E−02 
 2.9768E−02
−1.3203E−02 
 2.7647E−03
−2.1010E−04 
0.0000E+00


R10
−9.0375E−01
 2.8407E−02
−2.9825E−02 
 1.5270E−02
−2.8968E−03 
 1.4097E−04
1.7309E−05
−1.5981E−06 


R11
 1.3837E+00
−1.2460E−01
5.1093E−02
−1.0914E−02
1.6420E−03
−1.7217E−04
1.0815E−05
−2.9572E−07 


R12
−1.3000E+01
−6.8355E−02
2.4081E−02
−5.7589E−03
8.5942E−04
−7.9044E−05
4.0343E−06
−8.5201E−08 









Where, K is a conic coefficient, A4, A6, A8, A10, A12, A14, A16 are aspheric surface coefficients.


IH: Image height

y=(x2/R)/[1+{1−(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16   (1)


For convenience, an aspheric surface of each lens surface uses the aspheric surfaces shown in the above condition (1). However, the present invention is not limited to the aspherical polynomials form shown in the condition (1).


Table 3 and Table 4 show design data of inflexion points and arrest points of respective lens in the camera optical lens 10 according to Embodiment 1 of the present invention. P1R1 and P1R2 represent the object side surface and the image side surface of the first lens L1, P2R1 and P2R2 represent the object side surface and the image side surface of the second lens L2, P3R1 and P3R2 represent the object side surface and the image side surface of the third lens L3, P4R1 and P4R2 represent the object side surface and the image side surface of the fourth lens L4, P5R1 and P5R2 represent the object side surface and the image side surface of the fifth lens L5, and P6R1 and P6R2 represent the object side surface and the image side surface of the sixth lens L6. The data in the column named “inflexion point position” refers to vertical distances from inflexion points arranged on each lens surface to the optical axis of the camera optical lens 10. The data in the column named “arrest point position” refers to vertical distances from arrest points arranged on each lens surface to the optical axis of the camera optical lens 10.














TABLE 3







Number of
Inflexion point
Inflexion point
Inflexion point



inflexion points
position 1
position 2
position 3




















P1R1
1
1.405
0
0


P1R2
1
0.655
0
0


P2R1
2
0.535
0.795
0


P2R2
0
0
0
0


P3R1
0
0
0
0


P3R2
2
0.195
1.275
0


P4R1
3
0.355
1.375
1.475


P4R2
3
0.445
1.555
1.795


P5R1
2
0.355
1.775
0


P5R2
1
1.385
0
0


P6R1
2
1.555
2.895
0


P6R2
2
0.565
3.035
0



















TABLE 4







Number of arrest points
Arrest point position 1




















P1R1
0
0



P1R2
0
0



P2R1
0
0



P2R2
0
0



P3R1
0
0



P3R2
1
0.365



P4R1
1
0.775



P4R2
1
0.875



P5R1
1
0.565



P5R2
0
0



P6R1
0
0



P6R2
1
1.215











FIG. 2 and FIG. 3 respectively illustrate a longitudinal aberration and a lateral color of light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 435 nm after passing the camera optical lens 10 according to Embodiment 1. FIG. 4 illustrates a field curvature and a distortion of light with a wavelength of 435 nm after passing the camera optical lens 10 according to Embodiment 1, in which a field curvature S is a field curvature in a sagittal direction and T is a field curvature in a tangential direction.


Table 13 shows various values of Embodiments 1, 2 and 3 and values corresponding to parameters which are specified in the above conditions.


As shown in Table 13, Embodiment 1 satisfies the above conditions.


In this embodiment, the entrance pupil diameter of the camera optical lens is 2.847 mm. The image height of 1.0H is 4.000 mm. The FOV is 78.20°. Thus, the camera optical lens has a wide-angle and is ultra-thin. Its on-axis and off-axis chromatic aberrations are fully corrected, thereby achieving excellent optical characteristics.


Embodiment 2

Embodiment 2 is basically the same as Embodiment 1, the meaning of its symbols is the same as that of Embodiment 1, in the following, only the differences are listed.


Table 5 and table 6 show the design data of a camera optical lens 20 in Embodiment 2 of the present invention.














TABLE 5







R
d
nd
νd





















S1

d0=
−0.426
















R1
1.909
d1=
0.545
nd1
1.5444
ν1
55.82


R2
2.763
d2=
0.060


R3
2.172
d3=
0.220
nd2
1.6700
ν2
19.39


R4
1.855
d4=
0.203


R5
8.155
d5=
0.300
nd3
1.5444
ν3
55.82


R6
7.271
d6=
0.060


R7
1.984
d7=
0.560
nd4
1.6153
ν4
25.94


R8
2.599
d8=
0.463


R9
−7.378
d9=
0.528
nd5
1.5444
ν5
55.82


R10
−2.947
d10=
0.984


R11
2.460
d11=
0.565
nd6
1.5438
ν6
56.03


R12
1.425
d12=
0.340


R13

d13=
0.210
ndg
1.5168
νg
64.17


R14

d14=
0.712









Table 6 shows aspherical surface data of each lens of the camera optical lens 20 in Embodiment 2 of the present invention.












TABLE 6









Conic




coefficient
Aspherical surface coefficients
















k
A4
A6
A8
A10
A12
A14
A16



















R1
−4.8740E−01
 5.4663E−03
1.5103E−02
−2.6563E−02
3.5039E−02
−2.9321E−02
1.3405E−02
−2.8776E−03


R2
−6.0738E+00
−9.2984E−02
3.2755E−01
−5.3744E−01
5.0322E−01
−2.7315E−01
7.2623E−02
−6.5705E−03


R3
 2.6641E−01
−2.1627E−01
4.7087E−01
−8.5542E−01
9.3011E−01
−6.0636E−01
2.2047E−01
−3.4508E−02


R4
 3.6582E−01
−1.2952E−01
2.6909E−01
−5.8109E−01
7.5009E−01
−6.2642E−01
3.0585E−01
−6.3937E−02


R5
 3.4896E+01
−1.9775E−02
2.0046E−01
−4.4169E−01
5.9819E−01
−5.0812E−01
2.3655E−01
−4.5111E−02


R6
 9.8957E+00
−3.3744E−01
9.0098E−01
−1.5996E+00
1.8992E+00
−1.3568E+00
5.3223E−01
−8.7805E−02


R7
−1.9691E+01
−3.0852E−02
1.0635E−01
−2.2845E−01
2.5754E−01
−1.5627E−01
5.0169E−02
−6.8630E−03


R8
 3.8147E−01
−3.5600E−02
−9.5044E−03 
 7.5027E−03
−3.5825E−03 
 1.8267E−03
−5.9813E−04 
 6.2123E−05


R9
−4.9839E+01
−2.2644E−02
8.8506E−03
 2.5215E−02
−1.9550E−02 
 6.6121E−03
−1.3399E−03 
 1.1983E−04


R10
−3.9693E−01
−5.1212E−02
7.9348E−02
−7.9515E−02
6.3174E−02
−2.5918E−02
5.0219E−03
−3.7107E−04


R11
−9.8973E+00
−1.3414E−01
4.3841E−02
−9.2773E−03
1.4547E−03
−1.5341E−04
9.2989E−06
−2.4065E−07


R12
−5.1812E+00
−7.2052E−02
2.1601E−02
−4.7627E−03
6.8972E−04
−6.2125E−05
3.0630E−06
−6.0975E−08









Table 7 and table 8 show design data of inflexion points and arrest points of respective lens in the camera optical lens 20 according to Embodiment 2 of the present invention.













TABLE 7







Number of
Inflexion point
Inflexion point



inflexion points
position 1
position 2





















P1R1
1
1.185
0



P1R2
1
0.915
0



P2R1
1
0.825
0



P2R2
0
0
0



P3R1
0
0
0



P3R2
2
0.225
0.605



P4R1
1
1.235
0



P4R2
1
1.265
0



P5R1
2
0.785
1.365



P5R2
2
0.995
1.605



P6R1
2
0.455
1.895



P6R2
2
0.665
3.055





















TABLE 8







Number of
Arrest point
Arrest point



arrest points
position 1
position 2





















P1R1
0
0
0



P1R2
0
0
0



P2R1
0
0
0



P2R2
0
0
0



P3R1
0
0
0



P3R2
2
0.515
0.665



P4R1
0
0
0



P4R2
0
0
0



P5R1
2
1.195
1.465



P5R2
0
0
0



P6R1
1
0.865
0



P6R2
1
1.525
0











FIG. 6 and FIG. 7 respectively illustrate a longitudinal aberration and a lateral color of light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 435 nm after passing the camera optical lens 20 according to Embodiment 2. FIG. 8 illustrates a field curvature and a distortion of light with a wavelength of 546 nm after passing the camera optical lens 10 according to Embodiment 2, in which a field curvature S is a field curvature in a sagittal direction and T is a field curvature in a tangential direction.


As shown in Table 13, Embodiment 2 satisfies the various conditions.


In this embodiment, the entrance pupil diameter of the camera optical lens is 2.490 mm. The image height of 1.0H is 4.000 mm. The FOV is 78.00°. Thus, the camera optical lens has a wide-angle and is ultra-thin. Its on-axis and off-axis chromatic aberrations are fully corrected, thereby achieving excellent optical characteristics.


Embodiment 3

Embodiment 3 is basically the same as Embodiment 1 and involves symbols having the same meanings as Embodiment 1, and only differences therebetween will be described in the following.


Tables 9 and 10 show design data of a camera optical lens 30 in Embodiment 3 of the present invention.














TABLE 9







R
d
nd
νd





















S1

d0=
−0.422
















R1
1.930
d1=
0.521
nd1
1.5444
ν1
55.82


R2
2.321
d2=
0.060


R3
1.890
d3=
0.226
nd2
1.6700
ν2
19.39


R4
1.775
d4=
0.165


R5
4.345
d5=
0.350
nd3
1.5444
ν3
55.82


R6
3.993
d6=
0.060


R7
1.869
d7=
0.447
nd4
1.6153
ν4
25.94


R8
2.470
d8=
0.509


R9
−8.615
d9=
0.554
nd5
1.5444
ν5
55.82


R10
−2.917
d10=
0.990


R11
2.337
d11=
0.549
nd6
1.5438
ν6
56.03


R12
1.374
d12=
0.340


R13

d13=
0.210
ndg
1.5168
νg
64.17


R14

d14=
0.768









Table 10 shows aspherical surface data of each lens of the camera optical lens 30 in Embodiment 3 of the present invention.












TABLE 10









Conic




coefficient
Aspherical surface coefficients
















k
A4
A6
A8
A10
A12
A14
A16



















R1
−3.9093E−01
 3.7056E−04
2.8023E−02
−7.1928E−02
1.1173E−01
−9.7229E−02
4.3906E−02
−8.2119E−03


R2
−7.3600E+00
−9.6977E−02
2.9465E−01
−4.3146E−01
3.5393E−01
−1.4508E−01
1.4584E−02
 3.4053E−03


R3
−3.2280E−01
−2.3527E−01
4.3246E−01
−7.2832E−01
7.7961E−01
−4.8996E−01
1.6688E−01
−2.5037E−02


R4
 4.2402E−01
−1.2320E−01
2.2784E−01
−5.3154E−01
7.2053E−01
−6.1004E−01
2.9782E−01
−6.3392E−02


R5
 9.3678E+00
−8.4914E−03
1.6543E−01
−4.1528E−01
5.5828E−01
−4.8988E−01
2.4579E−01
−5.1540E−02


R6
−6.3737E+00
−2.8770E−01
7.5862E−01
−1.3685E+00
1.6485E+00
−1.2090E+00
4.9210E−01
−8.4355E−02


R7
−1.5616E+01
−3.3327E−02
6.4173E−02
−1.8584E−01
2.2918E−01
−1.3660E−01
4.2348E−02
−5.8091E−03


R8
 3.8519E−02
−4.3726E−02
−1.2219E−02 
 1.2636E−03
7.2942E−03
−2.7054E−03
−1.9950E−04 
 1.2704E−04


R9
−3.5074E+01
−1.1176E−02
8.2206E−03
 1.7968E−02
−1.3169E−02 
 3.9035E−03
−6.7138E−04 
 4.8669E−05


R10
−1.2979E+00
−5.4959E−02
8.3307E−02
−8.3070E−02
6.3889E−02
−2.5505E−02
4.8420E−03
−3.5269E−04


R11
−1.0000E+01
−1.3443E−01
4.4050E−02
−9.7686E−03
1.6491E−03
−1.8543E−04
1.1763E−05
−3.1414E−07


R12
−5.1740E+00
−7.0666E−02
2.0489E−02
−4.3327E−03
5.9709E−04
−5.1059E−05
2.3875E−06
−4.4606E−08









Table 11 and table 12 show Embodiment 3 design data of inflexion points and arrest points of respective lens in the camera optical lens 30 according to Embodiment 3 of the present invention.














TABLE 11







Number of
Inflexion point
Inflexion point
Inflexion point



inflexion points
position 1
position 2
position 3




















P1R1
1
1.225
0
0


P1R2
1
0.965
0
0


P2R1
1
0.985
0
0


P2R2
1
1.095
0
0


P3R1
0
0
0
0


P3R2
0
0
0
0


P4R1
3
0.615
0.965
1.245


P4R2
1
1.185
0
0


P5R1
2
0.745
1.405
0


P5R2
2
0.985
1.635
0


P6R1
2
0.455
1.895
0


P6R2
2
0.655
3.065
0




















TABLE 12







Number of
Arrest point
Arrest point



arrest points
position 1
position 2





















P1R1
0
0
0



P1R2
0
0
0



P2R1
0
0
0



P2R2
0
0
0



P3R1
0
0
0



P3R2
0
0
0



P4R1
0
0
0



P4R2
0
0
0



P5R1
2
1.125
1.555



P5R2
2
1.485
1.805



P6R1
1
0.875
0



P6R2
1
1.535
0











FIG. 10 and FIG. 11 respectively illustrate a longitudinal aberration and a lateral color of light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 435 nm after passing the camera optical lens 30 according to Embodiment 3. FIG. 12 illustrates a field curvature and a distortion of light with a wavelength of 546 nm after passing the camera optical lens 30 according to Embodiment 3, in which a field curvature S is a field curvature in a sagittal direction and T is a field curvature in a tangential direction.


Table 13 in the following lists values corresponding to the respective conditions in this embodiment in order to satisfy the above conditions.


In this embodiment, the entrance pupil diameter of the camera optical lens is 2.489 mm. The image height of 1.0H is 4.000 mm. The FOV is 78.00°. Thus, the camera optical lens has a wide-angle and is ultra-thin. Its on-axis and off-axis chromatic aberrations are fully corrected, thereby achieving excellent optical characteristics.












TABLE 13





Parameters and





conditions
Embodiment 1
Embodiment 2
Embodiment 3


















f
4.840
4.856
4.854


f1
5.421
9.212
14.252


f2
−40.194
−26.010
−204.334


f3
−11.888
−139.490
−139.490


f4
16.979
10.009
9.633


f5
3.880
8.611
7.797


f6
−3.173
−7.686
−7.651


f12
5.899
12.587
14.416


F
1.70
1.95
1.95


f1/f
1.12
1.90
2.94


R7/d7
6.49
3.54
4.18









It is to be understood, however, that even though numerous characteristics and advantages of the present exemplary embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the invention is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms where the appended claims are expressed.

Claims
  • 1. A camera optical lens, comprising, from an object side to an image side in sequence: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens; the first lens has a positive refractive power with a convex object side surface in a paraxial region and a concave image side surface in the paraxial region, the second lens has a negative refractive power, and the third lens has a negative refractive power;wherein the camera optical lens satisfies the following conditions: 1.10≤f1/f≤3.00;−21.74≤(R1+R2)/(R1−R2)≤−1.69;0.05≤d1/TTL≤0.24; and3.50≤R7/d7≤6.50;where,f: a focal length of the optical camera lens;f1: a focal length of the first lens;R1: a curvature radius of the object side surface of the first lens;R2: a curvature radius of the image side surface of the first lens;d1: an on-axis thickness of the first lens;TTL: a total optical length from the object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis,R7: a curvature radius of an object side surface of the fourth lens; andd7: an on-axis thickness of the fourth lens.
  • 2. The camera optical lens according to claim 1 further satisfying the following conditions: 1.11≤f1/f≤2.97; and3.52≤R7/d7≤−6.50.
  • 3. The camera optical lens according to claim 1 further satisfying the following conditions: −13.59≤(R1+R2)/(R1-R2)≤−2.12; and0.07≤d1/TTL≤0.19.
  • 4. The camera optical lens according to claim 1, wherein, the second lens has a convex object side surface in a paraxial region and a concave image side surface in the paraxial region; the camera optical lens satisfies the following conditions: −84.19≤f2/f≤−3.57;5.98≤(R3+R4)/(R3-R4)≤47.80; and0.024≤d3/TTL≤0.06;where,R3: a curvature radius of the object side surface of the second lens;R4: a curvature radius of the image side surface of the second lens;f2: a focal length of the second lens;d3: an on-axis thickness of the second lens.
  • 5. The camera optical lens according to claim 4 further satisfying the following conditions: −52.62≤f2/f≤−4.46;9.57≤(R3+R4)/(R3−R4)≤38.24; and0.03≤d3/TTL≤0.05.
  • 6. The camera optical lens according to claim 1, wherein, the third lens has a concave image side surface in a paraxial region; and the camera optical lens satisfies the following conditions: −57.47≤f3/f≤−1.64;0.15≤(R5+R6)/(R5-R6)≤35.53; and0.03≤d5/TTL≤0.09;where,R5: a curvature radius of an object side surface of the third lens;R6: a curvature radius of the image side surface of the third lens;f3: a focal length of the third lens;d5: an on-axis thickness of the third lens.
  • 7. The camera optical lens according to claim 6 further satisfying the following conditions: −35.92≤f3/f≤−2.05;0.23≤(R5+R6)/(R5-R6)≤28.43; and0.04≤d5/TTL≤0.07.
  • 8. The camera optical lens according to claim 1, wherein, the fourth lens has a positive refractive power, the object side surface of the fourth lens being convex in a paraxial region, an image side surface of the fourth lens being concave in the paraxial region; the camera optical lens further satisfies the following conditions: 0.99≤f4/f≤5.26;−16.07≤(R7+R8)/(R7−R8)≤−4.81; and0.04≤d7/TTL≤0.15;where,R8: a curvature radius of the image side surface of the fourth lens;f4: a focal length of the fourth lens.
  • 9. The camera optical lens according to claim 8 further satisfying the following conditions: 1.59≤f4/f≤4.21;−10.04≤(R7+R8)/(R7-R8)≤−6.02; and0.06≤d7/TTL≤0.12.
  • 10. The camera optical lens according to claim 1, wherein, the fifth lens has a positive refractive power with a convex image side surface in a paraxial region; the camera optical lens further satisfies the following conditions: 0.40≤f5/f≤2.66;0.43≤(R9+R10)/(R9-R10)≤3.50; and0.05 ≤d9/TTL≤0.16;where,f5: a focal length of the fifth lens;R9: a curvature radius of an object side surface of the fifth lens;R10: a curvature radius of the image side surface of the fifth lens;d9: an on-axis thickness of the fifth lens.
  • 11. The camera optical lens according to claim 10 further satisfying the following conditions: 0.64≤f5/f≤2.13;0.70≤(R9+R10)/(R9-R10)≤2.80; and0.07≤d9/TTL≤0.13.
  • 12. The camera optical lens according to claim 1, wherein, the sixth lens has a negative refractive power with a concave image side surface in a paraxial region; the camera optical lens further satisfies the following conditions: −3.17≤f6/f≤−0.44;0.19≤(R11+R12)/(R11−R12)≤5.78; and0.04≤d11/TTL≤0.15;where,f6: a focal length of the sixth lens;R11: a curvature radius of an object side surface of the sixth lens;R12: a curvature radius of the image side surface of the sixth lens;d11: an on-axis thickness of the sixth lens.
  • 13. The camera optical lens according to claim 12 further satisfying the following conditions: −1.98≤f6/f≤−0.55;0.31≤(R11+R12)/(R11−R12)≤4.62; and0.06≤d11/TTL≤0.12.
  • 14. The camera optical lens according to claim 1, wherein, a combined focal length of the first lens and the second lens is f12; the camera optical lens further satisfies the following conditions: 0.61≤f12/f≤4.45.
  • 15. The camera optical lens according to claim 14 further satisfying the following conditions: 0.98≤f12/f≤3.56.
  • 16. The camera optical lens as described in claim 1, wherein a total optical length from an object side surface of the first lens of the camera optical lens to an image surface of the camera optical lens along an optical axis is less than or equal to 6.33 millimeters.
  • 17. The camera optical lens as described in claim 16, wherein the total optical length from the object side surface of the first lens of the camera optical lens to the image surface of the camera optical lens along the optical axis is less than or equal to 6.04 millimeters.
  • 18. The camera optical lens as described in claim 1, wherein an F number of the camera optical lens is less than or equal to 2.01.
  • 19. The camera optical lens as described in claim 18, wherein an F number of the camera optical lens is less than or equal to 1.97.
Priority Claims (1)
Number Date Country Kind
201910581422.5 Jun 2019 CN national
US Referenced Citations (10)
Number Name Date Kind
20130120858 Sano May 2013 A1
20150002728 Tsai Jan 2015 A1
20150268448 Kubota Sep 2015 A1
20160216479 Chen Jul 2016 A1
20170315334 Liao Nov 2017 A1
20180188496 Hsieh Jul 2018 A1
20190004285 Tang Jan 2019 A1
20190079270 Tseng Mar 2019 A1
20200363611 Huang Nov 2020 A1
20210018731 Hsueh Jan 2021 A1
Related Publications (1)
Number Date Country
20200409052 A1 Dec 2020 US