Not applicable.
Not applicable.
Field of the Invention
This invention relates to locks for securing doors and cabinet openings and, more particularly, to cam locks that are used in combination with plastic or polymer doors and cabinets.
Description of Related Art
Cam locks are recognized in the prior art as devices that secure doors, drawers, cabinet tops, and the like from unauthorized opening. In general, a cam lock includes a lock body having an internal spindle that is rotatable, and a cam (latch arm) that extends radially from the inner end of the spindle to engage a strike or a fixed structural component. A key is insertable into the lock body to rotate the spindle from a closed position in which the cam engages the strike or structural component, to an open position in which the cam is free of any engagement.
Cam locks are often used in low security situations in which the intent is to prevent casual opening of a cabinet door or drawer or the like. In these situations the lock body may incorporate a simple mechanism that accepts only a certain type or shape of key, but it does not use extensive tumbler locking arrangements.
A typical cam lock in the prior art extends through a hole in the item (door, drawer, panel) being secured. The hole is often standardized as a “Double D” hole, a partially circular hole having opposed parallel flats, and the hole is placed adjacent to a structural frame component or latch strike. The cam lock body is likewise provided with a primarily cylindrical shape with the inclusion of parallel flats that are complementary to the hole shape. The exterior end of the lock body includes a radial flange that impinges on the outer surface of the item being secured, and the lock body is typically secured by a nut secured on threads at the interior end of the lock body, or occasionally a spring clip. The flat surfaces of the lock body engage the parallel flats of the double D hole so the lock cannot turn in the hole, and the nut may be well-tightened to secure the lock.
The components enumerated above are typically fabricated of metals such as steel, brass, and the like, and are compatible with the items being secured, which are likewise fabricated of metal. However, in recent times cabinets, doors, drawers, tops, and similar items to be secured more often have been fabricated of plastic or polymer materials. It has been observed that the metal components of a typical cam lock are not necessarily compatible with plastic or polymer items to be secured, or vice versa. For example, if a metal cam lock is secured to a plastic closure by a nut or a spring clip, the compression of the nut or clip combined with the thermal expansion/contraction of the plastic may degrade the plastic components over time, due to the metal being substantially harder and less thermally active than the plastic material. As a result, degradation of the plastic components increases with continued use, causing failure of the plastic. Also, the double D hole is difficult to form in plastic, so a simpler choice is to drill out a round hole that does not grab the flat sides of the lock, which then tends to turn in the hole. This tendency to rotation of the lock causes the installer to tighten the nut even more.
The present invention generally comprises a cam lock that has an improved design that may be executed entirely in plastic or polymer and is complementary in particular to non-metallic doors and cabinets.
The lock includes a generally cylindrical lock body dimensioned to fit through a lock mounting hole and having a flange extending radially from the distal end thereof. The flange has a proximal-facing flat annular surface that impinges on the outer surface of the door and is arranged to be glued or solvent bonded to the door surface adjacent to the mounting hole. (Note that in this description the lock likewise may be mounted on a fixed frame component adjacent to a door or moving closure.) The lock body has a bore extending axially therein, and an interior shoulder disposed at the distal end of the bore extends radially inwardly to define a reduced diameter distal opening. The shoulder of the bore includes two channels extending therethrough parallel to the axis and spaced apart 90° about the axis.
The lock further includes a central spindle extending axially in the bore in rotatable fashion in a close tolerance fit. The distal end of the spindle has a neck that is dimensioned to be received in the distal end of the lock body bore, and the proximal end of the spindle has a wider diameter that is complementary to the proximal bore section of the lock body. An annular shoulder extends between the proximal and distal portions of the spindle, the annular shoulder having a stepped annular surface that extends slightly less than one-half of the annular surface. The distal end of the spindle is provided with a keyway channel extending therein parallel to the axis of the assembly.
In addition, a slot extends in chordal fashion in the wider proximal end of the spindle, the slot being parallel to the step of the annular shoulder at the juncture of the proximal and distal portions of the spindle. A pin channel is also formed in the wider proximal end of the spindle, extending annularly and describing an angle of approximately 90° about the axis of the spindle. A locking pin is pressed through a hole in the lock body into the pin channel to retain the spindle within the lock body and to limit the spindle rotation to the solid angle of the pin channel. A neck portion at the proximal end of the spindle extends axially and proximally out of the proximal end of the bore of the lock body. An annular end plate is joined to the proximal end of the neck.
A lock cam comprises a generally rectangular plate having a cam slot extending into one end thereof and configured to snap-engage the neck portion of the spindle in a fixed attachment. A cam pin extends from the cam adjacent to the cam slot and is configured to engage a cam cutout formed in the perimeter of the annular end plate that is joined to the spindle.
Another component is a semi-helix split washer locking device that extends about the distal end portion of the spindle within the lock body and abutting the proximal portion of the spindle. The lock washer is formed entirely of plastic, and has a ramped configuration that describes one-half cycle of a helix, with a radial step formed at the confronting free ends of the helical shape. The radial step engages the step of the annular surface of the proximal portion of the spindle to aid in rotating the spindle in the latching direction, as explained below. The lock washer also includes a lug extending therefrom radially inwardly and configured to be engaged in the channel extending longitudinally in the distal end of the spindle. The lock washer is seated at the distal annular surface of the proximal portion of the spindle. The lock washer may be provided with three radially extending tabs projecting proximally therefrom and disposed to engage complementary slots formed in the annular shoulder of the spindle to assure rotational movement in common between the lock washer and spindle.
A key for the lock assembly includes a generally cylindrical tubular key body having a key tab extending distally therefrom. The tubular key body is configured to be inserted into the distal end of the lock body and to extend concentrically between the lock body bore and the distal end of the spindle. A pair of outer key lugs extend radially outwardly from the tubular key body and are angularly spaced 90° about the axis of the tubular key body. In addition, a third key lug extends radially inwardly from the inner surface of the tubular key body and is aligned with one of the pair of outer key lugs.
In the locked disposition the spindle is angularly oriented so that the channel at the distal end of the spindle is aligned with one of the channels in the interior shoulder at the distal end of the bore of the lock body. This enables the key to be inserted concentrically between the spindle and bore of the lock body, with one of the pair of outer key lugs and the aligned third key lug slidably engaging the two channels in the distal bore portion of the lock body and the channel in the distal spindle portion, and the other outer key lug slidably engaging the other channel in the distal bore portion of the lock body.
When the key is inserted fully into the lock, the pair of outer key lugs extend proximally beyond the channels in the lock body bore. The proximal end of the key impinges on the semi-helix split washer locking device and deforms it resiliently in the axial direction, enabling the key to turn in the lock. The key remains rotationally engaged with the spindle by the third key lug remaining within the channel in the distal end of the spindle, and the lock washer lugs engaging the complementary slots in the spindle shoulder. Thus the key may be turned (i.e., counterclockwise) in the lock to rotate the spindle and lock washer, causing the lock cam to rotate 90° (as allowed by the locking pin travel in the pin channel) and move free of engagement with a frame member or latch strike. When the key is rotated clockwise the rotation of the spindle is reversed, and the cam plate cutout engages the cam pin to aide in driving the lock cam to counter-rotate and engage the frame component or latch strike, thus relocking the door.
The components may be molded of acrylic, polycarbonate, or other plastics to be long-lasting. Aside from the lock being compatible with plastic and polymer doors and the like, it should be noted that the component count is reduced to a minimum: only five assembled parts comprise the entire lock, plus one key to operate it. This factor alone results in a great amount of savings in manufacturing, resulting in a low price point for the assembly.
The present invention generally comprises a cam lock having an improved design that may be executed in plastic or polymer and that has a minimum component count. With regard to
With regard to
An added adaptive feature is that the exterior of the lock body 31 includes opposed flats 37 extending in parallel and chordal fashion to adapt the lock for use in a standard “Double D” hole mounting. However, it is easier to drill a circular hole, and the installation description herein shall make reference to a circular mounting hole.
A bore 38 extends axially through the lock body 31, and includes an interior shoulder 39 disposed at the distal end of the bore. The shoulder 39 extends radially inwardly to define a reduced diameter distal opening 41. A pair of key channels 42a and 42b extend through the shoulder 39 parallel to the axis of the bore, and are spaced apart 90° about the axis. In a typical installation the channels are oriented at the 9 o'clock (42b) and 12 o'clock positions (42a), as shown in
Returning to
A pin channel 62 extends into the outer surface of the proximal spindle portion 61 and describes 90° of a circumferential arc about the portion 61. The lock pin 30 may be pressed into or otherwise fixed in hole 63 in the sidewall of the lock body to extend into the pin channel 62, thereby holding the lock assembly together. The lock pin 30 may be removed from hole 63 only when the lock is in the unlocked disposition. The lock pin 30 may be provided with a plurality of shallow ridges extending longitudinally and spaced at equal angles thereabout. The ridges define a virtual diameter that is slightly greater than hole 63 to provide a tight fit in hole 63 that does not expand and fracture the plastic material of the lock body 31. The placement of pin 30 retains the spindle within the lock body 31 as well as limiting the rotation of the spindle to the 90° subtended angle of the pin channel 62. In addition, a slot 64 extends chordally through the proximal portion 61 and longitudinally to a limit adjacent to the stepped annular shoulder 54. This slot is provided to remove unnecessary mass from the cast part. A neck portion 66 extends axially from the proximal end of the spindle portion 61 and is configured to extend proximally out of the proximal end of the bore of the lock body when the components are assembled. The neck portion is provided with a circumferential surface that is rectilinear and snap-engageable. A disc-like end plate 67 is joined to the proximal end of the neck 66, the plate having a diameter similar to the spindle portion 61.
The lock cam 91 comprises a plate-like component that is generally rectangular and is provided with a protruding end having a fully radiused perimeter 92. At the opposite end of the lock cam, a rectangular slot 93 extends into the plate, and is configured to snap-engage the neck 66 of the spindle 31, as shown for example in
The semi-helix split washer locking device 71, shown in
The key 101 shown in
The lock is assembled by first securing the semi-helix split washer locking device 71 about the distal spindle portion 52, with the lug 73 engaging the keyway channel 53. In this orientation the annular step 77 of the semi-helix split washer locking device 71 engages the annular step 54 in edge-to-edge complementary engagement. Thus the semi-helix split washer locking device 71 engages the spindle across a broad area, thereby distributing torque from the key to a large portion of the spindle and avoiding localized wear and stress points. With reference to
When the key 101 is inserted axially into the lock, the cylindrical proximal end 107 is slidably introduced between the spindle end 52 and the opening 41, with the key lugs 142a and 142b passing into the key channels 42a and 42b, respectively, and inner lug 154 translating in spindle keyway channel 53. The proximal edge of the key impinges on lug 79 (
With reference to
It should be noted that the lock described herein has a minimal parts count, and all the components are susceptible to being fabricate in molded plastic or polymer. These factors enable the lock to be produced inexpensively and sold at a competitive price. Moreover, the plastic or polymer components are very compatible with similar plastic or polymer structures, such as the door 103.
As an added adaptive feature, the lock body and spindle portion 61 may be provided with aligned access holes 160 that are in diametrical alignment with pin 30 and hole 63 when the lock is rotated to the unlatched disposition. As shown in
With reference to
A further feature of the semi-helix split washer locking device 171 is added in recognition of the potential for the helical configuration of the component 171 to impart some rotational moment when it is resiliently deflected in the axial direction, and that this rotational moment may otherwise cause some misalignment of the semi-helix split washer locking device 171 and the spindle 52 with key 101 and impede rotation or removal of the key. Accordingly a trio of tabs 183, 184, and 185 are provided, projecting from the proximal face of the semi-helix split washer locking device, extending radially and arrayed at 60° equiangular spacing with respect to the central axis. A trio of complementary formed receptacles 183′, 184′, and 185′ are provided in the annular shoulder surface 54 of the spindle to receive their respective tab in mating, easily releasable fashion. This engagement of tabs and receptacles assures that accurate angular alignment of the semi-helix split washer locking device 171 and spindle 52 is maintained. The lugs 183-185 and receptacles 183′-185′ provide a rotational latching action that assures angular alignment, and that the key will rotate freely and be removable without interference. Note that the angular spacing of the tabs and receptacles shown herein is for example only, and a range of angular spacings, regular and irregular, may be employed as desired.
It is noted that the lock construction of this invention relies on only five major components, including the key. This reduced parts count is a significant advantage over the prior art, as it enables the fabrication of molded plastic components that are low cost in volume production, resulting in an inexpensive construction and a low price point. The lock is free of tumblers, and relies on the angular placement of the key lugs 142a and 142b and the internal key lug 154 for a low security lock function.
The foregoing description of the preferred embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and many modifications and variations are possible in light of the above teaching without deviating from the spirit and the scope of the invention. The embodiment described is selected to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as suited to the particular purpose contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
This application is a continuation-in-part of application Ser. No. 13/889,215, filed May 7, 2013, and the benefit of the priority filing date is claimed for all common subject matter.
Number | Name | Date | Kind |
---|---|---|---|
1458520 | Castell | Jun 1923 | A |
1994095 | Caldwell | Mar 1935 | A |
2055289 | Hanan | Sep 1936 | A |
3661001 | Glass | May 1972 | A |
3699790 | Ansala | Oct 1972 | A |
4022039 | Mikos | May 1977 | A |
4193276 | Lundberg | Mar 1980 | A |
4289001 | Corfield | Sep 1981 | A |
4878367 | Bisbing | Nov 1989 | A |
5737950 | Yun-Bin | Apr 1998 | A |
6018969 | Haseley | Feb 2000 | A |
7716958 | Martin | May 2010 | B2 |
9216747 | Matoba | Dec 2015 | B2 |
20020167180 | Sucu | Nov 2002 | A1 |
20090303831 | Allen | Dec 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20150240520 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13889215 | May 2013 | US |
Child | 14706306 | US |