Camera with light valve over sensor array

Information

  • Patent Grant
  • 10412280
  • Patent Number
    10,412,280
  • Date Filed
    Wednesday, February 10, 2016
    8 years ago
  • Date Issued
    Tuesday, September 10, 2019
    4 years ago
Abstract
A camera includes a sensor array including a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over a broad wavelength band. Covering the sensor array is a light valve switchable electronically between closed and open states. The light valve is configured to, in the closed state, block light of a stopband and transmit light outside the stopband, and, in the open state, transmit the light of the stopband. An electronic controller of the camera is configured to switch the light valve from the closed to the open state and, synchronously with switching the light valve, address the sensor elements of the sensor array.
Description
BACKGROUND

Flat- and depth-imaging digital cameras are available as discrete systems and as device components, and some devices incorporate both flat- and depth-imaging functionality. The combination of flat and depth imaging is typically achieved using separate, discrete sensor arrays.


SUMMARY

One aspect of this disclosure is directed to a camera. The camera includes a sensor array including a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over a broad wavelength band. Covering the sensor array is at least one light valve switchable electronically between closed and open states. The light valve is configured to, in the closed state, block light of a stopband and transmit light outside the stopband, and, in the open state, transmit the light of the stopband. An electronic controller of the camera is configured to switch the light valve from the closed to the open state and, synchronously with switching the light valve, address the sensor elements of the sensor array.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve the disadvantages identified in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1, 2, and 3 show various example camera-enabled electronic devices and associated cameras.



FIG. 4 is an exploded, schematic view showing aspects of an example camera having a multiplexed sensor array.



FIG. 5 shows aspects of an example timing diagram for a camera having a multiplexed sensor array.



FIG. 6 is an exploded, schematic view showing aspects of an example switchable light guide for a camera having a multiplexed sensor array.



FIG. 7 is an exploded, schematic view showing aspects of another example switchable light guide for a camera having a multiplexed sensor array.



FIG. 8 illustrates an example combination depth- and flat-image acquisition method enacted in an electronic controller of a camera having a multiplexed sensor array.





DETAILED DESCRIPTION

Images acquired concurrently from different sensor arrays may exhibit parallax, which is objectionable if the images are to be registered to each other. Beam splitting optics may be used to align, in effect, the two sensor arrays on the same optical axis, but this approach requires tight manufacturing tolerances, adds complexity, and may reduce the signal-to-noise ratio for both flat and depth imaging by dividing the available image intensity between the two arrays.


Attempts to acquire flat and depth images using the same sensor array may be complicated by the different wavelength bands used by the respective imaging processes. Flat imaging typically uses broadband visible light as the illumination source, while depth-imaging typically uses narrow-band infrared (IR) light. In one approach, a specialized array of filter elements is arranged in registry with the sensor elements of the imaging sensor. The filter array includes a repeated tiling of subarrays having visible-transmissive, IR blocking elements as well as IR-transmissive, visible-blocking elements. A disadvantage of this approach is that both visible and IR images are acquired on less than the full area of the sensor array, which decreases both the resolution and the signal-to-noise ratio for both images.


Disclosed herein is a combination flat- and depth-imaging camera that overcomes the issues noted above. The camera may sequentially acquire a depth image under active, narrow-band IR illumination, and a color or monochrome image under ambient illumination. Both images are acquired on the same sensor array, which is operated in a time multiplexed manner. An electrically switchable light valve covering the sensor array is used to block visible light during the IR depth acquisition. After the depth image is acquired, the light valve is opened, the active illumination used for depth imaging is switched off and the visible flat image is acquired. Preferably both images are acquired within the same video or image frame, effectively providing concurrent flat- and depth-image acquisition at the full frame rate. Advantageously, the entire sensor array may be used to acquire the IR image, while non-useful visible wavelengths are rejected. During monochrome or color-image acquisition, the entire sensor array is made responsive to visible light.


Aspects of this and other implementations will now be described by example, and with reference to the drawing figures listed above. Components, process steps, and other elements that may be substantially the same in one or more of the figures are identified coordinately and are described with minimal repetition. It will be noted, however, that elements identified coordinately may also differ to some degree. It will be further noted that the figures are schematic not necessarily drawn to scale. Rather, the various drawing scales, aspect ratios, and numbers of components shown in the figures may be purposely distorted to make certain features or relationships easier to see. In this disclosure, the term ‘visible’ is applied to the portion of the electromagnetic spectrum from about 400 to about 700 nanometers (nm). Any longer wavelength is referred to as ‘infrared’, including so called near-infrared wavelengths of about 850 nm, for example.



FIGS. 1, 2, and 3 show various camera-enabled electronic devices and associated cameras 12. FIG. 1 shows a desktop computer system 10 with a web camera 12A built into monitor 14 of the computer system. FIG. 1 also shows a smartphone 16 with a camera 12B arranged behind display bezel 18. FIG. 2 shows a laptop computer system 20 and integrated camera 12C, a tablet computer system 22 and integrated camera 12D, and a home-theatre system 24 with peripheral camera 12E. FIG. 3 shows a head-mounted augmented-reality display system 26 having an integrated camera 12F.



FIG. 4 shows aspects of an example camera 12. The term ‘camera’ refers herein to any imaging component having at least one optical aperture and sensor array configured to image a scene or subject 27. Camera 12 includes a sensor array 28 of individually addressable sensor elements 30. In some implementations, the sensor elements may be complementary metal-oxide semiconductor (CMOS) elements, but other suitable architectures are envisaged as well. Each sensor element is intrinsically responsive to light over a broad wavelength band. For silicon-based sensor elements, the wavelength response may range from 300 to 1200 nm. Microlens array 32 is optionally arranged directly over sensor array 28 to provide a larger acceptance cone at each of the sensor elements, for increased collection efficiency.


Due to the broad wavelength response of sensor elements 30, camera 12 may include one or more passive filters 34 arranged parallel to the sensor array and configured to limit the wavelength response of the sensor array. The passive filters reduce noise by excluding photons of wavelengths not intended to be imaged. Typically, an IR-imaging camera may include a visible bandstop filter. Conversely, a visible-imaging camera may include IR and ultraviolet (UV) cutoff filters. In implementations in which both visible and IR response is desired, the one or more passive filters 34 may include a visible and narrow-band IR bandpass filter.


Configured for visible as well as IR imaging, camera 12 may also include a color filter array (CFA) 36 of color filter elements 38. The color filter elements are arranged in registry with sensor elements 30 of sensor array 28. An example CFA may present a Bayer pattern—i.e., a repeated tiling of 2×2 subarrays having two green-transmissive elements 38G, one blue-transmissive element 38B, and one red-transmissive element 38R in each subarray, for example. In this implementation, the integrated response from sensor array 28 may be converted into a full-color image using a de-mosaicing algorithm. In implementations in which both visible and IR response is required at each sensor element, all of the color filter elements may be highly transmissive in the IR band of interest. Being transmissive to both visible and IR light, however, neither CFA 36 nor passive filters 34 will exclude visible light as a noise source in IR imaging. Nor will they exclude IR light as a noise source in visible imaging. For this purpose, in implementations in which both visible and IR imaging are provided, an electronically switchable light valve 40 is included.


In FIG. 4, accordingly, electronically switchable light valve 40 is arranged in front of and parallel to sensor array 28, so as to optically cover the sensor array. The light valve is switchable electronically between closed and open states. In the closed state, the light valve blocks light of a stopband and transmits light outside the stopband. In the open state, the light valve transmits the light both inside and outside the stopband. In some implementations, the light valve may be broadly transmissive in the open state—i.e., transmitting all of the wavelengths blocked and transmitted in the closed state. Blocked light may be absorbed, reflected, and/or scattered by the light valve, depending on the implementation.


Electronic controller 42 of FIG. 4 may include a microprocessor and associated computer memory. The computer memory may hold instructions that cause the microprocessor to enact any operation, algorithm, computation, or transformation disclosed herein. In some implementations, the microprocessor may take the form of an application-specific integrated circuit (ASIC) or system-on-a-chip (SoC), in which some or all of the instructions are hardware- or firmware-encoded. Electronic controller 42 is configured to repeatedly (e.g., periodically) switch light valve 40 from the closed to the open state and, synchronously with switching the light valve, address sensor elements 30 of sensor array 28. In some implementations, the stopband blocked by the light valve may be a visible band of any desired wavelength range. Accordingly, the light outside the stopband may include IR light. This configuration is useful for combination visible and IR imaging, particularly when the visible image is acquired under ambient light and the IR image is acquired under active illumination.


Camera 12 of FIG. 4 includes an IR emitter 44, such as one or more IR light-emitting diodes (LEDs) or an IR laser. Electronic controller 42 is configured to modulate IR emitter 44, synchronously with switching light valve 40 into the closed or open state and addressing sensor elements 30. For example, in combined visible- and IR-imaging implementations where the wavelength band blocked by the light valve is a visible band, the electronic controller may be configured to switch the light valve from the open to the closed state, concurrently activate (e.g., energize) the IR emitter, and begin addressing sensor array 28 for IR image acquisition. After the IR image is acquired, the electronic controller may switch the light valve back to the open state, concurrently deactivate the IR emitter, and begin addressing the sensor array for visible image acquisition.


The term ‘modulate’ as applied to IR emitter 44 may include activating or deactivating the IR emitter, as described above, and, in some implementations, periodically varying the intensity of the IR emission at a high frequency (e.g., 100 MHz). Likewise, the term ‘address’ as applied to sensor array elements 30 may have a somewhat different meaning depending on the imaging mode described. For flat-imaging—both visible and IR—addressing the sensor elements may include integrating the intensity of light received at each sensor element 30 and associating the integrated intensity with the portion of the image corresponding to that element. For depth imaging, the sensor elements may be addressed differently. Here, addressing the sensor elements may include resolving a phase offset from each sensor element relative to the periodic modulation of the IR emitter (as described further below). The phase offset, optionally converted into the depth domain, may be associated with the portion of the image corresponding to the sensor element addressed. In some implementations, a series of IR acquisitions in rapid succession may be used to obtain the phase offset. In combination depth- and flat-imaging applications, both of the above addressing modes may be used in an alternating (i.e., multiplexed) manner synchronously timed with corresponding opening and closing of the light valve 40.


The phase-discriminating time-of-flight (ToF) approach described above is one of several depth-imaging technologies lying within the metes and bounds of this disclosure. In general, a depth-imaging camera may be configured to acquire one or more depth maps of a scene or subject. The term ‘depth map’ refers to an array of pixels registered to corresponding regions (Xi, Yi) of an imaged scene, with a depth value Zi indicating, for each pixel, the depth of the corresponding region. ‘Depth’ is defined as a coordinate parallel to the optical axis of the camera, which increases with increasing distance from the camera. Operationally, some depth-imaging cameras may be configured to acquire 2D image data, from which a depth map is obtained via downstream processing. The term ‘depth video’ refers herein to a time-resolved sequence of depth maps.


The configuration of a depth-imaging camera may differ from one implementation to the next. In one example, brightness or color data from two, stereoscopically oriented sensor arrays in a depth-imaging camera may be co-registered and used to construct a depth map. More generally, depth coordinates into a scene may be obtained using one or more flat-imaging cameras, with optical-tomography based co-registration of imaged features. Hyperspectral (e.g., visible+IR and/or UV) flat imaging may be used with this approach, for improved feature discrimination. In other examples, an illumination source associated with a depth-imaging camera may be configured to project onto the subject a structured illumination pattern comprising numerous discrete features—e.g., lines or dots. A sensor array in the depth-imaging camera may be configured to image the structured illumination reflected back from the subject. Based on the spacings between adjacent features in the various regions of the imaged subject, a depth map of the subject may be constructed. In ToF implementations, the illumination source—an IR emitter—may project pulsed or otherwise modulated IR illumination towards the subject. The sensor array of the depth-imaging camera may be configured to detect the phase offset between the illumination reflected back from the subject and the modulated emission. In some implementations, the phase offset of each sensor element may be converted into a pixel-resolved time-of-flight of the pulsed illumination, from the illumination source to the subject and then to the array. ToF data may then be converted into depth.


Continuing in FIG. 4, light valve 40 may be one of a plurality of light valves stacked in series (e.g., parallel to sensor array 28). Electronic controller 42 may be configured to switch each of the light valves from its closed to open state and synchronously address the sensor elements 30 of the sensor array. Concurrent blocking and unblocking may be used, for instance, when a single light valve is insufficiently blocking on its own. A single light valve may be insufficiently blocking due to insufficient bandwidth and/or insufficient attenuation within the stopband. In alternative implementations, two or more independently switchable light valves may be included, with a different stopband for each of the light valves. For example, the stopband of first light valve 40 may be a broad, visible band, and the stopband of second light valve 40′ may be an IR band. This configuration may be used in combination visible- and IR-imaging cameras, when it is desirable to prevent even ambient IR from corrupting the visible image. In this implementation, the electronic controller may be configured to switch light valve 40 to the closed state, switch light valve 40′ to the open state, and concurrently activate IR emitter 44 and begin addressing sensor array 28 for IR image acquisition. After the IR image is acquired, the electronic controller may switch light valve 40 back to the open state, switch light valve 40′ back to the closed state, and concurrently deactivate the IR emitter and begin addressing the sensor array for visible image acquisition.


In other examples where a plurality of light valves 40 are stacked in series (e.g., parallel to sensor array 28), at least some of the stopbands may be relatively narrow bands in the visible. For instance, the camera may include three stacked light valves with stopbands centered in the red, green, and blue, respectively. In one implementation, the three light guides may be switched in concert between closed and open states, mimicking the functionality of the broadband visible light valve described above. In other implementations, however, the three light guides may be multiplexed in sequence to image the subject in independent red, green, and blue channels. Accordingly, cameras equipped with plural light guides having visible stopbands may omit CFA 36. In implementations in which IR imaging is also desired, all of the light valves may be switched into the closed state over an additional, IR-imaging time window. FIG. 5 shows an example timing diagram for this application.


An advantage of the above implementation over cameras relying on CFA 36 for color discrimination is that the whole of sensor array 28 may be used for each channel. This provides increased resolution and, potentially, increased signal and better color reproduction. In such implementations, however, the latency of each of the light valves must be short enough to acquire both IR and three or more images at the desired frame rate.


As shown in FIG. 5, controller 42 may be configured to maintain a given light valve 40 in the closed state for a repeatable (e.g., periodic) closed duration and in the open state for a repeatable (e.g., periodic) open duration. In some combined visible- and IR-imaging implementations, visible-image acquisition may take place over a longer interval than IR-image acquisition. More generally, the relative durations of the visible- and IR-image acquisition may vary depending on the expected use scenario (e.g., outdoor daytime use, where intense ambient illumination is available, versus indoor or night use). Further, in some implementations, electronic controller 42 may be configured to sense ambient-light conditions and vary the closed and open durations accordingly. To this end, a non-imaging illumination sensor 46 may be operatively coupled to electronic controller 42, or sensor array 28 itself may provide illumination-sensing functionality.


In still other implementations, a stack of one or more light valves 40 with different stopbands may be used to control saturation in flat monochrome imaging done under variable lighting conditions. Controller 42 may sense the ambient light level and determine how much of the broadband spectrum to include in the flat image to be acquired. Under very dim lighting, all of the light valves may be maintained in the open state. Under brighter lighting, one or more of the light valves may be switched to the closed state, to avoid saturation of the sensor elements and preserve image quality. Under the brightest conditions, all light valves may be closed, so that only a narrow wavelength band—e.g., narrow-band IR—gets through to the sensor array. This may be the same band used for IR-based depth imaging if the camera is a combination flat monochrome and depth-imaging camera. In this application, the stopbands of the various light valves may be overlapping or non-overlapping.


Light valve 40 may be configured differently in the different implementations of camera 12. FIG. 6 shows aspects of an example light valve 40A. Light valve 40A includes an electrostatically polarizable liquid-crystal (LC) layer 48 and a pair of fixed (e.g., linear) polarizers 50U and 50D, each arranged parallel to sensor array 28. The LC layer may be less than 10 micrometers in thickness and sandwiched between two conductive glass or transparent plastic electrodes 52A and 52B. One or more of the liquid-crystal layer and fixed polarizers may be wavelength responsive. For example, each fixed polarizer may provide a high contrast ratio in the stopband of the light valve and a lower contrast ratio outside the stopband. Alternatively or in addition, the LC layer may exhibit wavelength-dependent rotation of the polarization plane—e.g., high rotation in the stopband and minimal rotation elsewhere.


In some implementations, the transmission plane of downstream fixed polarizer 50D is perpendicular to that of upstream fixed polarizer 50U. When electrodes 52A/52B are unbiased, LC layer 48 adopts a twisted nematic LC structure. The thickness of the LC layer is such that when linearly polarized light passes through the LC layer, its polarization rotates by 90°. In this configuration, where the polarizers on either side of the LC layer are crossed, light rotated by the LC layer will be transmitted. When the electrodes are biased, however, the twisted structure is formed. In that state, the LC layer does not rotate the polarization of the incident light, and thus the light is blocked. In this manner, light valve 40A enables electronic control of light transmission.


In the alternative implementation, the transmission planes of upstream fixed polarizer 50U and downstream fixed polarizer 50D are arranged parallel to each other. In this case the blocking and transmission states are reversed—viz., light of the stopband is transmitted when electrodes 52A/52B are biased, and blocked otherwise. Accordingly, the fixed polarizer orientation may be set based on the anticipated duty cycle of the light valve, to conserve power—i.e., if the anticipated duty cycle calls for the light valve to be open more often than closed, then the orientation may be set so that the light valve is open by default, when there is no energy provided to the electrodes, but if the anticipated duty cycle calls for the light valve to be closed more often than open, then the orientation may be set so that the light valve is closed by default, when there is no energy provided to the electrodes.


In summary, the function of upstream fixed polarizer 50U is to select a polarization state for the incident light, the function of LC layer 48 is to rotate the polarization state of incident light, and the function of downstream fixed polarizer 50D is to block or transmit the light, based on its final polarization state. If the fixed polarizers are limited to the specified stopband—i.e. exhibiting a high contrast ratio in that band and unit contrast ratio elsewhere, then their polarizing function will be limited to only the stopband. Furthermore, if the fixed polarizers are configured to provide high transmission outside the stopband, then they will be essentially transparent at those wavelengths. A light valve configured in this manner has significant advantages, such as low cost, low power operation, low driving voltage, and fast response time.


In some instances, the molecules of LC layer 48 may act as scattering centers to incident light, causing some degree of ghosting and flare in acquired images. This phenomenon is typically more significant at lower wavelengths. In order to reduce the effects of scattering, light valve 40A may be positioned as close to sensor array 28 as possible—e.g., coupled directly to sensor array 28 or to microlens array 32 of the sensor array. For example, FIG. 4 schematically shows micropedestals 54 configured to couple light valve 40A very close to sensor array 28.


The switching time for LC layer 48 may be 5 milliseconds or less. Accordingly, two or more image acquisitions may be completed within a single video or image frame, effecting quasi-simultaneous imaging in two or more wavelength bands. It may be possible to achieve even lower switching times using appropriate LC materials, which would be advantageous, for example, in reducing motion blur between corresponding visible and IR images.



FIG. 7 shows aspects of another example light valve 40B. Light valve 40B includes an electronically switchable distributed Bragg reflector (DBR) arranged parallel to the sensor array. A DBR includes multiple periods of alternating materials with at least two different refractive indices. The transmission and reflection spectrum of a DBR depends on the refractive indices and on the period thickness as well as the number of periods. If one material in each period is replaced with a layer whose refractive index can be varied electrically, such as LC layer 56, then the transmission spectrum of the DBR becomes electrically switchable. In such a device, one or more wavelength ranges may be blocked due to reflection from the DBR, rather than absorption. In the implementation shown in FIG. 7, LC layers 56 are sandwiched between static layers 58—e.g., silica or titanium dioxide. The electric field is provided through transparent electrodes 52C and 52D. One advantage of this variant over the simpler LC layer is that non-polarized light may be blocked and unblocked. Thus it is possible to achieve high transmission in the stopband in the open state of the light valve, and high transmission of light outside the stopband under all conditions. This advantage may be further amplified in stacked, multiple light-valve configurations, where accumulated losses through plural polarization stages may be an issue. Notwithstanding, if all polarizers of a plurality of LC layers have the same polarization—e.g., if the exit polarizer of a given stage has the same orientation as the entry polarizer of the immediately downstream stage, then losses in the LC-layer implementation may be reduced.


No aspect of the foregoing configurations should be interpreted in a limiting sense, for numerous alternative configurations are envisaged as well. For example, while the above examples stress the value of selectively blocking ambient visible light for combined visible and IR imaging, the stopband may be an IR band in alternative implementations. There, the light outside the stopband may include visible light. Other example light valves may use a mechanical structure that incorporates separate passive optical filters—e.g., red, green, blue, and IR. Using this approach, the light valve may switch to the desired optical filter by moving or rotating the mechanical structure to bring the appropriate filter in front of sensor array 28. Envisaged filter-switching modalities include voice-coil motors and piezoelectric actuators, for example. In this solution, the switching modalities may be specially configured to meet the size, speed and reliability requirements of the camera.



FIG. 8 is a flowchart for an example combination depth- and flat-image acquisition method 60 that may be enacted in electronic controller 42 of camera 12. To that end, the electronic controller may include a logic machine, such as a processor, and an associated computer memory machine. In some implementations, the logic machine and some or all of the computer-memory machine may be combined as a system-on-a-chip, or the like.


At 62 of method 60, an IR emitter 44 of the camera is activated. At 64 the light valve is switched to the closed state. At 66 sensor array 28 is addressed so as to resolve depth to an imaged locus at each sensor element 30 of the sensor array while the light valve is in the closed state. In phase-sensitive ToF implementations, resolving depth to an image locus may include resolving a phase offset from each sensor element relative to IR-emitter modulation. In some implementations, each sensor element may be addressed several times to acquire a single phase capture. At 68 the IR emitter is deactivated. At 70 the light valve is switched from the closed to the open state. At 72 the sensor array is addressed so as to integrate light intensity received at each element of the sensor array when the light valve is in the open state. In color-imaging implementations, integrating light intensity received at each element of the sensor array may include integrating light intensity in three or more color channels. In monochromatic visible-imaging implementations, light intensity may be integrated in a single channel.


Method 60 may include additional, optional steps intended to correct the visible image for ambient IR irradiation which passes through the one or more filters and light valves of camera 12. At 74, accordingly, IR emitter 44 is deactivated. At 76 the light valve is switched to the closed state. At 78 the sensor array is addressed so as to integrate light intensity received at each element of the sensor array, to assemble a reference image while the light valve is in the closed state. At 80 the reference image is saved. At 84, subsequent light intensities integrated when the light valve is in the open state are subtractively corrected based on the reference image.


One aspect of this disclosure is directed to a camera comprising a sensor array, at least one light valve, and an electronic controller. The sensor array includes a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over a broad wavelength band. Optically covering the sensor array, is at least one light valve switchable electronically between a closed state and an open state, the light valve configured to, in the closed state, block light of a stopband and transmit light outside the stopband, and, in the open state, transmit the light of the stopband. The electronic controller is configured to switch the light valve from the closed state to the open state and, synchronously with switching the light valve, address the sensor elements of the sensor array.


In some implementations, the stopband is a visible band. In some implementations, the light outside the stopband includes infrared light. In some implementations, the camera further comprises an infrared emitter, and the electronic controller is further configured to, synchronously with switching the light valve and addressing the sensor elements, energize the infrared emitter. In some implementations, addressing the sensor elements includes, in only one of the closed and open state of the light valve, resolving a phase offset from each of the plurality of sensor elements relative to infrared-emitter modulation. In some implementations, the controller is configured to maintain the light valve in the closed state for a repeatable closed duration and in the open state for a repeatable open duration, and to vary the closed and open durations. In some implementations, the camera further comprises one or more passive filters configured to limit response of the sensor array. In some implementations, the camera further comprises one or more passive filters configured to limit response of the sensor array, the one or more passive filters including an array of color filter elements arranged in registry with the sensor elements of the sensor array. In some implementations, the light valve includes an electrostatically polarizable liquid-crystal layer and a fixed polarizer, wherein at least one of the liquid-crystal layer and the fixed polarizer exhibit wavelength-dependent transmissivity. In some implementations, the fixed polarizer provides a higher contrast ratio in the stopband than outside the stopband. In some implementations, the fixed polarizer is a first fixed polarizer, the light valve includes a second fixed polarizer, and the second fixed polarizer has a transmission plane perpendicular to that of the first fixed polarizer. In some implementations, the light valve includes an electronically switchable distributed Bragg reflector. In some implementations, the light valve is one of a plurality of stacked light valves, the electronic controller is configured to switch each of the light valves from the closed to the open state and synchronously address the sensor elements of the sensor array, and the stopband is different for each of the light valves. In some implementations, the stopband of a first of the plurality of light valves is a visible band, and the stopband of a second of the plurality of light valves is an infrared band. In some implementations, the light valve is coupled directly to the sensor array or to a microlens array portion of the sensor array.


Another aspect of this disclosure is directed to a combination depth and flat-image camera comprising a sensor array, at least one light valve, an infrared emitter, and an electronic controller. The sensor array includes a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over visible and infrared bands. Optically covering the sensor array, is at least one light valve switchable electronically between a closed state and an open state, the light valve configured to, in the closed state, block light of the visible band and transmit light outside the visible band, and, in the open state, transmit the light of the visible band. The electronic controller is configured to: activate the infrared emitter, switch the light valve to the closed state, resolve depth to an imaged locus at each element of the sensor array by addressing the sensor array while the light valve is in the closed state, deactivate the infrared emitter, switch the light valve from the closed to the open state, and integrate light intensity received at each of the plurality of sensor elements of the sensor array when the light valve is in the open state.


In some implementations, resolving depth to an image locus includes resolving a phase offset from each sensor element relative to infrared-emitter modulation. In some implementations, integrating light intensity received at each of the plurality of sensor elements of the sensor array includes integrating light intensity in three or more color channels. In some implementations, the controller is further configured to: deactivate the infrared emitter, switch the light valve to the closed state, integrate light intensity received at each element of the sensor array to assemble a reference image while the light valve is in the closed state, and subtractively correct, based on the reference image, subsequent light intensities integrated when the light valve is in the open state.


Another aspect of this disclosure is directed to a combination depth and flat-image camera comprising a sensor array, at least one light valve, one or more passive filters, an infrared emitter, and an electronic controller. The sensor array includes a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over visible and infrared bands. Optically covering the sensor array is a light valve switchable electronically between a closed state and an open state, the light valve configured to, in the closed state, block light of the visible band and transmit light outside the visible band, and, in the open state, transmit the light of the visible band. The one or more passive filters include an array of color filter elements arranged in registry with the sensor elements of the sensor array. The electronic controller is configured to: activate the infrared emitter, switch the light valve to the closed state, resolve a phase offset from each sensor element relative to infrared-emitter modulation by addressing the sensor array while the light valve is in the closed state, deactivate the infrared emitter, switch the light valve from the closed to the open state, and integrate light intensity received at each of the plurality of sensor elements of the sensor array in three or more color channels when the light valve is in the open state.


It will be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The specific routines or methods described herein may represent one or more of any number of processing strategies. As such, various acts illustrated and/or described may be performed in the sequence illustrated and/or described, in other sequences, in parallel, or omitted. Likewise, the order of the above-described processes may be changed.


The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.

Claims
  • 1. A camera comprising: an illumination sensor;a sensor array including a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over a broad wavelength band;arranged in parallel over the plurality of sensor elements of the sensor array, two or more light valves having two or more polarizable liquid-crystal layers arranged between fixed polarizers, wherein each light valve is switchable electronically between a closed state and an open state and configured to, in the closed state, block light of a visible stopband and transmit light outside the visible stopband, and, in the open state, transmit the light of the visible stopband, wherein the visible stopband differs for each of the two or more light valves; andcoupled operatively to the illumination sensor and to each of the two or more light valves, an electronic controller configured to individually and sequentially switch the light valve from the closed state to the open state and synchronously address the sensor elements of the sensor array, such that each sensor element responds, in sequence, to the light of the visible stopband of each of the two or more light valves,wherein the controller is configured to maintain each of the two or more light valves in the closed state for a repeatable closed duration and in the open state for a repeatable open duration, and to vary the closed and open durations responsive to output of the illumination sensor.
  • 2. The camera of claim 1 wherein the stopband of each of the two or more light valves is a visible band.
  • 3. The camera of claim 1 wherein, for each of the two or more light valves, the light outside the stopband includes infrared light.
  • 4. The camera of claim 1 further comprising an infrared emitter, wherein the electronic controller is further configured to, synchronously with switching the light valve and addressing the sensor elements, energize the infrared emitter.
  • 5. The camera of claim 4 wherein addressing the sensor elements includes, in the closed state of the two or more light valves, resolving a phase offset from each of the plurality of sensor elements relative to infrared-emitter modulation.
  • 6. The camera of claim 1 further comprising one or more passive filters configured to limit response of the sensor array.
  • 7. The camera of claim 1 wherein at least one of the liquid-crystal layer and at least one of the fixed polarizers of each of the two or more light valves exhibit wavelength-dependent transmissivity.
  • 8. The camera of claim 7 wherein at least one of the fixed polarizers provide a higher contrast ratio in the stopband than outside the stopband.
  • 9. The camera of claim 7 wherein the fixed polarizers of each of the two or more light valves include upstream and downstream polarizers with mutually perpendicular transmission planes.
  • 10. The camera of claim 1 wherein the two or more light valves include an optically downstream light valve coupled directly to the sensor array or to a microlens array portion of the sensor array.
  • 11. A combination depth and flat-image camera comprising: a sensor array including a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over visible and infrared bands;arranged in parallel over the plurality of sensor elements of the sensor array, two or more light valves having two or more polarizable liquid-crystal layers arranged between fixed polarizers, wherein each light valve is switchable electronically between a closed state and an open state and configured to, in the closed state, block light of a visible stopband and transmit light outside the visible stopband, and, in the open state, transmit the light of the visible stopband, wherein the visible stopband differs for each of the two or more light valves;an infrared emitter; andcoupled operatively to the infrared emitter and to each of the two or more light valves, an electronic controller configured to individually and sequentially switch each light valve from the closed state to the open state and synchronously address the sensor elements of the sensor array, such that each sensor element responds, in sequence, to the light of the visible stopband of each of the two or more light valves,wherein the controller is further configured to maintain each of the two or more light valves concurrently in the closed state, synchronously energize the infrared emitter and address the sensor elements of the sensor array to resolve subject depth at each sensor element based on a time-of-flight measurement.
  • 12. The camera of claim of claim 11 wherein resolving depth to an image locus includes resolving a phase offset from each sensor element relative to infrared-emitter modulation.
  • 13. The camera of claim 11 wherein wherein addressing the sensor elements of the sensor array includes integrating light intensity in three or more color channels.
  • 14. The camera of claim 11 wherein the controller is further configured to: deactivate the infrared emitter;switch the two or more light valves to the closed state;integrate light intensity received at each element of the sensor array to assemble a reference image while the two or more light valves are in the closed state; andsubtractively correct, based on the reference image, subsequent light intensities integrated when one of the two or more light valves is in the open state.
  • 15. A camera comprising: a sensor array including a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over a broad wavelength band;arranged in parallel over the plurality of sensor elements of the sensor array, two or more light valves having two or more polarizable liquid-crystal layers arranged between fixed polarizers, wherein each light valve is switchable electronically between a closed state and an open state and configured to, in the closed state, block light of a visible stopband and transmit light outside the visible stopband, and, in the open state, transmit the light of the visible stopband, wherein the visible stopband differs for each of the two or more light valves; andcoupled operatively to each of the two or more light valves, an electronic controller configured to individually and sequentially switch each light valve from the closed state to the open state and synchronously address the sensor elements of the sensor array, such that each sensor element responds, in sequence, to the light of the visible stopband of each of the two or more light valves.
  • 16. The camera of claim 11 wherein the time-of-flight measurement is a phase-discriminating time-of-flight measurement.
  • 17. The camera of claim 15 wherein the two or more light valves include an upstream light valve and a downstream light valve downstream of the upstream light valve, wherein the fixed polarizers of each of the upstream and downstream light valves include an entry polarizer and an exit polarizer, and wherein the exit polarizer of the upstream light valve and the entry polarizer of the downstream light valve are oriented in parallel.
  • 18. The camera of claim 15 wherein the two or more light valves include a first light valve having a stopband in a red spectral region, a second light valve having a stopband in a green spectral region, and a third light valve having a stopband in a blue spectral region.
US Referenced Citations (236)
Number Name Date Kind
3848129 Figler et al. Nov 1974 A
4349277 Mundy et al. Sep 1982 A
4621284 Nishioka et al. Nov 1986 A
4627620 Yang Dec 1986 A
4630910 Ross et al. Dec 1986 A
4645458 Williams Feb 1987 A
4679068 Lillquist et al. Jul 1987 A
4695953 Blair et al. Sep 1987 A
4702475 Elstein et al. Oct 1987 A
4711543 Blair et al. Dec 1987 A
4751642 Silva et al. Jun 1988 A
4796997 Svetkoff et al. Jan 1989 A
4809065 Harris et al. Feb 1989 A
4817950 Goo Apr 1989 A
4843568 Krueger et al. Jun 1989 A
4893183 Nayar Jan 1990 A
4901362 Terzian Feb 1990 A
4925189 Braeunig May 1990 A
5101444 Wilson et al. Mar 1992 A
5148154 MacKay et al. Sep 1992 A
5184295 Mann Feb 1993 A
5229754 Aoki et al. Jul 1993 A
5229756 Kosugi et al. Jul 1993 A
5239463 Blair et al. Aug 1993 A
5239464 Blair et al. Aug 1993 A
5243455 Johnson Sep 1993 A
5288078 Capper et al. Feb 1994 A
5295491 Gevins Mar 1994 A
5320538 Baum Jun 1994 A
5347306 Nitta Sep 1994 A
5385519 Hsu et al. Jan 1995 A
5405152 Katanics et al. Apr 1995 A
5417210 Funda et al. May 1995 A
5423554 Davis Jun 1995 A
5444235 Redford Aug 1995 A
5454043 Freeman Sep 1995 A
5469740 French et al. Nov 1995 A
5495576 Ritchey Feb 1996 A
5516105 Eisenbrey et al. May 1996 A
5524637 Erickson Jun 1996 A
5534917 MacDougall Jul 1996 A
5563988 Maes et al. Oct 1996 A
5577981 Jarvik Nov 1996 A
5580249 Jacobsen et al. Dec 1996 A
5594469 Freeman et al. Jan 1997 A
5597309 Riess Jan 1997 A
5616078 Oh Apr 1997 A
5617312 Iura et al. Apr 1997 A
5638300 Johnson Jun 1997 A
5641288 Zaenglein, Jr. Jun 1997 A
5682196 Freeman Oct 1997 A
5682229 Wangler Oct 1997 A
5690582 Ulrich et al. Nov 1997 A
5703367 Hashimoto et al. Dec 1997 A
5704837 Iwasaki et al. Jan 1998 A
5715834 Bergamasco et al. Feb 1998 A
5809065 Dapper et al. Sep 1998 A
5875108 Hoffberg et al. Feb 1999 A
5877803 Wee et al. Mar 1999 A
5892612 Miller et al. Apr 1999 A
5913727 Ahdoot Jun 1999 A
5933125 Fernie et al. Aug 1999 A
5980256 Carmein Nov 1999 A
5989157 Walton Nov 1999 A
5995649 Marugame Nov 1999 A
6005548 Latypov et al. Dec 1999 A
6009210 Kang Dec 1999 A
6054991 Crane et al. Apr 2000 A
6066075 Poulton May 2000 A
6072494 Nguyen Jun 2000 A
6073489 French et al. Jun 2000 A
6077201 Cheng Jun 2000 A
6081612 Gutkowicz-Krusin et al. Jun 2000 A
6098458 French et al. Aug 2000 A
6100896 Strohecker et al. Aug 2000 A
6101289 Kellner Aug 2000 A
6128003 Smith et al. Oct 2000 A
6130677 Kunz Oct 2000 A
6141463 Covell et al. Oct 2000 A
6147678 Kumar et al. Nov 2000 A
6152856 Studor et al. Nov 2000 A
6159100 Smith Dec 2000 A
6173066 Peurach et al. Jan 2001 B1
6183143 Lippold et al. Feb 2001 B1
6188777 Darrell et al. Feb 2001 B1
6215890 Matsuo et al. Apr 2001 B1
6215898 Woodfill et al. Apr 2001 B1
6226396 Marugame May 2001 B1
6229913 Nayar et al. May 2001 B1
6256033 Nguyen Jul 2001 B1
6256400 Takata et al. Jul 2001 B1
6283860 Lyons et al. Sep 2001 B1
6289112 Jain et al. Sep 2001 B1
6299308 Voronka et al. Oct 2001 B1
6308565 French et al. Oct 2001 B1
6316934 Amorai-Moriya et al. Nov 2001 B1
6363160 Bradski et al. Mar 2002 B1
6384819 Hunter May 2002 B1
6411744 Edwards Jun 2002 B1
6430997 French et al. Aug 2002 B1
6476834 Doval et al. Nov 2002 B1
6496598 Harman Dec 2002 B1
6503195 Keller et al. Jan 2003 B1
6539931 Trajkovic et al. Apr 2003 B2
6570555 Prevost et al. May 2003 B1
6580459 Uchino Jun 2003 B2
6633294 Rosenthal et al. Oct 2003 B1
6640202 Dietz et al. Oct 2003 B1
6661918 Gordon et al. Dec 2003 B1
6681031 Cohen et al. Jan 2004 B2
6714665 Hanna et al. Mar 2004 B1
6731799 Sun et al. May 2004 B1
6738066 Nguyen May 2004 B1
6760475 Miller Jul 2004 B1
6765726 French et al. Jul 2004 B2
6788809 Grzeszczuk et al. Sep 2004 B1
6801637 Voronka et al. Oct 2004 B2
6825928 Liu et al. Nov 2004 B2
6873723 Aucsmith et al. Mar 2005 B1
6876496 French et al. Apr 2005 B2
6937742 Roberts et al. Aug 2005 B2
6950534 Cohen et al. Sep 2005 B2
7003134 Covell et al. Feb 2006 B1
7036094 Cohen et al. Apr 2006 B1
7038855 French et al. May 2006 B2
7039676 Day et al. May 2006 B1
7042440 Pryor et al. May 2006 B2
7050606 Paul et al. May 2006 B2
7058204 Hildreth et al. Jun 2006 B2
7060957 Lange et al. Jun 2006 B2
7113918 Ahmad et al. Sep 2006 B1
7121946 Paul et al. Oct 2006 B2
7155363 Rosenthal et al. Dec 2006 B1
7170492 Bell Jan 2007 B2
7184048 Hunter Feb 2007 B2
7202898 Braun et al. Apr 2007 B1
7222078 Abelow May 2007 B2
7227526 Hildreth et al. Jun 2007 B2
7257437 Demos et al. Aug 2007 B2
7259747 Bell Aug 2007 B2
7274393 Acharya Sep 2007 B2
7274454 Kowarz et al. Sep 2007 B2
7289209 Kowarz et al. Oct 2007 B2
7289211 Walsh, Jr. et al. Oct 2007 B1
7308112 Fujimura et al. Dec 2007 B2
7317836 Fujimura et al. Jan 2008 B2
7348963 Bell Mar 2008 B2
7359121 French et al. Apr 2008 B2
7367887 Watabe et al. May 2008 B2
7372977 Fujimura et al. May 2008 B2
7375803 Bamji May 2008 B1
7379563 Shamaie May 2008 B2
7379566 Hildreth May 2008 B2
7389591 Jaiswal et al. Jun 2008 B2
7412077 Li et al. Aug 2008 B2
7421093 Hildreth et al. Sep 2008 B2
7430312 Gu Sep 2008 B2
7436496 Kawahito Oct 2008 B2
7440637 Schechner et al. Oct 2008 B2
7450736 Yang et al. Nov 2008 B2
7452275 Kuraishi Nov 2008 B2
7460160 Hershey et al. Dec 2008 B2
7460690 Cohen et al. Dec 2008 B2
7489812 Fox et al. Feb 2009 B2
7536032 Bell May 2009 B2
7538326 Johnson et al. May 2009 B2
7555142 Hildreth et al. Jun 2009 B2
7560679 Gutierrez Jul 2009 B1
7560701 Oggier et al. Jul 2009 B2
7570805 Gu Aug 2009 B2
7574020 Shamaie Aug 2009 B2
7576727 Bell Aug 2009 B2
7590262 Fujimura et al. Sep 2009 B2
7593552 Higaki et al. Sep 2009 B2
7598942 Underkoffler et al. Oct 2009 B2
7607509 Schmiz et al. Oct 2009 B2
7620202 Fujimura et al. Nov 2009 B2
7668340 Cohen et al. Feb 2010 B2
7680298 Roberts et al. Mar 2010 B2
7683954 Ichikawa et al. Mar 2010 B2
7684592 Paul et al. Mar 2010 B2
7701439 Hillis et al. Apr 2010 B2
7702130 Im et al. Apr 2010 B2
7704135 Harrison, Jr. Apr 2010 B2
7710391 Bell et al. May 2010 B2
7729530 Antonov et al. Jun 2010 B2
7746345 Hunter Jun 2010 B2
7760182 Ahmad et al. Jul 2010 B2
7809167 Bell Oct 2010 B2
7834846 Bell Nov 2010 B1
7852262 Namineni et al. Dec 2010 B2
RE42256 Edwards Mar 2011 E
7898522 Hildreth et al. Mar 2011 B2
8035612 Bell et al. Oct 2011 B2
8035614 Bell et al. Oct 2011 B2
8035624 Bell et al. Oct 2011 B2
8072470 Marks Dec 2011 B2
8421015 Scott et al. Apr 2013 B1
8462238 Fredembach et al. Jun 2013 B2
8531562 Schmidt et al. Sep 2013 B2
8569681 Ovsiannikov et al. Oct 2013 B2
8988680 Nelson Mar 2015 B2
9148589 Fischer et al. Sep 2015 B2
20020016533 Marchitto et al. Feb 2002 A1
20020030755 Uchino Mar 2002 A1
20030098918 Miller May 2003 A1
20040125222 Bradski et al. Jul 2004 A1
20040252230 Winder Dec 2004 A1
20050058337 Fujimura et al. Mar 2005 A1
20050219552 Ackerman et al. Oct 2005 A1
20050285966 Bamji et al. Dec 2005 A1
20060221250 Rossbach et al. Oct 2006 A1
20070087564 Speakman Apr 2007 A1
20070146512 Suzuki et al. Jun 2007 A1
20070203413 Frangioni Aug 2007 A1
20070221849 Tabirian et al. Sep 2007 A1
20070249913 Freeman et al. Oct 2007 A1
20080026838 Dunstan et al. Jan 2008 A1
20080039715 Wilson et al. Feb 2008 A1
20080255414 Voegele et al. Oct 2008 A1
20080255425 Voegele et al. Oct 2008 A1
20080255459 Voegele et al. Oct 2008 A1
20080255460 Voegele et al. Oct 2008 A1
20080309913 Fallon Dec 2008 A1
20090021739 Tsujita et al. Jan 2009 A1
20090114799 Maeda May 2009 A1
20140078459 Kim et al. Mar 2014 A1
20140187968 Pinho Jul 2014 A1
20140232912 Morimoto Aug 2014 A1
20140263991 Therriault-Proulx et al. Sep 2014 A1
20140327837 Osterman Nov 2014 A1
20140347570 Osterman Nov 2014 A1
20150092059 Lu et al. Apr 2015 A1
20150200220 Juenger et al. Jul 2015 A1
20150234102 Kurzweg et al. Aug 2015 A1
20150256767 Schlechter Sep 2015 A1
Foreign Referenced Citations (10)
Number Date Country
101254344 Sep 2008 CN
0583061 Feb 1994 EP
H08044490 Feb 1996 JP
H1051668 Feb 1998 JP
H11073491 Mar 1999 JP
2002084451 Mar 2002 JP
2003198898 Jul 2003 JP
9310708 Jun 1993 WO
9717598 May 1997 WO
9944698 Sep 1999 WO
Non-Patent Literature Citations (46)
Entry
Chen, et al., “Single Camera Imaging System for Color and Near-Infrared Fluorescence Image Guided Surgery”, In Journal of Biomedical Optics Express, vol. 5, Issue 8, Jul. 25, 2014, 7 pages.
Lu, et al., “Designing Color Filter Arrays for the Joint Capture of Visible and Near-Infrared Images”, In Proceedings of 16th IEEE International Conference on Image Processing, Nov. 7, 2009, pp. 3797-3800.
Kim, et al., “A 1.5Mpixel RGBZ CMOS Image Sensor for Simultaneous Color and Range Image Capture”, In Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 19, 2012, pp. 392-393.
Fisher, S. et al., “Virtual Environment Display System,” ACM 1986 Workshop on Interactive 3D Graphics, Oct. 23, 1986, 12 pages.
Azarbayejani, A. et al., “Visually Controlled Graphics,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, No. 6, Jun. 1993, 4 pages.
Sheridan, T. et al., “Virtual Reality Check,” Technology Review, vol. 96, No. 7, Oct. 1993, 9 pages.
“Simulation and Training,” Division Incorporated, Available as Early as Jan. 1, 1994, 6 pages.
Granieri, J. et al., “Simulating Humans in VR,” Conference of the British Computer Society, Oct. 12, 1994, 15 pages.
Freeman, W. et al., “Television Control by Hand Gestures,” Technical Report TR94-24, Mitsubishi Electric Research Laboratories, Dec. 1994, 7 pages.
Breen, D. et al., “Interactive Occlusion and Collision of Real and Virtual Objects in Augmented Reality,” Technical Report ECRC-95-02, European Computer-Industry Research Center GmbH, Available as Early as Jan. 1, 1995, 22 pages.
Stevens, J., “Flights Into Virtual Reality Treating Real World Disorders,” The Washington Post, Science Psychology, Mar. 27, 1995, 2 pages.
“Virtual High Anxiety,” Popular Mechanics, vol. 172, No. 8, Aug. 1995, 1 page.
Kanade, T. et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 1996, 7 pages.
Kohler, M., “Vision Based Remote Control in Intelligent Home Environments,” Proceedings of 3D Image Analysis and Synthesis 1996, Nov. 1996, 8 pages.
Aggarwal, J. et al., “Human Motion Analysis: A Review,” Proceedings of IEEE Nonrigid and Articulated Motion Workshop 1997, Jun. 1997, 13 pages.
Kohler, M., “Techical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments,” Technical University of Dortmund, Germany, Jun. 1997, 35 pages.
Pavlovic, V. et al., “Visual Interpretation of Hand Gesture for Human-Computer Interaction: A Review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, Jul. 1997, 19 pages.
Wren, C. et al., “Pfinder: Real-Time Tracking of the Human Body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, Jul. 1997, 6 pages.
Kohler, M., “Special Topics of Gesture Recognition Applied in Intelligent Home Environments,” Proceedings of International Gesture Workshop, Sep. 1997, 12 pages.
Miyagawa, R. et al., “CCD-Based Range-Finding Sensor,” IEEE Transactions on Electron Devices, vol. 44, No. 10, Oct. 1997, 5 pages.
Shao, J. et al., “An Open System Architecture for a Multimedia and Multimodal User Interface,” Improving the Quality of Life for the European Citizen, TIDE 98, Jan. 1998, 8 pages.
Isard, M. et al., “Condensation—Conditional Density Propagation for Visual Tracking,” International Journal of Computer Vision, vol. 29, No. 1, Aug. 1998, 24 pages.
Brogan, D. et al., “Dynamically Simulated Characters in Virtual Environments,” IEEE Computer Graphics and Applications, vol. 18, No. 5, Sep. 1998, 12 pages.
Livingston, M., “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality,” Doctoral Dissertation, University of North Carolina at Chapel Hill, Dec. 1998, 145 pages.
Hongo, H. et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras,” Proceedings of the 4th Annual IEEE Conference on Automatic Face and Gesture Recognition, Mar. 2000, 6 pages.
Schechner, Y. et al., “Generalized Mosaicing,” Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, Vancover, BC, Jul. 7, 2001, 8 pages.
Zhao, L., “Dressed Human Modeling, Detection, and Parts Localization,” Doctoral Dissertation, The Robotics Institute, Carnegie Mellon University, Jul. 26, 2001, 121 pages.
Eijk, R., “Beyond the flat screen: Minimal and optimal camera-base distances for viewing 3-D images,” Master's Thesis, Eindhoven University of Technology, Aug. 2003, 87 pages.
Qian, G. et al., “A Gesture-Driven Multimodal Interactive Dance System,” 2004 IEEE International Conference on Multimedia and Expo, ICME 04, Jul. 2004, 4 pages.
Sinha, S., “Calibration of a Heterogeneous Network of Color and Depth Cameras,” Idea for Canesta Vision Contest, Dec. 2004, 3 pages.
He, L., “Generation of Human Body Models,” Master's Thesis, University of Auckland, Apr. 2005, 111 pages.
Rosenhahn, B. et al., “Automatic Human Model Generation,” Proceedings of the 11th International Conference of CAIP, Sep. 2005, 8 pages.
Hasegawa, S. et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator,” ACM Computers in Entertainment, vol. 4, No. 3, Article 6C, Jul. 2006, 12 pages.
Cho, J. et al., “Depth Image Processing Technique for Representing Human Actors in 3DTV Using Single Depth Camera,” Proceedings of 3DTV Conference, May 2007, 4 pages.
Wang, O. et al., “Automatic Natural Video Matting with Depth,” 15th Pacific Conference on Computer Graphics and Applications, Oct. 2007, 4 pages.
“3DV Systems—Zmini—Discontinued,” ThingLab Website, Available Online at www.thinglab.co.uk/scanning_product.php?URL_=product_digiscan_3dvsystems_zmini&SubCatID_=53, Retrieved Jul. 13, 2009, 2 pages.
ISA Korean Intellectual Property Office, International Search Report and Written Opinion Issued in Application No. PCT/US2010/047564, dated Apr. 27, 2011, WIPO, 8 pages.
State Intellectual Property Office of the People's Republic of China, First Office Action Issued in Chinese Patent Application No. 201080043779.5, dated Apr. 3, 2013, 11 pages.
State Intellectual Property Office of the People's Republic of China, Second Office Action Issued in Chinese Patent Application No. 201080043779.5, dated Sep. 22, 2013, 6 pages.
State Intellectual Property Office of the People's Republic of China, Third Office Action Issued in Chinese Patent Application No. 201080043779.5, dated Feb. 7, 2014, 6 pages.
Japanese Patent Office, Office Action Issued in Japanese Patent Application No. 2012-532098, dated Apr. 22, 2014, 5 pages.
European Patent Office, Search Report Issued in European Patent Application No. 10821000.6, dated Sep. 29, 2014, Germany, 3 pages.
European Patent Office, Office Action Issued in European Patent Application No. 10821000.6, dated Oct. 21, 2014, Germany, 6 pages.
Japanese Patent Office, Office Action Issued in Japanese Patent Application No. 2012-532098, dated Dec. 25, 2014, 4 pages.
European Patent Office, Office Action Issued in European Patent Application No. 10821000.6, dated Apr. 20, 2015, Germany, 4 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in PCT Application No. PCT/US2017/015926, dated Apr. 20, 2017, WIPO, 16 Pages.
Related Publications (1)
Number Date Country
20170230551 A1 Aug 2017 US