The present disclosure relates to a camera optical lens, particular, to a camera optical lens which is suitable for a surround-sensing camera using imaging elements such as Charge Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor Sensor (CMOS sensor) for high pixel, etc., and which has a suitable field angle and excellent optical performance, and includes seven bright lenses with a F number (FNO) less than 1.83.
In recent years, high accuracy of image recognition of objects (surrounding vehicles, obstacles, road signs, and the like) by a surround-sensing camera is required for automatic driving. Therefore, in order to improve the accuracy of image recognition, it is a tendency to increase the size and the resolution of the sensor. In addition, in order to improve night recognition performance, a camera optical lens with a brighter FNO is required.
A camera optical lens with good optical performance is disclosed in embodiments of Japanese Patent Publication No. 2006-337691. The camera optical lens has a first lens having a negative refractive power, a second lens having a negative refractive power, a third lens having a negative refractive power, a fourth lens having a positive refractive power, and a fifth lens having a negative refractive power, a sixth lens having a positive refractive power and a seventh lens having a positive refractive power. However, due to insufficient relationships between the focal length of the second lens and the focal length of the camera optical lens, between the on-axis distance from the image-side surface of the first lens to the object-side surface of the second lens and the on-axis distance from the image-side surface of the second lens to the object-side surface of the third lens, and between the central curvature radius of the object-side surface of the third lens and the focal length of the camera optical lens, the camera optical lens becomes dark when the FNO is 2.40.
An object of the present disclosure is to provide a camera optical lens having excellent optical performance, and including seven lenses with a bright FNO.
In order to achieve that aforementioned object, the present disclosure is conceived with a camera optical lens capable of solving the problem in the existing technology, by studying a camera optical lens including, from an object side to an image side in sequence, a first lens having negative refractive power, a second lens having negative refractive power, a third lens having negative refractive power, a fourth lens having positive refractive power, and a fifth lens having negative refractive power, a sixth lens having positive refractive power and a seventh lens having positive refractive power, as well as relationships between a focal length of the second lens and a focal length of the camera optical lens, between an on-axis distance between an image-side surface of the first lens and an object-side surface of the second lens and an on-axis distance between an image-side surface of the second lens and an object-side of the third lens, between a central curvature radius of an object-side surface of the third lens and the focal length of the camera optical lens.
Embodiments of the present disclosure provide a camera optical lens. The camera optical lens includes, from an object side to an image side in sequence, a first lens having negative refractive power, a second lens having negative refractive power, a third lens having negative refractive power, a fourth lens having positive refractive power, a fifth lens having negative refractive power, a sixth lens having positive refractive power and a seventh lens having positive refractive power; wherein the camera optical lens satisfies conditions of: −50.10≤f2/f≤−22.90; 9.20≤d2/d4≤30.00; and −11.10≤R5/f≤−9.55; where f denotes a focal length of the camera optical lens; f2 denotes a focal length of the second lens; R5 denotes a central curvature radius of an object-side surface of the third lens; d2 denotes an on-axis distance from an image-side surface of the first lens to an object-side surface of the second lens; and d4 denotes an on-axis distance from the image-side surface of the second lens to the object-side surface of the third lens.
As an improvement, the camera optical lens further satisfies a condition of: −753.70≤f2/d4≤−109.00, where; f2 denotes a focal length of the second lens; and d4 denotes an on-axis distance from the image-side surface of the second lens to the object-side surface of the third lens.
As an improvement, the camera optical lens further satisfies a condition of: 4.60≤f2/R4≤14.60; where f2 denotes a focal length of the second lens; and R4 denotes a central curvature radius of an image-side surface of the second lens.
As an improvement, the camera optical lens further satisfies a condition of: −25.00≤f2/f6≤−12.00; where f2 denotes a focal length of the second lens; and f6 denotes a focal length of the sixth lens.
As an improvement, the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens having positive refractive power are made from glass material.
As an improvement, each of the second lens and the seventh lens is an aspheric glass lens.
The present disclosure is advantageous in follows.
According to the present disclosure, the camera optical lens is provided, which is suitable for a surround-sensing camera using imaging elements such as Charge Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor Sensor (CMOS sensor) for high pixel, etc., and which has a suitable field angle and excellent optical performance, and includes seven bright lenses with a bright FNO.
To illustrate the technical solutions according to the embodiments of the present disclosure or in the prior art more clearly, the accompanying drawings for describing the embodiments or the prior art are introduced briefly in the following. Apparently, the accompanying drawings in the following description are only some embodiments of the present disclosure, and persons of ordinary skill in the art can derive other drawings from the accompanying drawings without creative efforts.
The present disclosure will be further described with reference to the accompanying drawings and embodiments. To make the objects, technical solutions, and advantages of the present disclosure clearer, embodiments of the present disclosure are described in detail with reference to accompanying drawings in the following. A person of ordinary skill in the art can understand that, in the embodiments of the present disclosure, many technical details are provided to make readers better understand the present disclosure. However, even without these technical details and any changes and modifications based on the following embodiments, technical solutions required to be protected by the present disclosure can be implemented.
Embodiments of the camera optical lens will be described herein. The camera optical lens LA has a lens system including seven lenses, in which, from the object side to the image side in sequence, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6 and a seventh lens L7 are provided. Glass plates GF are disposed between the seventh lens L7 and an image surface. The glass plates GF may include glass cover plates, various filters, and the like. In the present disclosure, the glass plates GF may be disposed at different positions or may be omitted. In addition, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7 are also made from glass material.
The first lens L1 has a negative refractive power, the second lens L2 has a negative refractive power, the third lens L3 has a negative refractive power, the fourth lens L4 has a positive refractive power, the fifth lens L5 has a negative refractive power, the sixth lens L6 has a positive refractive power, and the seventh lens L7 has a positive refractive power. For batter correction to various distortions, it is desirable that surfaces of the second lens L2 and the seventh lens L7 are aspheric.
The camera optical lens LA satisfies a condition of:
−50.10≤f2/f≤−22.90 (1)
Condition (1) specifies a ratio of a focal length f2 of the second lens L2 to a focal length f of the camera optical lens LA. Within this condition, correction to various distortions is facilitated when the FNO is 1.83.
The camera optical lens LA satisfies a condition of:
9.20≤d2/d4≤30.00 (2)
Condition (2) specifies a ratio of an on-axis distance d2 from an image-side surface S2 of the first lens L1 to an object-side surface S3 of the second lens L2 to an on-axis distance d4 from the image-side surface S4 of the second lens L2 to the object-side surface S5 of the third lens L3. Within this condition, correction to various distortions is facilitated when the FNO is 1.83.
The camera optical lens LA satisfies a condition of:
−11.10≤R5/f≤−9.55 (3)
Condition (3) specifies a ratio of a central curvature radius R5 of an object-side surface S5 of the third lens L3 to the focal length f of the camera optical lens LA. Within this condition, correction to various distortions is facilitated when the FNO is 1.83.
The camera optical lens LA satisfies a condition of:
−753.70≤f2/d4≤−109.00 (4)
Condition (4) specifies a ratio of the focal length f2 of the second lens L2 to the on-axis distance d4 from the image-side surface S4 of the second lens L2 to the object-side surface S5 of the third lens L3. Within this condition, correction to various distortions is facilitated when the FNO is 1.83.
The camera optical lens LA satisfies a condition of:
4.60≤f2/R4≤14.60 (5)
Condition (5) specifies a ratio of the focal length f2 of the second lens L2 to a central curvature radius R4 of an image-side surface S4 of the second lens L2. Within this condition, correction to various distortions is facilitated when the FNO is 1.83.
The camera optical lens LA satisfies a condition of:
−25.00≤f2/f6≤−12.00 (6)
Condition (6) specifies a ratio of the focal length f2 of the second lens L2 to a focal length f6 of the sixth lens L6. Within this condition, correction to various distortions is facilitated when the FNO is 1.83.
With the seven lenses included in the camera optical lens LA satisfying the aforementioned structure and conditions respectively, the camera optical lens LA is obtained which is suitable for a surround-sensing camera, has a suitable field angle and excellent optical performance and has a FNO less than 1.83.
The camera optical lens LA will be further described with reference to the following examples. Symbols used in various examples are shown as follows. It should be noted that the distance, central curvature radius, and on-axis thickness are all in units of millimeter (mm).
Herein, k denotes a conic coefficient, A4, A6, A8, A10, A12, A14 and A16 denote aspheric surface coefficients.
y=(x2/R)/[1+{1−(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A66x16 (7)
Herein, x denotes a vertical distance between a point in the aspheric curve and the optical axis, and y denotes an aspheric depth (i.e. a vertical distance between the point having a distance of x from the optical axis and a plane tangent to the vertex on the optical axis of the aspheric surface).
For convenience, an aspheric surface of each lens surface uses the aspheric surfaces shown in the above formula (7). However, the present disclosure is not limited to the aspherical polynomials form shown in the formula (7).
In the subsequent Table 10, various parameters of Embodiments 1, 2 and 3 and values corresponding to the parameters specified in the above conditions (1) to (6) are shown.
As shown in Table 10, Embodiment 1 satisfies the conditions (1) to (6).
As shown in Table 10, Embodiment 2 satisfies the conditions (1) to (6).
As shown in Table 10, Embodiment 3 satisfies the conditions (1) to (6).
It will be understood by those of ordinary skill in the art that the embodiments described above are specific embodiments realizing the present disclosure, and that in practical applications, various changes may be made thereto in form and in detail without departing from the range and scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2021-205500 | Dec 2021 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20060274433 | Kamo | Dec 2006 | A1 |
20190219795 | Chen | Jul 2019 | A1 |
20190324232 | Yang | Oct 2019 | A1 |
20200142158 | Yao | May 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20230194836 A1 | Jun 2023 | US |