The present disclosure relates to medical devices and systems, and more particularly, camera tracking systems used for computer assisted navigation during surgery.
Computer assisted navigation during surgery can provide a surgeon with computerized visualization of the present pose of a surgical tool relative to medical images of a patient's anatomy. Camera tracking systems for computer assisted navigation use one or more stereo camera systems to track a set of fiducials attached to a surgical tool which is being positioned by a surgeon or other user during surgery. The set of fiducials, also referred to as a dynamic reference array, allows the camera tracking system to determine a pose of the surgical tool relative to anatomical structure within a medical image and relative to a patient for display to the surgeon. The surgeon can thereby use the real-time pose feedback to navigate the surgical tool during a surgical procedure.
Navigated surgery procedures using existing navigation systems are prone to events triggering intermittent pauses when tracked objects are moved outside a tracking area of the camera system or become obstructed from camera view by intervening personnel and/or equipment. There is also a need to improve the tracking accuracy of navigation systems.
Various embodiments disclosed herein are directed to improvements in computer assisted navigation during surgery.
Some embodiments are directed to a camera tracking bar of a camera tracking system is disclosed for computer assisted navigation during surgery. The camera tracking bar includes a first set of stereo tracking cameras having a first resolution, a first field of view, and spaced apart on the camera tracking bar by a first baseline distance. The camera tracking bar also includes a second set of stereo tracking cameras having a second resolution, a second field of view, and spaced apart on the camera tracking bar by a second baseline distance that is less than the first baseline distance. The second set of stereo tracking cameras is positioned between the first set of stereo tracking cameras, and the resolution and/or the field of view of the second set of stereo tracking cameras is different from the resolution and/or the field of view of the first set of stereo tracking cameras. The camera tracking bar also includes a communication interface configured to provide video streams from the first set of stereo tracking cameras and the second set of stereo tracking cameras to the camera tracking subsystem.
Related embodiments for operations and methods performed by a camera tracking system are disclosed.
Other camera tracking bars, camera tracking systems, computer program products, and methods according to embodiments will be or become apparent to one with skill in the art upon review of the following drawings and detailed description. It is intended that all such camera tracking bars, camera tracking systems, computer program products, and methods be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims. Moreover, it is intended that all embodiments disclosed herein can be implemented separately or combined in any way and/or combination.
The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in a constitute a part of this application, illustrate certain non-limiting embodiments of inventive concepts. In the drawings:
Inventive concepts will now be described more fully hereinafter with reference to the accompanying drawings, in which examples of embodiments of inventive concepts are shown. Inventive concepts may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of various present inventive concepts to those skilled in the art. It should also be noted that these embodiments are not mutually exclusive. Components from one embodiment may be tacitly assumed to be present or used in another embodiment.
Various embodiments disclosed herein are directed to improvements in computer assisted navigation during surgery. A camera tracking bar of a camera tracking system is disclosed that includes a first set of stereo tracking cameras having a first resolution, a first field of view, and spaced apart on the camera tracking bar by a first baseline distance. The camera tracking bar also includes a second set of stereo tracking cameras having a second resolution, a second field of view, and spaced apart on the camera tracking bar by a second baseline distance that is less than the first baseline distance. The second set of stereo tracking cameras is positioned between the first set of stereo tracking cameras, and the resolution and/or the field of view of the second set of stereo tracking cameras is different from the resolution and/or the field of view of the first set of stereo tracking cameras. The camera tracking bar also includes a communication interface configured to provide video streams from the first set of stereo tracking cameras and the second set of stereo tracking cameras to the camera tracking subsystem. Various camera configurations and operations are disclosed that enable the camera tracking bar to provide improved tracking of objects for computer assisted navigation during surgery.
As used herein, the term “pose” refers to the position and/or the rotational angle of one object (e.g., dynamic reference array, end effector, surgical tool, anatomical structure, etc.) relative to another object and/or to a defined coordinate system. A pose may therefore be defined based on only the multidimensional position of one object relative to another object and/or to a defined coordinate system, only on the multidimensional rotational angles of the object relative to another object and/or to a defined coordinate system, or on a combination of the multidimensional position and the multidimensional rotational angles. The term “pose” therefore is used to refer to position, rotational angle, or combination thereof.
The surgical system 2 of
A surgical procedure may begin with the surgical system 2 moving from medical storage to a medical procedure room. The surgical system 2 may be maneuvered through doorways, halls, and elevators to reach a medical procedure room. Within the room, the surgical system 2 may be physically separated into two separate and distinct systems, the surgical robot 4 and the camera tracking system component 6. Surgical robot 4 may be positioned adjacent the patient at any suitable location to properly assist medical personnel. Camera tracking system component 6 may be positioned at the base of the patient, at the patient shoulders, or any other location suitable to track the present pose and movement of the pose of tracks portions of the surgical robot 4 and the patient. Surgical robot 4 and camera tracking system component 6 may be powered by an onboard power source and/or plugged into an external wall outlet.
Surgical robot 4 may be used to assist a surgeon by holding and/or using tools during a medical procedure. To properly utilize and hold tools, surgical robot 4 may rely on a plurality of motors, computers, and/or actuators to function properly. Illustrated in
Robot base 10 may act as a lower support for surgical robot 4. In some embodiments, robot base 10 may support robot body 8 and may attach robot body 8 to a plurality of powered wheels 12. This attachment to wheels may allow robot body 8 to move in space efficiently. Robot base 10 may run the length and width of robot body 8. Robot base 10 may be about two inches to about 10 inches tall. Robot base 10 may cover, protect, and support powered wheels 12.
In some embodiments, as illustrated in
Moving surgical system 2 may be facilitated using robot railing 14. Robot railing 14 provides a person with the ability to move surgical system 2 without grasping robot body 8. As illustrated in
Robot body 8 may provide support for a Selective Compliance Articulated Robot Arm, hereafter referred to as a “SCARA.” A SCARA 24 may be beneficial to use within the surgical system 2 due to the repeatability and compactness of the robotic arm. The compactness of a SCARA may provide additional space within a medical procedure, which may allow medical professionals to perform medical procedures free of excess clutter and confining areas. SCARA 24 may comprise robot telescoping support 16, robot support arm 18, and/or robot arm 20. Robot telescoping support 16 may be disposed along robot body 8. As illustrated in
In some embodiments, medical personnel may move SCARA 24 through a command submitted by the medical personnel. The command may originate from input received on display 34, a tablet, and/or an XR headset (e.g., headset 920 in
As shown in
Robot support arm 18 can be connected to robot telescoping support 16 by various mechanisms. In some embodiments, best seen in
The end effector 26 shown in
In some embodiments, a dynamic reference array 52 is attached to the end effector 26. Dynamic reference arrays, also referred to as “DRAB” and “reference arrays” herein, can be rigid bodies, markers, or other indicia which may be attached or formed on one or more XR headsets being worn by personnel in the operating room, the end effector, the surgical robot, a surgical tool in a navigated surgical procedure, and an anatomical structure (e.g., bone) of a patient. The computer platform 910 in combination with the camera tracking system component 6 or other 3D localization system are configured to track in real-time the pose (e.g., positions and rotational orientations) of the DRA. The DRA can include fiducials, such as the illustrated arrangement of balls. This tracking of 3D coordinates of the DRA can allow the surgical system 2 to determine the pose of the DRA in any multidimensional space in relation to the target anatomical structure of the patient 50 in
As illustrated in
In some embodiments, a tablet may be used in conjunction with display 34 and/or without display 34. The tablet may be disposed on upper display support 32, in place of display 34, and may be removable from upper display support 32 during a medical operation. In addition the tablet may communicate with display 34. The tablet may be able to connect to surgical robot 4 by any suitable wireless and/or wired connection. In some embodiments, the tablet may be able to program and/or control surgical system 2 during a medical operation. When controlling surgical system 2 with the tablet, all input and output commands may be duplicated on display 34. The use of a tablet may allow an operator to manipulate surgical robot 4 without having to move around patient 50 and/or to surgical robot 4.
As will be explained below, in some embodiments a surgeon and/or other personnel can wear XR headsets that may be used in conjunction with display 34 and/or a tablet or the XR head(s) may eliminate the need for use of the display 34 and/or tablet.
As illustrated in
Camera body 36 is supported by camera base 38. Camera base 38 may function as robot base 10. In the embodiment of
As with robot base 10, a plurality of powered wheels 12 may attach to camera base 38. Powered wheel 12 may allow camera tracking system component 6 to stabilize and level or set fixed orientation in regards to patient 50, similar to the operation of robot base 10 and powered wheels 12. This stabilization may prevent camera tracking system component 6 from moving during a medical procedure and may keep cameras 46 on the auxiliary tracking bar from losing track of a DRA connected to an XR headset and/or the surgical robot 4, and/or losing track of one or more DRAs 52 connected to an anatomical structure 54 and/or tool 58 within a designated area 56 as shown in
Camera telescoping support 40 may support cameras 46 on the auxiliary tracking bar. In some embodiments, telescoping support 40 moves cameras 46 higher or lower in the vertical direction. Camera handle 48 may be attached to camera telescoping support 40 at any suitable location and configured to allow an operator to move camera tracking system component 6 into a planned position before a medical operation. In some embodiments, camera handle 48 is used to lower and raise camera telescoping support 40. Camera handle 48 may perform the raising and lowering of camera telescoping support 40 through the depression of a button, switch, lever, and/or any combination thereof.
Lower camera support arm 42 may attach to camera telescoping support 40 at any suitable location, in embodiments, as illustrated in
Curved rail 44 may be disposed at any suitable location on lower camera support arm 42. As illustrated in
For navigated surgery, various processing components (e.g., computer platform 910) and associated software described below are provided that enable pre-operatively planning of a surgical procedure, e.g., implant placement, and electronic transfer of the plan to computer platform 910 to provide navigation information to one or more users during the planned surgical procedure.
For robotic navigation, various processing components (e.g., computer platform 910) and associated software described below are provided that enable pre-operatively planning of a surgical procedure, e.g., implant placement, and electronic transfer of the plan to the surgical robot 4. The surgical robot 4 uses the plan to guide the robot arm 20 and connected end effector 26 to provide a target pose for a surgical tool relative to a patient anatomical structure for a step of the planned surgical procedure.
Various embodiments below are directed to using one or more XR headsets that can be worn by the surgeon 610, the assistant 612, and/or other medical personnel to provide an improved user interface for receiving information from and/or providing control commands to the surgical robot, the camera tracking system component 6/6′, and/or other medical equipment in the operating room.
Activation assembly 60, best illustrated in
Depressing primary button may allow an operator to move SCARA 24 and end effector coupler 22. According to one embodiment, once set in place, SCARA 24 and end effector coupler 22 may not move until an operator programs surgical robot 4 to move SCARA 24 and end effector coupler 22, or is moved using primary button. In some examples, it may require the depression of at least two non-adjacent primary activation switches before SCARA 24 and end effector coupler 22 will respond to operator commands. Depression of at least two primary activation switches may prevent the accidental movement of SCARA 24 and end effector coupler 22 during a medical procedure.
Activated by primary button, load cell may measure the force magnitude and/or direction exerted upon end effector coupler 22 by an operator, i.e. medical personnel. This information may be transferred to one or more motors, e.g. one or more of 850-854, within SCARA 24 that may be used to move SCARA 24 and end effector coupler 22. Information as to the magnitude and direction of force measured by load cell may cause the one or more motors, e.g. one or more of 850-854, to move SCARA 24 and end effector coupler 22 in the same direction as sensed by the load cell. This force-controlled movement may allow the operator to move SCARA 24 and end effector coupler 22 easily and without large amounts of exertion due to the motors moving SCARA 24 and end effector coupler 22 at the same time the operator is moving SCARA 24 and end effector coupler 22.
In some examples, a secondary button may be used by an operator as a “selection” device. During a medical operation, surgical robot 4 may notify medical personnel to certain conditions by the XR headset(s) 920, display 34 and/or light indicator 28. The XR headset(s) 920 are each configured to display images on a see-through display screen to form an extended reality image that is overlaid on real-world objects viewable through the see-through display screen. Medical personnel may be prompted by surgical robot 4 to select a function, mode, and/or assess the condition of surgical system 2. Depressing secondary button a single time may activate certain functions, modes, and/or acknowledge information communicated to medical personnel through the XR headset(s) 920, display 34 and/or light indicator 28. Additionally, depressing the secondary button multiple times in rapid succession may activate additional functions, modes, and/or select information communicated to medical personnel through the XR headset(s) 920, display 34 and/or light indicator 28.
With further reference to
Input power is supplied to surgical robot 4 via a power source which may be provided to power distribution module 804. Power distribution module 804 receives input power and is configured to generate different power supply voltages that are provided to other modules, components, and subsystems of surgical robot 4. Power distribution module 804 may be configured to provide different voltage supplies to connector panel 808, which may be provided to other components such as computer 822, display 824, speaker 826, driver 842 to, for example, power motors 850-854 and end effector coupler 844, and provided to camera converter 834 and other components for surgical robot 4. Power distribution module 804 may also be connected to battery 806, which serves as temporary power source in the event that power distribution module 804 does not receive power from an input power. At other times, power distribution module 804 may serve to charge battery 806.
Connector panel 808 may serve to connect different devices and components to surgical robot 4 and/or associated components and modules. Connector panel 808 may contain one or more ports that receive lines or connections from different components. For example, connector panel 808 may have a ground terminal port that may ground surgical robot 4 to other equipment, a port to connect foot pedal 880, a port to connect to tracking subsystem 830, which may include position sensor 832, camera converter 834, and camera tracking bar 870. Connector panel 808 may also include other ports to allow USB, Ethernet, HDMI communications to other components, such as computer 822. In accordance with some embodiments, the connector panel 808 can include a wired and/or wireless interface for operatively connecting one or more XR headsets 920 to the tracking subsystem 830 and/or the computer subsystem 820.
Control panel 816 may provide various buttons or indicators that control operation of surgical robot 4 and/or provide information from surgical robot 4 for observation by an operator. For example, control panel 816 may include buttons to power on or off surgical robot 4, lift or lower vertical column 16, and lift or lower stabilizers 855-858 that may be designed to engage casters 12 to lock surgical robot 4 from physically moving. Other buttons may stop surgical robot 4 in the event of an emergency, which may remove all motor power and apply mechanical brakes to stop all motion from occurring. Control panel 816 may also have indicators notifying the operator of certain system conditions such as a line power indicator or status of charge for battery 806. In accordance with some embodiments, one or more XR headsets 920 may communicate, e.g. via the connector panel 808, to control operation of the surgical robot 4 and/or to received and display information generated by surgical robot 4 for observation by persons wearing the XR headsets 920.
Computer 822 of computer subsystem 820 includes an operating system and software to operate assigned functions of surgical robot 4. Computer 822 may receive and process information from other components (for example, tracking subsystem 830, platform subsystem 802, and/or motion control subsystem 840) in order to display information to the operator. Further, computer subsystem 820 may provide output through the speaker 826 for the operator. The speaker may be part of the surgical robot, part of an XR headset 920, or within another component of the surgical system 2. The display 824 may correspond to the display 34 shown in
Tracking subsystem 830 may include position sensor 832 and camera converter 834. Tracking subsystem 830 may correspond to the camera tracking system component 6 of
Functional operations of the tracking subsystem 830 and the computer subsystem 820 can be included in the computer platform 910, which can be transported by the camera tracking system component 6′ of
Motion control subsystem 840 may be configured to physically move vertical column 16, upper arm 18, lower arm 20, or rotate end effector coupler 22. The physical movement may be conducted through the use of one or more motors 850-854. For example, motor 850 may be configured to vertically lift or lower vertical column 16. Motor 851 may be configured to laterally move upper arm 18 around a point of engagement with vertical column 16 as shown in
Referring to
When used with a surgical robot 4, the display 912 may correspond to the display 34 of
The processor 914 may include one or more data processing circuits, such as a general purpose and/or special purpose processor, e.g., microprocessor and/or digital signal processor. The processor 914 is configured to execute the computer readable program code 918 in the memory 916 to perform operations, which may include some or all of the operations described herein as being performed for surgery planning, navigated surgery, and/or robotic surgery.
The computer platform 910 can be configured to provide surgery planning functionality. The processor 914 can operate to display on the display device 912 and/or on the XR headset 920 an image of an anatomical structure, e.g., vertebra, that is received from one of the imaging devices 104 and 106 and/or from the image database 950 through the network interface 920. The processor 914 receives an operator's definition of where the anatomical structure shown in one or more images is to have a surgical procedure, e.g., screw placement, such as by the operator touch selecting locations on the display 912 for planned procedures or using a mouse-based cursor to define locations for planned procedures. When the image is displayed in the XR headset 920, the XR headset can be configured to sense in gesture-based commands formed by the wearer and/or sense voice based commands spoken by the wearer, which can be used to control selection among menu items and/or control how objects are displayed on the XR headset 920 as will be explained in further detail below.
The computer platform 910 can be configured to enable anatomy measurement, which can be particularly useful for knee surgery, like measurement of various angles determining center of hip, center of angles, natural landmarks (e.g. transepicondylar line, Whitesides line, posterior condylar line), etc. Some measurements can be automatic while some others can involve human input or assistance. The computer platform 910 may be configured to allow an operator to input a choice of the correct implant for a patient, including choice of size and alignment. The computer platform 910 may be configured to perform automatic or semi-automatic (involving human input) segmentation (image processing) for CT images or other medical images. The surgical plan for a patient may be stored in a cloud-based server, which may correspond to database 950, for retrieval by the surgical robot 4.
During orthopedic surgery, for example, a surgeon may choose which cut to make (e.g. posterior femur, proximal tibia etc.) using a computer screen (e.g. touchscreen) or extended reality (XR) interaction (e.g., hand gesture based commands and/or voice based commands) via, e.g., the XR headset 920. The computer platform 910 can generate navigation information which provides visual guidance to the surgeon for performing the surgical procedure. When used with the surgical robot 4, the computer platform 910 can provide guidance that allows the surgical robot 4 to automatically move the end effector 26 to a target pose so that the surgical tool is aligned with a target location to perform the surgical procedure on an anatomical structure.
In some embodiments, the surgical system 900 can use two DRAs to track patient anatomy position, such as one connected to patient tibia and one connected to patient femur. The system 900 may use standard navigated instruments for the registration and checks (e.g. a pointer similar to the one used in Globus ExcelsiusGPS system for spine surgery).
A particularly challenging task in navigated surgery is how to plan the position of an implant in spine, knee, and other anatomical structures where surgeons struggle to perform the task on a computer screen which is a 2D representation of the 3D anatomical structure. The system 900 could address this problem by using the XR headset 920 to display a three-dimensional (3D) computer generated representations of the anatomical structure and a candidate implant device. The computer generated representations are scaled and posed relative to each other on the display screen under guidance of the computer platform 910 and which can be manipulated by a surgeon while viewed through the XR headset 920. A surgeon may, for example, manipulate the displayed computer-generated representations of the anatomical structure, the implant, a surgical tool, etc., using hand gesture based commands and/or voice based commands that are sensed by the XR headset 920.
For example, a surgeon can view a displayed virtual handle on a virtual implant, and can manipulate (e.g., grab and move) the virtual handle to move the virtual implant to a desired pose and adjust a planned implant placement relative to a graphical representation of an anatomical structure. Afterward, during surgery, the computer platform 910 could display navigation information through the XR headset 920 that facilitates the surgeon's ability to more accurately follow the surgical plan to insert the implant and/or to perform another surgical procedure on the anatomical structure. When the surgical procedure involves bone removal, the progress of bone removal, e.g., depth of cut, can be displayed in real-time through the XR headset 920. Other features that may be displayed through the XR headset 920 can include, without limitation, gap or ligament balance along a range of joint motion, contact line on the implant along the range of joint motion, ligament tension and/or laxity through color or other graphical renderings, etc.
The computer platform 910, in some embodiments, can allow planning for use of standard surgical tools and/or implants, e.g., posterior stabilized implants and cruciate retaining implants, cemented and cementless implants, revision systems for surgeries related to, for example, total or partial knee and/or hip replacement and/or trauma.
An automated imaging system can be used in conjunction with the computer platform 910 to acquire pre-operative, intra-operative, post-operative, and/or real-time image data of an anatomical structure. Example automated imaging systems are illustrated in
The C-arm is mounted to enable rotational movement of the arm in two degrees of freedom, (i.e. about two perpendicular axes in a spherical motion). C-arm is slidably mounted to an x-ray support structure, which allows orbiting rotational movement of the C-arm about its center of curvature, which may permit selective orientation of x-ray source 114 and image receptor 116 vertically and/or horizontally. The C-arm may also be laterally rotatable, (i.e. in a perpendicular direction relative to the orbiting direction to enable selectively adjustable positioning of x-ray source 114 and image receptor 116 relative to both the width and length of the patient). Spherically rotational aspects of the C-arm apparatus allow physicians to take x-rays of the patient at an optimal angle as determined with respect to the particular anatomical condition being imaged.
The O-arm® 106 illustrated in
The O-arm® 106 with the gantry housing 124 has a central opening for positioning around an object to be imaged, a source of radiation that is rotatable around the interior of gantry housing 124, which may be adapted to project radiation from a plurality of different projection angles. A detector system is adapted to detect the radiation at each projection angle to acquire object images from multiple projection planes in a quasi-simultaneous manner. The gantry may be attached to a support structure O-arm® support structure, such as a wheeled mobile cart with wheels, in a cantilevered fashion. A positioning unit translates and/or tilts the gantry to a planned position and orientation, preferably under control of a computerized motion control system. The gantry may include a source and detector disposed opposite one another on the gantry. The source and detector may be secured to a motorized rotor, which may rotate the source and detector around the interior of the gantry in coordination with one another. The source may be pulsed at multiple positions and orientations over a partial and/or full three hundred and sixty degree rotation for multi-planar imaging of a targeted object located inside the gantry. The gantry may further comprise a rail and bearing system for guiding the rotor as it rotates, which may carry the source and detector. Both and/or either O-arm® 106 and C-arm 104 may be used as automated imaging system to scan a patient and send information to the surgical system 2.
Images captured by an imaging system can be displayed on the XR headset 920 and/or another display device of the computer platform 910, the surgical robot 4, and/or another component of the surgical system 900. The XR headset 920 may be connected to one or more of the imaging devices 104 and/or 106 and/or to the image database 950, e.g., via the computer platform 910, to display images therefrom. A user may provide control inputs through the XR headset 920, e.g., gesture and/or voice based commands, to control operation of one or more of the imaging devices 104 and/or 106 and/or the image database 950.
Referring to the example scenario of
If one or more cameras is obstructed from viewing a DRA attached to a tracked object, e.g., a surgical tool, but the DRA is in view of one or more other cameras the tracking subsystem 830 and/or navigation controller 828 can continue to track the object seamlessly without loss of navigation. Additionally, if there is partial occlusion of the DRA from the perspective of one camera, but the entire DRA is visible via multiple camera sources, the tracking inputs of the cameras can be merged to continue navigation of the DRA. One of the XR headsets and/or the tracking cameras 46 may view and track the DRA on another one of the XR headsets to enable the computer platform 910 (
The XR headsets 920 can be operatively connected to view video, pictures, and/or other received information and/or to provide commands that control various equipment in the surgical room, including but not limited to neuromonitoring, microscopes, video cameras, and anesthesia systems. Data from the various equipment may be processed and displayed within the headset, for example the display of patient vitals or the microscope feed.
Example XR Headset Components and Integration to Navigated Surgery, Surgical Robots, and Other Equipment
The display screen 1302 operates as a see-through display screen, also referred to as a combiner, that reflects light from display panels of a display device toward the user's eyes. The display panels can be located between the electronic component enclosure and the user's head, and angled to project virtual content toward the display screen 1302 for reflection toward the user's eyes. The display screen 1302 is semi-transparent and semi-reflective allowing the user to see reflected virtual content superimposed on the user's view of a real-world scene. The display screen 1302 may have different opacity regions, such as the illustrated upper laterally band which has a higher opacity than the lower laterally band. Opacity of the display screen 1302 may be electronically controlled to regulate how much light from the real-world scene passes through to the user's eyes. A high opacity configuration of the display screen 1302 results in high-contrast virtual images overlaid on a dim view of the real-world scene. A low opacity configuration of the display screen 1302 can result in more faint virtual images overlaid on a clearer view of the real-world scene. The opacity may be controlled by applying an opaque material on a surface of the display screen 1302.
According to some embodiments, the surgical system includes an XR headset 920 and an XR headset controller, e.g., controller 1430 in
Opacity of the display screen 1302 may be configured as a gradient having a more continuously changing opacity with distance downward from a top portion of the display screen 1302. The gradient's darkest point can be located at the top portion of the display screen 1302, and gradually becoming less opaque further down on the display screen 1302 until the opacity is transparent or not present. In an example further embodiment, the gradient can change from about 90% opacity to entirely transparent approximately at the mid-eye level of the display screen 1302. With the headset properly calibrated and positioned, the mid-eye level can correspond to the point where the user would look straight out, and the end of the gradient would be located at the “horizon” line of the eye. The darker portion of the gradient will allow crisp, clear visuals of the virtual content and help to block the intrusive brightness of the overhead operating room lights.
Using an opacity filter in this manner enables the XR headset 920 to provide virtual reality (VR) capabilities, by substantially or entirely blocking light from the real-world scene, along an upper portion of the display screen 1302 and to provide AR capabilities along a middle or lower portion of the display screen 1302. This allows the user to have the semi-translucence of AR where needed and allowing clear optics of the patient anatomy during procedures. Configuring the display screen 1302 as a gradient instead of as a more constant opacity band can enable the wearer to experience a more natural transition between a more VR type view to a more AR type view without experiencing abrupt changes in brightness of the real-world scene and depth of view that may otherwise strain the eyes such as during more rapid shifting between upward and downward views.
The display panels and display screen 1302 can be configured to provide a wide field of view see-through XR display system. In one example configuration they provide an 80° diagonal field-of-view (FOV) with 55° of vertical coverage for a user to view virtual content. Other diagonal FOV angles and vertical coverage angles can be provided through different size display panels, different curvature lens, and/or different distances and angular orientations between the display panels and curved display screen 1302.
The XR headset 920 provides an improved human interface for performing navigated surgical procedures. The XR headset 920 can be configured to provide functionalities, e.g., via the computer platform 910, that include without limitation any one or more of: identification of hand gesture based commands and/or voice based commands, display XR graphical objects on a display device 1450. The display device 1450 may be a video projector, flat panel display, etc., which projects the displayed XR graphical objects onto the display screen 1302. The user can view the XR graphical objects as an overlay anchored to particular real-world objects viewed through the display screen 1302 (
Electrical components of the XR headset 920 can include a plurality of cameras 1440, a microphone 1442, a gesture sensor 1444, a pose sensor (e.g., inertial measurement unit (IMU)) 1446, a display module 1448 containing the display device 1450, and a wireless/wired communication interface 1452. As will be explained below, the cameras 1440 of the XR headset may be visible light capturing cameras, near infrared capturing cameras, or a combination of both.
The cameras 1440 may be configured operate as the gesture sensor 1444 by capturing for identification user hand gestures performed within the field of view of the camera(s) 1440. Alternatively the gesture sensor 1444 may be a proximity sensor and/or a touch sensor that senses hand gestures performed proximately to the gesture sensor 1444 and/or senses physical contact, e.g. tapping on the sensor or the enclosure 1304. The pose sensor 1446, e.g., IMU, may include a multi-axis accelerometer, a tilt sensor, and/or another sensor that can sense rotation and/or acceleration of the XR headset 920 along one or more defined coordinate axes. Some or all of these electrical components may be contained in the component enclosure 1304 or may be contained in another enclosure configured to be worn elsewhere, such as on the hip or shoulder.
As explained above, the surgical system 2 includes a camera tracking system component 6/6′ and a tracking subsystem 830 which may be part of the computer platform 910. The surgical system may include imaging devices (e.g., C-arm 104, O-arm 106, and/or image database 950) and/or a surgical robot 4. The tracking subsystem 830 is configured to determine a pose of DRAs attached to an anatomical structure, an end effector, a surgical tool, etc. A navigation controller 828 is configured to determine a target pose for the surgical tool relative to an anatomical structure based on a surgical plan, e.g., from a surgical planning function performed by the computer platform 910 of
The electrical components of the XR headset 920 can be operatively connected to the electrical components of the computer platform 910 through a wired/wireless interface 1452. The electrical components of the XR headset 920 may be operatively connected, e.g., through the computer platform 910 or directly connected, to various imaging devices, e.g., the C-arm imaging device 104, the I/O-arm imaging device 106, the image database 950, and/or to other medical equipment through the wired/wireless interface 1452.
The surgical system 2 further includes at least one XR headset controller 1430 (also referred to as “XR headset controller” for brevity) that may reside in the XR headset 920, the computer platform 910, and/or in another system component connected via wired cables and/or wireless communication links. Various functionality is provided by software executed by the XR headset controller 1430. The XR headset controller 1430 is configured to receive navigation information from the navigation controller 828 which provides guidance to the user during the surgical procedure on an anatomical structure, and is configured to generate an XR image based on the navigation information for display on the display device 1450 for projection on the see-through display screen 1302.
The configuration of the display device 1450 relative to the display screen (also referred to as “see-through display screen”) 1302 is configured to display XR images in a manner such that when the user wearing the XR headset 920 looks through the display screen 1302 the XR images appear to be in the real world. The display screen 1302 can be positioned by the headband 1306 in front of the user's eyes.
The XR headset controller 1430 can be within a housing that is configured to be worn on a user's head or elsewhere on the user's body while viewing the display screen 1302 or may be remotely located from the user viewing the display screen 1302 while being communicatively connected to the display screen 1302. The XR headset controller 1430 can be configured to operationally process signaling from the cameras 1440, the microphone 142, and/or the pose sensor 1446, and is connected to display XR images on the display device 1450 for user viewing on the display screen 1302. Thus, the XR headset controller 1430 illustrated as a circuit block within the XR headset 920 is to be understood as being operationally connected to other illustrated components of the XR headset 920 but not necessarily residing within a common housing (e.g., the electronic component enclosure 1304 of
Example XR Headset Component Optical Arrangement
Example User Views Through the XR Headset
The XR headset operations can display both 2D images and 3D models on the display screen 1302. The 2D images may preferably be displayed in a more opaque band of the display screen 1302 (upper band) and the 3D model may be more preferably displayed in the more transparent band of the display screen 1302, otherwise known as the environmental region (bottom band). Below the lower band where the display screen 1302 ends the wearer has an unobstructed view of the surgical room. It is noted that where XR content is display on the display screen 1302 may be fluidic. It is possible that where the 3D content is displayed moves to the opaque band depending on the position of the headset relative to the content, and where 2D content is displayed can be placed in the transparent band and stabilized to the real world. Additionally, the entire display screen 1302 may be darkened under electronic control to convert the headset into virtual reality for surgical planning or completely transparent during the medical procedure. As explained above, the XR headset 920 and associated operations not only support navigated procedures, but also can be performed in conjunction with robotically assisted procedures.
Other types of XR images (virtual content) that can be displayed on the display screen 1302 can include, but are not limited to any one or more of:
Pose Measurement Chaining
As explained above, navigated surgery can include computer vision tracking and determination of pose (e.g., position and orientation in a six degree-of-freedom coordinate system) of surgical instruments, such as by determining pose of attached DRAs that include spaced apart fiducials, e.g., disks or spheres, arranged in a manner known to the camera tracking system. The computer vision uses spaced apart tracking cameras, e.g., stereo cameras, that are configured to capture near infrared and/or visible light. In this scenario, there are three parameters jointly competing for optimization: (1) accuracy, (2) robustness, and (3) user ergonomics during a surgical procedure.
Computer operations may combine (chain) measured poses in ways that can improve optimization of one or more of the above three parameters by incorporating additional tracking cameras mounted to one or more XR headsets. As shown in
As explained above, the XR headset may be configured to augment a real-world scene with computer generated XR images. The XR headset may be configured to provide an XR viewing environment by displaying the computer generated XR images on a see-through display screen that allows light from the real-world scene to pass therethrough for combined viewing by the user. Alternatively, the XR headset may be configured to provide a VR viewing environment by preventing or substantially preventing light from the real-world scene from being directly viewed by the user along the viewing path of the displayed XR images. An XR headset can be configured to provide both AR and VR viewing environments. In one embodiment, both AR and VR viewing environments are provided by lateral bands of substantially differing opacity arranged between the see-through display screen and the real-world scene, so that a VR viewing environment is provided for XR images aligned with a high opacity band and an AR viewing environment is provided for XR images aligned with the low opacity band. In another embodiment, both AR and VR viewing environments are provided by computer adjustable control of an opacity filter that variably constrains how much light from the real-world scene passes through a see-through display screen for combining with the XR images viewed by the user. Thus, the XR headset can also be referred to as an AR headset or a VR headset.
As was also explained above, the XR headset can include near infrared tracking cameras and/or visible light tracking cameras that are configured to track fiducials of DRAs connected to surgical instruments, patient anatomy, other XR headset(s), and/or a robotic end effector. Using near infrared tracking and/or visible light tracking on the XR headset provides additional tracking volume coverage beyond what cameras on a single auxiliary tracking bar can provide. Adding near infrared tracking cameras to the existing auxiliary tracking bar allows for the headset location to be tracked more robustly but less accurately than in visible light. Mechanically calibrating the visible and near infrared tracking coordinate systems enables the coordinate systems to be aligned sufficiently to perform 3D DRA fiducials triangulation operations using stereo matching to jointly identify pose of the DRA fiducials between the visible and near infrared tracking coordinate systems. Using both visible and near infrared tracking coordinate systems can enable any one or more of: (a) identifying tools that would not be identified using a single coordinate system; (b) increased pose tracking accuracy; (c) enabling a wider range of motion without losing tracking of surgical instruments, patient anatomy, and/or a robotic end effector; and (d) naturally track an XR headset in the same coordinate system as the navigated surgical instruments.
Referring to the surgical system of
The combination of XR headsets HMD1 920 and HMD2 920 and the tracking cameras 46 on the auxiliary tracking bar can, in operation with the computer platform 910, more robustly track the example objects of a patient reference array (R), robotic end effector (E), and surgical tool (T) or instrument. The overlapping views from different perspectives that are provided by the XR headsets HMD1 920 and HMD2 920 and the tracking cameras 46 on the auxiliary tracking bar are shown in
Each of the items labeled in
A=visible light coordinate system of second headset HMD2 920;
N3=NIR coordinate system of second headset HMD2 920;
S=visible light coordinate system of primary headset HMD1 920;
N2=NIR coordinate system of the primary headset HMD1 920;
N=NIR coordinate system of the auxiliary navigation bar 46;
V=visible light coordinate system of the auxiliary navigation bar 46;
R=NIR coordinate system of a patient reference fiducial array 602;
T=NIR coordinate system of a tracked tool 604;
E=NIR coordinate system of a tracked robot end effector on robotic arm 20; and
W=Inertially navigated world coordinate system with stable gravity vector.
The spatial relationships of some of these labeled objects (and by extension, coordinate systems) can be measured and calibrated during the manufacturing process, when the equipment is installed in an operating room, and/or before a surgical procedure is to be performed. In the disclosed system, the following coordinate systems are calibrated: TN2S; TN3A; TNV, where the term “T” is defined as a six degree-of-freedom (6 DOF) homogeneous transformation between the two indicated coordinates systems. Thus, for example, the term TN2S is a 6 DOF homogeneous transformation between the visible light coordinate system of the primary headset HMD1 920 and the NIR coordinate system of the primary headset HMD1 920.
In one embodiment, the XR headsets HMD1 920 and HMD2 920 have passive visible light fiducials painted or otherwise attached to them (coordinate systems S and A), such as the reference array fiducials 1310 shown in
As explained above, the cameras on the XR headset HMD1 920 and HMD2 920 and the tracking cameras 46 on the auxiliary tracking bar have partially overlapping field of views. If one or more of the cameras on the XR headset HMD1 920 are obstructed from viewing a DRA attached to a tracked object, e.g., a tracked tool (T), but the DRA is in view of the cameras of the other XR headset HMD2 920 and/or the tracking cameras 46 on the auxiliary tracking bar, the computer platform 910 can continue to track the DRA seamlessly without loss of navigation. Additionally, if there is partial occlusion of the DRA from the perspective of the cameras on the XR headset HMD1 920, but the entire DRA is visible via cameras of the other XR headset HMD2 920 and/or the tracking cameras 46 on the auxiliary tracking bar, the tracking inputs of the cameras can be merged to continue navigation of the DRA.
More particularly, the various coordinate systems can be chained together by virtue of independent observations the various camera systems provided by the XR headsets HMD1 920 and HMD2 920 and the tracking cameras 46 on the auxiliary tracking bar. For example, each of the XR headsets HMD1 920 and HMD2 920 may require virtual augmentation of the robotic end effector (E). While one XR headset HMD1 920 (N2) and the tracking cameras 46 on the auxiliary tracking bar (N) are able to see (E), perhaps the other XR headset HMD2 920 (N3) cannot. The location of (E) with respect to (N3) can still be computed via one of several different operational methods. Operations according to one embodiment performing chaining of poses from a patient reference (R). If the patient reference (R) is seen by (N3) and either one of (N) or (N2), the pose of (E) with respect to (N3) can be solved directly by either one of the following two equations:
TN3E=TN2ETRN2TN3R—or—TN3E=TNETRNTN3R
They key to this pose chaining is that the relationship between the frames at the end of each chain are inferred (circled and transported below). The chains can be arbitrarily long and are enabled by having more than one stereo camera system (e.g., N, N2, N3).
The camera tracking system can be configured to receive tracking information related to tracked objects from a first tracking camera (e.g., N3) and a second tracking camera (e.g., N2) during a surgical procedure. The camera tracking system can determine a first pose transform (e.g., TN3R) between a first object (e.g., R) coordinate system and the first tracking camera (e.g., N3) coordinate system based on first object tracking information from the first tracking camera (e.g., N3) which indicates pose of the first object (e.g., R). The camera tracking system can determine a second pose transform (e.g., TRN2) between the first object (e.g., R) coordinate system and the second tracking camera (e.g., N2) coordinate system based on first object tracking information from the second tracking camera (e.g., N2) which indicates pose of the first object (e.g., R). The camera tracking system can determine a third pose transform (e.g., TN2E) between a second object (e.g., E) coordinate system and the second tracking camera (e.g., N2) coordinate system based on second object tracking information from the second tracking camera (e.g., N2) which indicates pose of the second object (e.g., E). The camera tracking system can determine a fourth pose transform (e.g., TN3E) between the second object (e.g., E) coordinate system and the first tracking camera (e.g., N3) coordinate system based on combining the first, second, and third pose transforms.
In some further embodiments, the camera system can further determine pose of the second object (e.g., E) and the first tracking camera system (e.g., N3) coordinate system based on processing the tracking information through the fourth pose transform.
Because of the overlapping field of views of the various camera systems, the camera tracking system is capable of determining the pose of the second object (e.g., E) relative to first tracking camera (e.g., N3) when the first camera is blocked from seeing the second object (e.g., E). For example, in some embodiments the camera tracking system is further configured to determine the fourth pose transform (e.g., TN3E) between the second object (e.g., E) coordinate system and the first tracking camera (e.g., N3) coordinate system without use of any tracking information from the first tracking camera (e.g., N3) indicating pose of the second object (e.g., E).
The camera tracking system may achieve higher tracking accuracy by merging synchronized imagery from multiple camera systems. For example, the camera tracking system can determine pose of the second object (e.g., E) relative to first tracking camera (e.g., N3) by merging synchronized imagery of the second object (e.g., E) from multiple perspectives (first and second tracking cameras), and can use weighting which can be determined based on accuracy specs of the respective cameras. More particularly, the camera tracking system can be further configured to determine the fourth pose transform (e.g., TN3E) between the second object (e.g., E) coordinate system and the first tracking camera (e.g., N3) coordinate system based on second object tracking information from the first tracking camera (e.g., N3) which indicates pose of the second object (e.g., E) and further based on a result of the combining of the first, second, and third pose transforms.
The surgical system may be configured to display on the see-through display screen of an XR headset an XR image having a pose that is determined based on the fourth pose transform. The camera tracking system may be further configured to generate the XR image as a graphical representation of the second object (e.g., E) that is posed on the see-through display screen based on processing through the fourth pose transform the first object tracking information from the first and second tracking cameras and the second object tracking information from the second tracking camera.
As explained above, the camera tracking system can include a navigation controller 828 communicatively connected to the first tracking camera (e.g., N3) and the second tracking camera (e.g., N2) to receive the tracking information and configured to perform the determination of the first, second, third, and fourth pose transforms.
Five Camera Tracking Bar for Surgical Navigation
While different stereo or even three camera tracking bars (also called navigation bars) exist today, herein is described a camera tracking bar which can include five cameras designed, configured, calibrated and used in such a way as to enable the camera tracking bar to provide improved tracking of objects for computer assisted navigation during surgery.
The inclusion of a high rate inertial measurement unit (3-axis gyroscope and 3-axis accelerometer) also allows for additional functionality over the current state of the art.
The camera tracking bar uses ambient visible light for instrument, end effector and direct patient anatomy tracking in accordance with some embodiments. A near-infrared (NIR) illuminator circuit is also included with at least one of the five cameras capable of detecting the NIR illumination. The illumination can be helpful for tracking in dark environments or distinguishing retro-reflective surfaces from normal surfaces at very low image sensor exposures. The additional cameras (beyond just two stereo) increase the volume in which object tracking can be accomplished. This reduces the impact of a problem with current systems where small tracking volumes force surgical staff to frequently reposition the camera tracking bar and/or result in loss of object tracking and unexpectedly interruption of navigated surgery operations.
Visible light tracking from ambient light can be difficult because of the high dynamic range required from the image sensors. To put it simply, there is a large difference in lighting between the center of a bright or spotlight and the surrounding area. Having multiple stereo pairs allows for optical marker detection and tracking at different exposures simultaneously. The inclusion of any more than two stereo cameras also removes point triangulation ambiguity, which effectively means that there is less “interference” present.
In various embodiments of the present disclosure, a camera tracking bar includes a first set of stereo tracking cameras 1900, a second set of tracking cameras 1910, and a communication interface 1970, as illustrated in
The first set of stereo tracking cameras 1900 are the outermost stereo cameras. The resolution of the first set of stereo tracking cameras 1900, field of view of the lenses, baseline 1905 (separation between the first set of stereo tracking cameras), and mounting angle are all tuned for the application as each has an impact on accuracy, acuity and supported stereo tracking volume. A wider baseline allows for better triangulation and depth perception accuracy, but there is more error for farther away objects the farther apart the cameras are.
In some embodiments, the camera tracking bar also includes a second set of tracking cameras 1910 just inside of the original pair. These cameras can have a wider field of view and be angled inward in order to detect tracked objects outside of the normal tracking area. The resolution of the second set of stereo tracking cameras 1910, field of view of the lenses, baseline 1915 (separation between the first set of stereo tracking cameras), and mounting angle are all tuned for the application as each has an impact on accuracy, acuity and supported stereo tracking volume.
In some embodiments, the camera tracking bar of a camera tracking system for computer assisted navigation during surgery includes a first set of stereo tracking cameras 1900 having a first resolution, a first field of view, and spaced apart on the camera tracking bar by a first baseline distance 1905. The camera tracking bar also includes a second set of stereo tracking cameras 1910 having a second resolution, a second field of view, and spaced apart on the camera tracking bar by a second baseline distance 1915 that is less than the first baseline distance 1905. The second set of stereo tracking cameras 1910 is positioned between the first set of stereo tracking cameras 1900, and the resolution and/or the field of view of the second set of stereo tracking cameras 1910 is different from the resolution and/or the field of view of the first set of stereo tracking cameras 1900. The camera tracking bar also includes a communication interface 1970 configured to provide video streams from the first set of stereo tracking cameras 1900 and the second set of stereo tracking cameras 1910 to the camera tracking subsystem.
In some embodiments, each of the first set of stereo tracking cameras 1900 are attached to a surface of the camera tracking bar and angled inward toward each other at a first angle, and each of the second set of stereo tracking cameras 1910 are attached to a surface of the camera tracking bar and angled inward toward each other at a second angle that is different from the first angle.
In some embodiments, a color camera 1920 or a set of color cameras may be included for recording or training purposes. The color camera included here is well calibrated with the other four cameras so that color information can be added to tracked objects for improved recognition and differentiation between configurations of tracked objects.
In some embodiments, the camera tracking bar also may include a high rate inertial measurement unit (IMU) 1940. The IMU 1940 allows automatic differentiation between camera and tracked object motion. The IMU measures angular velocity and linear acceleration due to motion and gravity. Not only is this IMU used to differentiate between camera and tracked object motion, but it provides an accurate estimate of the camera and all tracked instruments to gravity. The IMU 1940 may include a 3-axis gyroscope and a 3-axis accelerometer. The IMU 1940 is configured to output motion data indicating measured motion of the camera tracking bar and the communication interface is further configured to provide the motion data to the camera tracking subsystem. The inertial measurement unit may be configured to include in the motion data measurements of an angular velocity of the 3-axis gyroscope and measurements of a linear acceleration of the 3-axis accelerometer. The camera tracking bar may further include a processor configured to align orientation of the video streams and the motion data measurements to a gravity reference.
In some embodiments, the camera tracking bar also may include a microphone array 1950 including a plurality of microphones spaced apart along the camera tracking bar and connected to provide at least one audio stream to a computer platform. The computer platform is configured to perform at least one of recording the at least one audio stream, identifying voice commands contained in the at least one audio stream and selectively trigger defined operations that are associated with identified ones of the voice commands, measuring ambient noise levels contained in the at least one audio stream, and triangulating location of a source of a sound contained in at least two audio streams provided by the plurality of microphones.
In some embodiments, the microphone array 1950 has been incorporated into to the tracking bar in order to record audio for training, triggering voice commands, measuring ambient noise levels and triangulating from where the sound came from. The microphone array 1950 can also be used to collect data for deep learning. Background conversation and equipment noise such as high-speed drills or saws can be measured, detected and timestamped relative to the entire situation.
The camera tracking bar may be used to track disks or retro-reflective spheres on a dynamic reference array. The resolution, field of view, baseline distance, and mounting angle of the individual tracking cameras are all optimized for detecting the disks or retro-reflective spheres with an ideal pixel density, such as a pixel array of at least 10 pixels by 10 pixels and not more than 30 pixels by 30 pixels.
In some embodiments, the first resolution and the first field of view of the first set of stereo tracking cameras 1900 are configured to output frames in the video stream imaging a reference array posed during surgery extends across a pixel array of at least 10 pixels by 10 pixels and not more than 30 pixels by 30 pixels.
In some further embodiments, the second resolution and the second field of view of the second set of stereo tracking cameras 1910 are configured to output frames in the video stream imaging the reference array extends across a pixel array of at least 10 pixels by 10 pixels and not more than 30 pixels by 30 pixels.
In some further embodiments, the first resolution is 7 megapixels, the first field of view is 50 degrees, the first baseline distance 1905 is 0.5 meters, and the second resolution is 1.5 megapixels, the second field of view is 85 degrees, and the second baseline distance 1915 is 0.4 meters.
In some embodiments, the camera tracking bar also includes a set of near-infrared illuminators positioned around each of the first set of stereo tracking cameras, and at least one processor operationally configured to turn on the illuminators when an ambient light level detected by at least one of the first set of stereo tracking cameras is below an ambient light threshold, and responsive to turning on the near-infrared illuminators cease processing video from the first set of stereo tracking cameras using values from a visible light camera calibration file and start processing video from the first set of stereo tracking cameras using values from an near-infrared light camera calibration file.
In some embodiments, the camera tracking bar also includes a set of illuminators emitting predominately one color positioned around each of the first set of stereo tracking cameras, and at least one processor operationally configured to turn on the illuminators when an ambient light level detected by at least one of the first set of stereo tracking cameras is below an ambient light threshold, and responsive to turning on the near-infrared illuminators cease processing video from the first set of stereo tracking cameras using values from an ambient light camera calibration file and start processing video from the first set of stereo tracking cameras using values from a colored light camera calibration file.
In some embodiments, the first set of stereo tracking cameras is configured to have a different sensor exposure speed than the second set of stereo tracking cameras. Additionally, the sensor exposures can be different for each pair of tracking cameras 1900 and 1910, improving the odds of detecting everything present and improving robustness to shadows and other ambient lighting aberrations.
In some embodiments, video frames output by the first set of stereo tracking cameras and the second set of stereo tracking cameras are synchronized by a common synchronization signal output by a floating point gate array. All of the tracking cameras 1900, 1910, and 1920 are synchronized 1960 by a floating point gate array, FPGA, so that data from different sensors is temporally aligned. This synchronization signal is output from the navigation bar so that additional external sensors can capture information corresponding to the same instant in time.
Referring to
In various other embodiments, a camera tracking system for computer assisted navigation during surgery includes a camera tracking bar. The camera tracking bar includes a first set of stereo tracking cameras having a first resolution, a first field of view, and spaced apart on the camera tracking bar by a first baseline distance. The camera tracking bar also includes a second set of stereo tracking cameras having a second resolution, a second field of view, and spaced apart on the camera tracking bar by a second baseline distance that is less than the first baseline distance. The second set of stereo tracking cameras is positioned between the first set of stereo tracking cameras, and the resolution and/or the field of view of the second set of stereo tracking cameras is different from the resolution and/or the field of view of the first set of stereo tracking cameras. The camera tracking bar also includes a camera tracking subsystem configured to determine 2800 pose of fiducials of a reference array in video streams from the first set of stereo tracking cameras and the second set of stereo tracking cameras.
In some of said embodiments, the camera tracking subsystem is further configured to compensate 2802 for motion of the camera tracking bar indicated by the motion data when determining pose of the fiducials of the reference array.
In some embodiments, the first resolution and the first field of view of the first set of stereo tracking cameras are configured to output frames in the video stream imaging a reference array posed during surgery extends across a pixel array of at least 10 pixels by 10 pixels and not more than 30 pixels by 30 pixels. The second resolution and the second field of view of the second set of stereo tracking cameras are configured to output frames in the video stream imaging the reference array extends across a pixel array of at least 10 pixels by 10 pixels and not more than 30 pixels by 30 pixels.
In some embodiments, the camera tracking bar further includes a set of near-infrared illuminators positioned around each of the first set of stereo tracking cameras, and at least one processor operationally configured to turn on 2900 the illuminators when an ambient light level detected by at least one of the first set of stereo tracking cameras is below an ambient light threshold, and responsive to turning on the near-infrared illuminators cease 2902 processing video from the first set of stereo tracking cameras using values from a visible light camera calibration file and start 2904 processing video from the first set of stereo tracking cameras using values from an near-infrared light camera calibration file.
In some embodiments, the first set of stereo tracking cameras includes a dual-pass filters configured to pass a narrow-wavelength band in visible light and another narrow-wavelength band in near-infrared light. The camera tracking subsystem is configured to track 2906 pose of retro-reflective fiducials of a reference array in the video streams capturing narrow-wavelength band in visible light and the other narrow-wavelength band in near-infrared light.
In some embodiments, the camera tracking bar further includes a set of illuminators emitting predominately one color positioned around each of the first set of stereo tracking cameras, and at least one processor operationally configured to turn on the illuminators when an ambient light level detected by at least one of the first set of stereo tracking cameras is below an ambient light threshold, and responsive to turning on the near-infrared illuminators cease processing video from the first set of stereo tracking cameras using values from an ambient light camera calibration file and start processing video from the first set of stereo tracking cameras using values from a colored light camera calibration file.
In the above-description of various embodiments of present inventive concepts, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of present inventive concepts. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which present inventive concepts belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense expressly so defined herein.
When an element is referred to as being “connected”, “coupled”, “responsive”, or variants thereof to another element, it can be directly connected, coupled, or responsive to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected”, “directly coupled”, “directly responsive”, or variants thereof to another element, there are no intervening elements present. Like numbers refer to like elements throughout. Furthermore, “coupled”, “connected”, “responsive”, or variants thereof as used herein may include wirelessly coupled, connected, or responsive. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Well-known functions or constructions may not be described in detail for brevity and/or clarity. The term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that although the terms first, second, third, etc. may be used herein to describe various elements/operations, these elements/operations should not be limited by these terms. These terms are only used to distinguish one element/operation from another element/operation. Thus, a first element/operation in some embodiments could be termed a second element/operation in other embodiments without departing from the teachings of present inventive concepts. The same reference numerals or the same reference designators denote the same or similar elements throughout the specification.
As used herein, the terms “comprise”, “comprising”, “comprises”, “include”, “including”, “includes”, “have”, “has”, “having”, or variants thereof are open-ended, and include one or more stated features, integers, elements, steps, components or functions but does not preclude the presence or addition of one or more other features, integers, elements, steps, components, functions or groups thereof. Furthermore, as used herein, the common abbreviation “e.g.”, which derives from the Latin phrase “exempli gratia,” may be used to introduce or specify a general example or examples of a previously mentioned item, and is not intended to be limiting of such item. The common abbreviation “i.e.”, which derives from the Latin phrase “id est,” may be used to specify a particular item from a more general recitation.
Example embodiments are described herein with reference to block diagrams and/or flowchart illustrations of computer-implemented methods, apparatus (systems and/or devices) and/or computer program products. It is understood that a block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by computer program instructions that are performed by one or more computer circuits. These computer program instructions may be provided to a processor circuit of a general purpose computer circuit, special purpose computer circuit, and/or other programmable data processing circuit to produce a machine, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, transform and control transistors, values stored in memory locations, and other hardware components within such circuitry to implement the functions/acts specified in the block diagrams and/or flowchart block or blocks, and thereby create means (functionality) and/or structure for implementing the functions/acts specified in the block diagrams and/or flowchart block(s).
These computer program instructions may also be stored in a tangible computer-readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instructions which implement the functions/acts specified in the block diagrams and/or flowchart block or blocks. Accordingly, embodiments of present inventive concepts may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.) that runs on a processor such as a digital signal processor, which may collectively be referred to as “circuitry,” “a module” or variants thereof.
It should also be noted that in some alternate implementations, the functions/acts noted in the blocks may occur out of the order noted in the flowcharts. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Moreover, the functionality of a given block of the flowcharts and/or block diagrams may be separated into multiple blocks and/or the functionality of two or more blocks of the flowcharts and/or block diagrams may be at least partially integrated. Finally, other blocks may be added/inserted between the blocks that are illustrated, and/or blocks/operations may be omitted without departing from the scope of inventive concepts. Moreover, although some of the diagrams include arrows on communication paths to show a primary direction of communication, it is to be understood that communication may occur in the opposite direction to the depicted arrows.
Many variations and modifications can be made to the embodiments without substantially departing from the principles of the present inventive concepts. All such variations and modifications are intended to be included herein within the scope of present inventive concepts. Accordingly, the above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended examples of embodiments are intended to cover all such modifications, enhancements, and other embodiments, which fall within the spirit and scope of present inventive concepts. Thus, to the maximum extent allowed by law, the scope of present inventive concepts are to be determined by the broadest permissible interpretation of the present disclosure including the following examples of embodiments and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Name | Date | Kind |
---|---|---|---|
4150293 | Franke | Apr 1979 | A |
5246010 | Gazzara et al. | Sep 1993 | A |
5354314 | Hardy et al. | Oct 1994 | A |
5397323 | Taylor et al. | Mar 1995 | A |
5598453 | Baba et al. | Jan 1997 | A |
5772594 | Barrick | Jun 1998 | A |
5791908 | Gillio | Aug 1998 | A |
5820559 | Ng et al. | Oct 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5887121 | Funda et al. | Mar 1999 | A |
5911449 | Daniele et al. | Jun 1999 | A |
5951475 | Gueziec et al. | Sep 1999 | A |
5987960 | Messner et al. | Nov 1999 | A |
6012216 | Esteves et al. | Jan 2000 | A |
6031888 | Ivan et al. | Feb 2000 | A |
6033415 | Mittelstadt et al. | Mar 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6106511 | Jensen | Aug 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6144875 | Schweikard et al. | Nov 2000 | A |
6157853 | Blume et al. | Dec 2000 | A |
6167145 | Foley et al. | Dec 2000 | A |
6167292 | Badano et al. | Dec 2000 | A |
6201984 | Funda et al. | Mar 2001 | B1 |
6203196 | Meyer et al. | Mar 2001 | B1 |
6205411 | DiGioia, III et al. | Mar 2001 | B1 |
6212419 | Blume et al. | Apr 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6246900 | Cosman et al. | Jun 2001 | B1 |
6301495 | Gueziec et al. | Oct 2001 | B1 |
6306126 | Montezuma | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6314311 | Williams et al. | Nov 2001 | B1 |
6320929 | Von Der Haar | Nov 2001 | B1 |
6322567 | Mittelstadt et al. | Nov 2001 | B1 |
6325808 | Bernard et al. | Dec 2001 | B1 |
6340363 | Bolger et al. | Jan 2002 | B1 |
6377011 | Ben-Ur | Apr 2002 | B1 |
6379302 | Kessman et al. | Apr 2002 | B1 |
6402762 | Hunter et al. | Jun 2002 | B2 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6447503 | Wynne et al. | Sep 2002 | B1 |
6451027 | Cooper et al. | Sep 2002 | B1 |
6477400 | Barrick | Nov 2002 | B1 |
6484049 | Seeley et al. | Nov 2002 | B1 |
6487267 | Wolter | Nov 2002 | B1 |
6490467 | Bucholz et al. | Dec 2002 | B1 |
6490475 | Seeley et al. | Dec 2002 | B1 |
6499488 | Hunter et al. | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6507751 | Blume et al. | Jan 2003 | B2 |
6535756 | Simon et al. | Mar 2003 | B1 |
6560354 | Maurer, Jr. et al. | May 2003 | B1 |
6565554 | Niemeyer | May 2003 | B1 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6614453 | Suri et al. | Sep 2003 | B1 |
6614871 | Kobiki et al. | Sep 2003 | B1 |
6619840 | Rasche et al. | Sep 2003 | B2 |
6636757 | Jascob et al. | Oct 2003 | B1 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6666579 | Jensen | Dec 2003 | B2 |
6669635 | Kessman et al. | Dec 2003 | B2 |
6701173 | Nowinski et al. | Mar 2004 | B2 |
6757068 | Foxlin | Jun 2004 | B2 |
6782287 | Grzeszczuk et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6804581 | Wang et al. | Oct 2004 | B2 |
6823207 | Jensen et al. | Nov 2004 | B1 |
6827351 | Graziani et al. | Dec 2004 | B2 |
6837892 | Shoham | Jan 2005 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6856826 | Seeley et al. | Feb 2005 | B2 |
6856827 | Seeley et al. | Feb 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6892090 | Verard et al. | May 2005 | B2 |
6920347 | Simon et al. | Jul 2005 | B2 |
6922632 | Foxlin | Jul 2005 | B2 |
6968224 | Kessman et al. | Nov 2005 | B2 |
6978166 | Foley et al. | Dec 2005 | B2 |
6988009 | Grimm et al. | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6996487 | Jutras et al. | Feb 2006 | B2 |
6999852 | Green | Feb 2006 | B2 |
7007699 | Martinelli et al. | Mar 2006 | B2 |
7016457 | Senzig et al. | Mar 2006 | B1 |
7043961 | Pandey et al. | May 2006 | B2 |
7062006 | Pelc et al. | Jun 2006 | B1 |
7063705 | Young et al. | Jun 2006 | B2 |
7072707 | Galloway, Jr. et al. | Jul 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7099428 | Clinthorne et al. | Aug 2006 | B2 |
7108421 | Gregerson et al. | Sep 2006 | B2 |
7130676 | Barrick | Oct 2006 | B2 |
7139418 | Abovitz et al. | Nov 2006 | B2 |
7139601 | Bucholz et al. | Nov 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7164968 | Treat et al. | Jan 2007 | B2 |
7167738 | Schweikard et al. | Jan 2007 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7172627 | Fiere et al. | Feb 2007 | B2 |
7194120 | Wicker et al. | Mar 2007 | B2 |
7197107 | Arai et al. | Mar 2007 | B2 |
7231014 | Levy | Jun 2007 | B2 |
7231063 | Naimark et al. | Jun 2007 | B2 |
7239940 | Wang et al. | Jul 2007 | B2 |
7248914 | Hastings et al. | Jul 2007 | B2 |
7301648 | Foxlin | Nov 2007 | B2 |
7302288 | Schellenberg | Nov 2007 | B1 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7318805 | Schweikard et al. | Jan 2008 | B2 |
7318827 | Leitner et al. | Jan 2008 | B2 |
7319897 | Leitner et al. | Jan 2008 | B2 |
7324623 | Heuscher et al. | Jan 2008 | B2 |
7327865 | Fu et al. | Feb 2008 | B2 |
7331967 | Lee et al. | Feb 2008 | B2 |
7333642 | Green | Feb 2008 | B2 |
7339341 | Oleynikov et al. | Mar 2008 | B2 |
7366562 | Dukesherer et al. | Apr 2008 | B2 |
7379790 | Toth et al. | May 2008 | B2 |
7386365 | Nixon | Jun 2008 | B2 |
7422592 | Morley et al. | Sep 2008 | B2 |
7435216 | Kwon et al. | Oct 2008 | B2 |
7440793 | Chauhan et al. | Oct 2008 | B2 |
7460637 | Clinthorne et al. | Dec 2008 | B2 |
7466303 | Yi et al. | Dec 2008 | B2 |
7493153 | Ahmed et al. | Feb 2009 | B2 |
7505617 | Fu et al. | Mar 2009 | B2 |
7533892 | Schena et al. | May 2009 | B2 |
7542791 | Mire et al. | Jun 2009 | B2 |
7555331 | Viswanathan | Jun 2009 | B2 |
7567834 | Clayton et al. | Jul 2009 | B2 |
7594912 | Cooper et al. | Sep 2009 | B2 |
7606613 | Simon et al. | Oct 2009 | B2 |
7607440 | Coste-Maniere et al. | Oct 2009 | B2 |
7623902 | Pacheco | Nov 2009 | B2 |
7630752 | Viswanathan | Dec 2009 | B2 |
7630753 | Simon et al. | Dec 2009 | B2 |
7643862 | Schoenefeld | Jan 2010 | B2 |
7660623 | Hunter et al. | Feb 2010 | B2 |
7661881 | Gregerson et al. | Feb 2010 | B2 |
7683331 | Chang | Mar 2010 | B2 |
7683332 | Chang | Mar 2010 | B2 |
7689320 | Prisco et al. | Mar 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7702379 | Avinash et al. | Apr 2010 | B2 |
7702477 | Tuemmler et al. | Apr 2010 | B2 |
7711083 | Heigl et al. | May 2010 | B2 |
7711406 | Kuhn et al. | May 2010 | B2 |
7720523 | Omernick et al. | May 2010 | B2 |
7725253 | Foxlin | May 2010 | B2 |
7726171 | Langlotz et al. | Jun 2010 | B2 |
7742801 | Neubauer et al. | Jun 2010 | B2 |
7751865 | Jascob et al. | Jul 2010 | B2 |
7760849 | Zhang | Jul 2010 | B2 |
7762825 | Burbank et al. | Jul 2010 | B2 |
7763015 | Cooper et al. | Jul 2010 | B2 |
7787699 | Mahesh et al. | Aug 2010 | B2 |
7796728 | Bergfjord | Sep 2010 | B2 |
7813838 | Sommer | Oct 2010 | B2 |
7818044 | Dukesherer et al. | Oct 2010 | B2 |
7819859 | Prisco et al. | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7831294 | Viswanathan | Nov 2010 | B2 |
7834484 | Sartor | Nov 2010 | B2 |
7835557 | Kendrick et al. | Nov 2010 | B2 |
7835778 | Foley et al. | Nov 2010 | B2 |
7835784 | Mire et al. | Nov 2010 | B2 |
7840253 | Tremblay et al. | Nov 2010 | B2 |
7840256 | Lakin et al. | Nov 2010 | B2 |
7843158 | Prisco | Nov 2010 | B2 |
7844320 | Shahidi | Nov 2010 | B2 |
7853305 | Simon et al. | Dec 2010 | B2 |
7853313 | Thompson | Dec 2010 | B2 |
7865269 | Prisco et al. | Jan 2011 | B2 |
D631966 | Perloff et al. | Feb 2011 | S |
7879045 | Gielen et al. | Feb 2011 | B2 |
7881767 | Strommer et al. | Feb 2011 | B2 |
7881770 | Melkent et al. | Feb 2011 | B2 |
7886743 | Cooper et al. | Feb 2011 | B2 |
RE42194 | Foley et al. | Mar 2011 | E |
RE42226 | Foley et al. | Mar 2011 | E |
7900524 | Calloway et al. | Mar 2011 | B2 |
7907166 | Lamprecht et al. | Mar 2011 | B2 |
7909122 | Schena et al. | Mar 2011 | B2 |
7925653 | Saptharishi | Apr 2011 | B2 |
7930065 | Larkin et al. | Apr 2011 | B2 |
7935130 | Willliams | May 2011 | B2 |
7940999 | Liao et al. | May 2011 | B2 |
7945012 | Ye et al. | May 2011 | B2 |
7945021 | Shapiro et al. | May 2011 | B2 |
7953470 | Vetter et al. | May 2011 | B2 |
7954397 | Choi et al. | Jun 2011 | B2 |
7971341 | Dukesherer et al. | Jul 2011 | B2 |
7974674 | Hauck et al. | Jul 2011 | B2 |
7974677 | Mire et al. | Jul 2011 | B2 |
7974681 | Wallace et al. | Jul 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
7983733 | Viswanathan | Jul 2011 | B2 |
7988215 | Seibold | Aug 2011 | B2 |
7996110 | Lipow et al. | Aug 2011 | B2 |
8004121 | Sartor | Aug 2011 | B2 |
8004229 | Nowlin et al. | Aug 2011 | B2 |
8010177 | Csavoy et al. | Aug 2011 | B2 |
8019045 | Kato | Sep 2011 | B2 |
8021310 | Sanborn et al. | Sep 2011 | B2 |
8035685 | Jensen | Oct 2011 | B2 |
8046054 | Kim et al. | Oct 2011 | B2 |
8046057 | Clarke | Oct 2011 | B2 |
8052688 | Wolf, II | Nov 2011 | B2 |
8054184 | Cline et al. | Nov 2011 | B2 |
8054752 | Druke et al. | Nov 2011 | B2 |
8057397 | Li et al. | Nov 2011 | B2 |
8057407 | Martinelli et al. | Nov 2011 | B2 |
8062288 | Cooper et al. | Nov 2011 | B2 |
8062375 | Glerum et al. | Nov 2011 | B2 |
8066524 | Burbank et al. | Nov 2011 | B2 |
8073335 | Labonville et al. | Dec 2011 | B2 |
8079950 | Stern et al. | Dec 2011 | B2 |
8086299 | Adler et al. | Dec 2011 | B2 |
8092370 | Roberts et al. | Jan 2012 | B2 |
8098914 | Liao et al. | Jan 2012 | B2 |
8100950 | St. Clair et al. | Jan 2012 | B2 |
8105320 | Manzo | Jan 2012 | B2 |
8108025 | Csavoy et al. | Jan 2012 | B2 |
8109877 | Moctezuma de la Barrera et al. | Feb 2012 | B2 |
8112292 | Simon | Feb 2012 | B2 |
8116430 | Shapiro et al. | Feb 2012 | B1 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8121249 | Wang et al. | Feb 2012 | B2 |
8123675 | Funda et al. | Feb 2012 | B2 |
8133229 | Bonutti | Mar 2012 | B1 |
8142420 | Schena | Mar 2012 | B2 |
8147494 | Leitner et al. | Apr 2012 | B2 |
8150494 | Simon et al. | Apr 2012 | B2 |
8150497 | Gielen et al. | Apr 2012 | B2 |
8150498 | Gielen et al. | Apr 2012 | B2 |
8165658 | Waynik et al. | Apr 2012 | B2 |
8170313 | Kendrick et al. | May 2012 | B2 |
8179073 | Farritor et al. | May 2012 | B2 |
8182476 | Julian et al. | May 2012 | B2 |
8184880 | Zhao et al. | May 2012 | B2 |
8202278 | Orban, III et al. | Jun 2012 | B2 |
8208708 | Homan et al. | Jun 2012 | B2 |
8208988 | Jensen | Jun 2012 | B2 |
8219177 | Smith et al. | Jul 2012 | B2 |
8219178 | Smith et al. | Jul 2012 | B2 |
8220468 | Cooper et al. | Jul 2012 | B2 |
8224024 | Foxlin et al. | Jul 2012 | B2 |
8224484 | Swarup et al. | Jul 2012 | B2 |
8225798 | Baldwin et al. | Jul 2012 | B2 |
8228368 | Zhao et al. | Jul 2012 | B2 |
8231610 | Jo et al. | Jul 2012 | B2 |
8263933 | Hartmann et al. | Jul 2012 | B2 |
8239001 | Verard et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8248413 | Gattani et al. | Aug 2012 | B2 |
8256319 | Cooper et al. | Sep 2012 | B2 |
8271069 | Jascob et al. | Sep 2012 | B2 |
8271130 | Hourtash | Sep 2012 | B2 |
8281670 | Larkin et al. | Oct 2012 | B2 |
8282653 | Nelson et al. | Oct 2012 | B2 |
8301226 | Csavoy et al. | Oct 2012 | B2 |
8311611 | Csavoy et al. | Nov 2012 | B2 |
8320991 | Jascob et al. | Nov 2012 | B2 |
8332012 | Kienzle, III | Dec 2012 | B2 |
8333755 | Cooper et al. | Dec 2012 | B2 |
8335552 | Stiles | Dec 2012 | B2 |
8335557 | Maschke | Dec 2012 | B2 |
8348931 | Cooper et al. | Jan 2013 | B2 |
8353963 | Glerum | Jan 2013 | B2 |
8358818 | Miga et al. | Jan 2013 | B2 |
8359730 | Burg et al. | Jan 2013 | B2 |
8374673 | Adcox et al. | Feb 2013 | B2 |
8374723 | Zhao et al. | Feb 2013 | B2 |
8379791 | Forthmann et al. | Feb 2013 | B2 |
8386019 | Camus et al. | Feb 2013 | B2 |
8392022 | Ortmaier et al. | Mar 2013 | B2 |
8394099 | Patwardhan | Mar 2013 | B2 |
8395342 | Prisco | Mar 2013 | B2 |
8398634 | Manzo et al. | Mar 2013 | B2 |
8400094 | Schena | Mar 2013 | B2 |
8414957 | Enzerink et al. | Apr 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8450694 | Baviera et al. | May 2013 | B2 |
8452447 | Nixon | May 2013 | B2 |
RE44305 | Foley et al. | Jun 2013 | E |
8462911 | Vesel et al. | Jun 2013 | B2 |
8465476 | Rogers et al. | Jun 2013 | B2 |
8465771 | Wan et al. | Jun 2013 | B2 |
8467851 | Mire et al. | Jun 2013 | B2 |
8467852 | Csavoy et al. | Jun 2013 | B2 |
8469947 | Devengenzo et al. | Jun 2013 | B2 |
RE44392 | Hynes | Jul 2013 | E |
8483434 | Buehner et al. | Jul 2013 | B2 |
8483800 | Jensen et al. | Jul 2013 | B2 |
8486532 | Enzerink et al. | Jul 2013 | B2 |
8489235 | Moll et al. | Jul 2013 | B2 |
8500722 | Cooper | Aug 2013 | B2 |
8500728 | Newton et al. | Aug 2013 | B2 |
8504201 | Moll et al. | Aug 2013 | B2 |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8506556 | Schena | Aug 2013 | B2 |
8508173 | Goldberg et al. | Aug 2013 | B2 |
8512318 | Tovey et al. | Aug 2013 | B2 |
8515576 | Lipow et al. | Aug 2013 | B2 |
8518120 | Glerum et al. | Aug 2013 | B2 |
8521331 | Itkowitz | Aug 2013 | B2 |
8526688 | Groszmann et al. | Sep 2013 | B2 |
8526700 | Isaacs | Sep 2013 | B2 |
8527094 | Kumar et al. | Sep 2013 | B2 |
8528440 | Morley et al. | Sep 2013 | B2 |
8532741 | Heruth et al. | Sep 2013 | B2 |
8541970 | Nowlin et al. | Sep 2013 | B2 |
8548563 | Simon et al. | Oct 2013 | B2 |
8549732 | Burg et al. | Oct 2013 | B2 |
8551114 | Ramos de la Pena | Oct 2013 | B2 |
8551116 | Julian et al. | Oct 2013 | B2 |
8556807 | Scott et al. | Oct 2013 | B2 |
8556979 | Glerum et al. | Oct 2013 | B2 |
8560118 | Green et al. | Oct 2013 | B2 |
8561473 | Blumenkranz | Oct 2013 | B2 |
8562594 | Cooper et al. | Oct 2013 | B2 |
8571638 | Shoham | Oct 2013 | B2 |
8571710 | Coste-Maniere et al. | Oct 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574303 | Sharkey et al. | Nov 2013 | B2 |
8585420 | Burbank et al. | Nov 2013 | B2 |
8594841 | Zhao et al. | Nov 2013 | B2 |
8597198 | Sanborn et al. | Dec 2013 | B2 |
8600478 | Verard et al. | Dec 2013 | B2 |
8603077 | Cooper et al. | Dec 2013 | B2 |
8611985 | Lavallee et al. | Dec 2013 | B2 |
8613230 | Blumenkranz et al. | Dec 2013 | B2 |
8621939 | Blumenkranz et al. | Jan 2014 | B2 |
8624537 | Nowlin et al. | Jan 2014 | B2 |
8630389 | Kato | Jan 2014 | B2 |
8634897 | Simon et al. | Jan 2014 | B2 |
8634957 | Toth et al. | Jan 2014 | B2 |
8638056 | Goldberg et al. | Jan 2014 | B2 |
8638057 | Goldberg et al. | Jan 2014 | B2 |
8639000 | Zhao et al. | Jan 2014 | B2 |
8641726 | Bonutti | Feb 2014 | B2 |
8644907 | Hartmann et al. | Feb 2014 | B2 |
8657809 | Schoepp | Feb 2014 | B2 |
8660635 | Simon et al. | Feb 2014 | B2 |
8666544 | Moll et al. | Mar 2014 | B2 |
8675939 | Moctezuma de la Barrera | Mar 2014 | B2 |
8678647 | Gregerson et al. | Mar 2014 | B2 |
8679125 | Smith et al. | Mar 2014 | B2 |
8679183 | Glerum et al. | Mar 2014 | B2 |
8682413 | Lloyd | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685098 | Glerum et al. | Apr 2014 | B2 |
8693730 | Umasuthan et al. | Apr 2014 | B2 |
8694075 | Groszmann et al. | Apr 2014 | B2 |
8696458 | Foxlin et al. | Apr 2014 | B2 |
8700123 | Okamura et al. | Apr 2014 | B2 |
8706086 | Glerum | Apr 2014 | B2 |
8706185 | Foley et al. | Apr 2014 | B2 |
8706301 | Zhao et al. | Apr 2014 | B2 |
8717430 | Simon et al. | May 2014 | B2 |
8727618 | Maschke et al. | May 2014 | B2 |
8734432 | Tuma et al. | May 2014 | B2 |
8738115 | Amberg et al. | May 2014 | B2 |
8738181 | Greer et al. | May 2014 | B2 |
8740882 | Jun et al. | Jun 2014 | B2 |
8746252 | McGrogan et al. | Jun 2014 | B2 |
8749189 | Nowlin et al. | Jun 2014 | B2 |
8749190 | Nowlin et al. | Jun 2014 | B2 |
8761930 | Nixon | Jun 2014 | B2 |
8764448 | Yang et al. | Jul 2014 | B2 |
8771170 | Mesallum et al. | Jul 2014 | B2 |
8781186 | Clements et al. | Jul 2014 | B2 |
8781630 | Banks et al. | Jul 2014 | B2 |
8784385 | Boyden et al. | Jul 2014 | B2 |
8786241 | Nowlin et al. | Jul 2014 | B2 |
8787520 | Baba | Jul 2014 | B2 |
8792704 | Isaacs | Jul 2014 | B2 |
8798231 | Notohara et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8808164 | Hoffman et al. | Aug 2014 | B2 |
8812077 | Dempsey | Aug 2014 | B2 |
8814793 | Brabrand | Aug 2014 | B2 |
8816628 | Nowlin et al. | Aug 2014 | B2 |
8818105 | Myronenko et al. | Aug 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8821511 | Von Jako et al. | Sep 2014 | B2 |
8823308 | Nowlin et al. | Sep 2014 | B2 |
8827996 | Scott et al. | Sep 2014 | B2 |
8828024 | Farritor et al. | Sep 2014 | B2 |
8830224 | Zhao et al. | Sep 2014 | B2 |
8834489 | Cooper et al. | Sep 2014 | B2 |
8834490 | Bonutti | Sep 2014 | B2 |
8838270 | Druke et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8855822 | Bartol et al. | Oct 2014 | B2 |
8858598 | Seifert et al. | Oct 2014 | B2 |
8860753 | Bhandarkar et al. | Oct 2014 | B2 |
8864751 | Prisco et al. | Oct 2014 | B2 |
8864798 | Weiman et al. | Oct 2014 | B2 |
8864833 | Glerum et al. | Oct 2014 | B2 |
8867703 | Shapiro et al. | Oct 2014 | B2 |
8870880 | Himmelberger et al. | Oct 2014 | B2 |
8876866 | Zappacosta et al. | Nov 2014 | B2 |
8880223 | Raj et al. | Nov 2014 | B2 |
8882803 | Iott et al. | Nov 2014 | B2 |
8883210 | Truncale et al. | Nov 2014 | B1 |
8888821 | Rezach et al. | Nov 2014 | B2 |
8888853 | Glerum et al. | Nov 2014 | B2 |
8888854 | Glerum et al. | Nov 2014 | B2 |
8894652 | Seifert et al. | Nov 2014 | B2 |
8894688 | Suh | Nov 2014 | B2 |
8894691 | Iott et al. | Nov 2014 | B2 |
8906069 | Hansell et al. | Dec 2014 | B2 |
8964934 | Ein-Gal | Feb 2015 | B2 |
8992580 | Bar et al. | Mar 2015 | B2 |
8996169 | Lightcap et al. | Mar 2015 | B2 |
9001963 | Sowards-Emmerd et al. | Apr 2015 | B2 |
9002076 | Khadem et al. | Apr 2015 | B2 |
9044190 | Rubner et al. | Jun 2015 | B2 |
9107683 | Hourtash et al. | Aug 2015 | B2 |
9125556 | Zehavi et al. | Sep 2015 | B2 |
9131986 | Greer et al. | Sep 2015 | B2 |
9215968 | Schostek et al. | Dec 2015 | B2 |
9308050 | Kostrzewski et al. | Apr 2016 | B2 |
9380984 | Li et al. | Jul 2016 | B2 |
9393039 | Lechner et al. | Jul 2016 | B2 |
9398886 | Gregerson et al. | Jul 2016 | B2 |
9398890 | Dong et al. | Jul 2016 | B2 |
9414859 | Ballard et al. | Aug 2016 | B2 |
9420975 | Gutfleisch et al. | Aug 2016 | B2 |
9492235 | Hourtash et al. | Nov 2016 | B2 |
9592096 | Maillet et al. | Mar 2017 | B2 |
9750465 | Engel et al. | Sep 2017 | B2 |
9757203 | Hourtash et al. | Sep 2017 | B2 |
9795354 | Menegaz et al. | Oct 2017 | B2 |
9814535 | Bar et al. | Nov 2017 | B2 |
9820783 | Donner et al. | Nov 2017 | B2 |
9833265 | Donner et al. | Nov 2017 | B2 |
9848922 | Tohmeh et al. | Dec 2017 | B2 |
9925011 | Gombert et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
10034717 | Miller et al. | Jul 2018 | B2 |
11004233 | Wang | May 2021 | B1 |
20010036302 | Miller | Nov 2001 | A1 |
20020035321 | Bucholz et al. | Mar 2002 | A1 |
20040068172 | Nowinski et al. | Apr 2004 | A1 |
20040076259 | Jensen et al. | Apr 2004 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050143651 | Verard et al. | Jun 2005 | A1 |
20050171558 | Abovitz et al. | Aug 2005 | A1 |
20060100610 | Wallace et al. | May 2006 | A1 |
20060173329 | Marquart et al. | Aug 2006 | A1 |
20060184396 | Dennis et al. | Aug 2006 | A1 |
20060241416 | Marquart et al. | Oct 2006 | A1 |
20060291612 | Nishide et al. | Dec 2006 | A1 |
20070015987 | Benlloch Baviera et al. | Jan 2007 | A1 |
20070021738 | Hasser et al. | Jan 2007 | A1 |
20070038059 | Sheffer et al. | Feb 2007 | A1 |
20070073133 | Schoenefeld | Mar 2007 | A1 |
20070081695 | Foxlin | Apr 2007 | A1 |
20070156121 | Millman et al. | Jul 2007 | A1 |
20070156157 | Nahum et al. | Jul 2007 | A1 |
20070167712 | Keglovich et al. | Jul 2007 | A1 |
20070233238 | Huynh et al. | Oct 2007 | A1 |
20080004523 | Jensen | Jan 2008 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080033283 | Dellaca et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080082109 | Moll et al. | Apr 2008 | A1 |
20080108912 | Node-Langlois | May 2008 | A1 |
20080108991 | Von Jako | May 2008 | A1 |
20080109012 | Falco et al. | May 2008 | A1 |
20080144906 | Allred et al. | Jun 2008 | A1 |
20080161680 | Von Jako et al. | Jul 2008 | A1 |
20080161682 | Kendrick et al. | Jul 2008 | A1 |
20080177203 | von Jako | Jul 2008 | A1 |
20080214922 | Hartmann et al. | Sep 2008 | A1 |
20080228068 | Viswanathan et al. | Sep 2008 | A1 |
20080228196 | Wang et al. | Sep 2008 | A1 |
20080235052 | Node-Langlois et al. | Sep 2008 | A1 |
20080269596 | Revie et al. | Oct 2008 | A1 |
20080287771 | Anderson | Nov 2008 | A1 |
20080287781 | Revie et al. | Nov 2008 | A1 |
20080300477 | Lloyd et al. | Dec 2008 | A1 |
20080300478 | Zuhars et al. | Dec 2008 | A1 |
20080302950 | Park et al. | Dec 2008 | A1 |
20080306490 | Lakin et al. | Dec 2008 | A1 |
20080319311 | Hamadeh | Dec 2008 | A1 |
20090012509 | Csavoy et al. | Jan 2009 | A1 |
20090030428 | Omori et al. | Jan 2009 | A1 |
20090080737 | Battle et al. | Mar 2009 | A1 |
20090185655 | Koken et al. | Jul 2009 | A1 |
20090198121 | Hoheisel | Aug 2009 | A1 |
20090216113 | Meier et al. | Aug 2009 | A1 |
20090228019 | Gross et al. | Sep 2009 | A1 |
20090259123 | Navab et al. | Oct 2009 | A1 |
20090259230 | Khadem et al. | Oct 2009 | A1 |
20090264899 | Appenrodt et al. | Oct 2009 | A1 |
20090281417 | Hartmann et al. | Nov 2009 | A1 |
20100022874 | Wang et al. | Jan 2010 | A1 |
20100039506 | Sarvestani et al. | Feb 2010 | A1 |
20100125286 | Wang et al. | May 2010 | A1 |
20100130986 | Mailloux et al. | May 2010 | A1 |
20100228117 | Hartmann | Sep 2010 | A1 |
20100228265 | Prisco | Sep 2010 | A1 |
20100249571 | Jensen et al. | Sep 2010 | A1 |
20100274120 | Heuscher | Oct 2010 | A1 |
20100280363 | Skarda et al. | Nov 2010 | A1 |
20100331858 | Simaan et al. | Dec 2010 | A1 |
20110022229 | Jang et al. | Jan 2011 | A1 |
20110077504 | Fischer et al. | Mar 2011 | A1 |
20110098553 | Robbins et al. | Apr 2011 | A1 |
20110137152 | Li | Jun 2011 | A1 |
20110213384 | Jeong | Sep 2011 | A1 |
20110224684 | Larkin et al. | Sep 2011 | A1 |
20110224685 | Larkin et al. | Sep 2011 | A1 |
20110224686 | Larkin et al. | Sep 2011 | A1 |
20110224687 | Larkin et al. | Sep 2011 | A1 |
20110224688 | Larkin et al. | Sep 2011 | A1 |
20110224689 | Larkin et al. | Sep 2011 | A1 |
20110224825 | Larkin et al. | Sep 2011 | A1 |
20110230967 | O'Halloran et al. | Sep 2011 | A1 |
20110238080 | Ranjit et al. | Sep 2011 | A1 |
20110276058 | Choi et al. | Nov 2011 | A1 |
20110282189 | Graumann | Nov 2011 | A1 |
20110286573 | Schretter et al. | Nov 2011 | A1 |
20110295062 | Gratacos Solsona et al. | Dec 2011 | A1 |
20110295370 | Suh et al. | Dec 2011 | A1 |
20110306986 | Lee et al. | Dec 2011 | A1 |
20120035507 | George et al. | Feb 2012 | A1 |
20120046668 | Gantes | Feb 2012 | A1 |
20120051498 | Koishi | Mar 2012 | A1 |
20120053597 | Anvari et al. | Mar 2012 | A1 |
20120059248 | Holsing et al. | Mar 2012 | A1 |
20120071753 | Hunter et al. | Mar 2012 | A1 |
20120108954 | Schulhauser et al. | May 2012 | A1 |
20120136372 | Amat Girbau et al. | May 2012 | A1 |
20120143084 | Shoham | Jun 2012 | A1 |
20120184839 | Woerlein | Jul 2012 | A1 |
20120197182 | Millman et al. | Aug 2012 | A1 |
20120226145 | Chang et al. | Sep 2012 | A1 |
20120235909 | Birkenbach et al. | Sep 2012 | A1 |
20120245596 | Meenink | Sep 2012 | A1 |
20120253332 | Moll | Oct 2012 | A1 |
20120253360 | White et al. | Oct 2012 | A1 |
20120256092 | Zingerman | Oct 2012 | A1 |
20120294498 | Popovic | Nov 2012 | A1 |
20120296203 | Hartmann et al. | Nov 2012 | A1 |
20130006267 | Odermatt et al. | Jan 2013 | A1 |
20130016889 | Myronenko et al. | Jan 2013 | A1 |
20130030571 | Ruiz Morales et al. | Jan 2013 | A1 |
20130035583 | Park et al. | Feb 2013 | A1 |
20130060146 | Yang et al. | Mar 2013 | A1 |
20130060337 | Petersheim et al. | Mar 2013 | A1 |
20130094742 | Feilkas | Apr 2013 | A1 |
20130096574 | Kang et al. | Apr 2013 | A1 |
20130113791 | Isaacs et al. | May 2013 | A1 |
20130116706 | Lee et al. | May 2013 | A1 |
20130131695 | Scarfogliero et al. | May 2013 | A1 |
20130144307 | Jeong et al. | Jun 2013 | A1 |
20130158542 | Manzo et al. | Jun 2013 | A1 |
20130165937 | Patwardhan | Jun 2013 | A1 |
20130178867 | Farritor et al. | Jul 2013 | A1 |
20130178868 | Roh | Jul 2013 | A1 |
20130178870 | Schena | Jul 2013 | A1 |
20130204271 | Brisson et al. | Aug 2013 | A1 |
20130211419 | Jensen | Aug 2013 | A1 |
20130211420 | Jensen | Aug 2013 | A1 |
20130218142 | Tuma et al. | Aug 2013 | A1 |
20130223702 | Holsing et al. | Aug 2013 | A1 |
20130225942 | Holsing et al. | Aug 2013 | A1 |
20130225943 | Holsing et al. | Aug 2013 | A1 |
20130231556 | Holsing et al. | Sep 2013 | A1 |
20130237995 | Lee et al. | Sep 2013 | A1 |
20130245375 | DiMaio et al. | Sep 2013 | A1 |
20130261640 | Kim et al. | Oct 2013 | A1 |
20130272488 | Bailey et al. | Oct 2013 | A1 |
20130272489 | Dickman et al. | Oct 2013 | A1 |
20130274761 | Devengenzo et al. | Oct 2013 | A1 |
20130281821 | Liu et al. | Oct 2013 | A1 |
20130296884 | Taylor et al. | Nov 2013 | A1 |
20130303887 | Holsing et al. | Nov 2013 | A1 |
20130307955 | Deitz et al. | Nov 2013 | A1 |
20130317521 | Choi et al. | Nov 2013 | A1 |
20130325033 | Schena et al. | Dec 2013 | A1 |
20130325035 | Hauck et al. | Dec 2013 | A1 |
20130331686 | Freysinger et al. | Dec 2013 | A1 |
20130331858 | Devengenzo et al. | Dec 2013 | A1 |
20130331861 | Yoon | Dec 2013 | A1 |
20130342578 | Isaacs | Dec 2013 | A1 |
20130345717 | Markvicka et al. | Dec 2013 | A1 |
20130345757 | Stad | Dec 2013 | A1 |
20140001235 | Shelton, IV | Jan 2014 | A1 |
20140012131 | Heruth et al. | Jan 2014 | A1 |
20140031664 | Kang | Jan 2014 | A1 |
20140046128 | Lee et al. | Feb 2014 | A1 |
20140046132 | Hoeg et al. | Feb 2014 | A1 |
20140046340 | Wilson et al. | Feb 2014 | A1 |
20140049629 | Siewerdsen et al. | Feb 2014 | A1 |
20140058406 | Tsekos | Feb 2014 | A1 |
20140073914 | Lavallee et al. | Mar 2014 | A1 |
20140080086 | Chen | Mar 2014 | A1 |
20140081128 | Verard et al. | Mar 2014 | A1 |
20140088612 | Bartol et al. | Mar 2014 | A1 |
20140094694 | Moctezuma de la Barrera | Apr 2014 | A1 |
20140094851 | Gordon | Apr 2014 | A1 |
20140096369 | Matsumoto et al. | Apr 2014 | A1 |
20140100587 | Farritor et al. | Apr 2014 | A1 |
20140121676 | Kostrzewski et al. | May 2014 | A1 |
20140128882 | Kwak et al. | May 2014 | A1 |
20140135796 | Simon et al. | May 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140142592 | Moon et al. | May 2014 | A1 |
20140148692 | Hartmann et al. | May 2014 | A1 |
20140163581 | Devengenzo et al. | Jun 2014 | A1 |
20140171781 | Stiles | Jun 2014 | A1 |
20140171900 | Stiles | Jun 2014 | A1 |
20140171965 | Loh et al. | Jun 2014 | A1 |
20140180308 | von Grunberg | Jun 2014 | A1 |
20140180309 | Seeber et al. | Jun 2014 | A1 |
20140187915 | Yaroshenko et al. | Jul 2014 | A1 |
20140188132 | Kang | Jul 2014 | A1 |
20140194699 | Roh et al. | Jul 2014 | A1 |
20140130810 | Azizian et al. | Aug 2014 | A1 |
20140221819 | Sarment | Aug 2014 | A1 |
20140222023 | Kim et al. | Aug 2014 | A1 |
20140228631 | Kwak et al. | Aug 2014 | A1 |
20140234804 | Huang et al. | Aug 2014 | A1 |
20140257328 | Kim et al. | Sep 2014 | A1 |
20140257329 | Jang et al. | Sep 2014 | A1 |
20140257330 | Choi et al. | Sep 2014 | A1 |
20140275760 | Lee et al. | Sep 2014 | A1 |
20140275985 | Walker et al. | Sep 2014 | A1 |
20140276931 | Parihar et al. | Sep 2014 | A1 |
20140276940 | Seo | Sep 2014 | A1 |
20140276944 | Farritor et al. | Sep 2014 | A1 |
20140288413 | Hwang et al. | Sep 2014 | A1 |
20140299648 | Shelton, IV et al. | Oct 2014 | A1 |
20140303434 | Farritor et al. | Oct 2014 | A1 |
20140303643 | Ha et al. | Oct 2014 | A1 |
20140305995 | Shelton, IV et al. | Oct 2014 | A1 |
20140309659 | Roh et al. | Oct 2014 | A1 |
20140316436 | Bar et al. | Oct 2014 | A1 |
20140323803 | Hoffman et al. | Oct 2014 | A1 |
20140324070 | Min et al. | Oct 2014 | A1 |
20140330288 | Date et al. | Nov 2014 | A1 |
20140364720 | Darrow et al. | Dec 2014 | A1 |
20140371577 | Maillet et al. | Dec 2014 | A1 |
20150039034 | Frankel et al. | Feb 2015 | A1 |
20150085970 | Bouhnik et al. | Mar 2015 | A1 |
20150146847 | Liu | May 2015 | A1 |
20150150524 | Yorkston et al. | Jun 2015 | A1 |
20150196261 | Funk | Jul 2015 | A1 |
20150213633 | Chang et al. | Jul 2015 | A1 |
20150335480 | Alvarez et al. | Nov 2015 | A1 |
20150342647 | Frankel et al. | Dec 2015 | A1 |
20160005194 | Schretter et al. | Jan 2016 | A1 |
20160166329 | Langan et al. | Jun 2016 | A1 |
20160235480 | Scholl et al. | Aug 2016 | A1 |
20160249990 | Glozman et al. | Sep 2016 | A1 |
20160302871 | Gregerson et al. | Oct 2016 | A1 |
20160320322 | Suzuki | Nov 2016 | A1 |
20160331335 | Gregerson et al. | Nov 2016 | A1 |
20170135770 | Scholl et al. | May 2017 | A1 |
20170143284 | Sehnert et al. | May 2017 | A1 |
20170143426 | Isaacs et al. | May 2017 | A1 |
20170156816 | Ibrahim | Jun 2017 | A1 |
20170202629 | Maillet et al. | Jul 2017 | A1 |
20170212723 | Atarot et al. | Jul 2017 | A1 |
20170215825 | Johnson et al. | Aug 2017 | A1 |
20170215826 | Johnson et al. | Aug 2017 | A1 |
20170215827 | Johnson et al. | Aug 2017 | A1 |
20170231710 | Scholl et al. | Aug 2017 | A1 |
20170258426 | Risher-Kelly et al. | Sep 2017 | A1 |
20170273748 | Hourtash et al. | Sep 2017 | A1 |
20170296277 | Hourtash et al. | Oct 2017 | A1 |
20170360493 | Zucher et al. | Dec 2017 | A1 |
20180325610 | Cameron | Nov 2018 | A1 |
20190038362 | Nash | Feb 2019 | A1 |
20190281204 | Darty | Sep 2019 | A1 |
Entry |
---|
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn) |
Number | Date | Country | |
---|---|---|---|
20210378755 A1 | Dec 2021 | US |