The present application is the United States National Stage Application pursuant to 35 U.S.C. § 371 of International Patent Application No. PCT/DE2015/200221, filed on Mar. 31, 2015, and claims priority to German Patent Application No. DE 10 2014 212 319.4 of Jun. 26, 2014, which applications are incorporated by reference in their entireties.
The disclosure relates to a camshaft adjuster that is provided for adjusting the phase angle between a crankshaft and a camshaft of an internal combustion engine. Furthermore, the invention relates to a method, with which the setting of such a camshaft adjuster is detectable.
A method for determining the phase position of an adjustable camshaft is known, for example, from the German patent DE 10 2012 213 539 A1. In accordance with this method various measuring devices are used that are arranged, on the one hand, on the camshaft and, on the other hand, on the crankshaft of an internal combustion engine. A method, disclosed in the German patent DE 101 08 055 C1, for controlling an internal combustion engine with crankshaft sensors and camshaft sensors works in a corresponding manner.
The object of the present disclosure is to determine the setting of the camshaft adjuster of an internal combustion engine in a way that is particularly simple and robust as compared to the cited prior art and at the same time to make it possible to perform a measurement not only when the internal combustion engine is stationary, but also when it is running.
This engineering object is achieved, according to the present disclosure, by means of a method for measuring the setting of a camshaft adjuster, i.e., for determining the phase angle between the camshaft and the crankshaft of an internal combustion engine. The embodiments and the advantages of the disclosure that are explained below in conjunction with the measurement method also apply mutatis mutandis to the device, i.e., the camshaft adjuster, and vice versa.
The camshaft adjuster is used in a well-known manner for adjusting the phase angle between a crankshaft and a camshaft of an internal combustion engine, where in this case an adjustment module of the camshaft adjuster can be actuated by means of an actuator, in particular, an electric motor or a hydraulic element.
The adjustment module comprises a drive element, which can be driven by means of the crankshaft, for example, by means of a chain drive or a belt drive, as well as an output element, which can be rotated to a limited extent relative to said drive element and is securely connected to a camshaft of the internal combustion engine. The camshaft may be provided for actuating the intake or exhaust valves of the internal combustion engine, for example, a gasoline or diesel engine.
A signal generator, with which a measurement circuit is inductively coupled, is arranged so as to be fixed in position on the internal combustion engine, where in this case the measurement circuit is integrated into the adjustment module, which can be rotated as a whole. Owing to the measurement setup, which comprises the signal generator and the measurement circuit, at least one resonant circuit is formed. At least one resonant circuit component, which may be found on the side of the measurement circuit, i.e., in or on the adjustment module, has electrical properties that depend on the phase angle between the camshaft and the crankshaft of the internal combustion engine.
Therefore, the setting of the camshaft adjuster is detected with a measurement setup that comprises a stationary part and a rotating part, where in this case only the stationary part has a line-conducted power supply. The rotating part comprises two modules, which can be pivoted relative to each other, i.e., on the one hand, the drive element of the camshaft adjuster and, on the other hand, the camshaft and components, which are securely connected to said camshaft. The detection of the angle, enclosed between the two modules, is equivalent to the detection of the setting of the camshaft adjuster. A detection of the angular position of the crankshaft is not required to determine the setting of the camshaft adjuster, but may be optionally present.
The resonant circuit component, which is arranged on the sides of the totally rotatable adjustment module and which has electrical properties, which depend on the phase angle between the camshaft and the crankshaft, may be provided in the form of a coil with variable inductance. In addition or as an alternative, the adjustment module may also have a resistance or a capacitance with variable electrical properties. In any case the electrical properties of the component of interest are a function of the angular position between the drive element and the output element of the adjustment module, i.e., a function of the setting of the camshaft adjuster. The one or more resonant circuit components, which are integrated into the adjustment module, affect the stationary signal generator. In particular, the coupling intensity between a stationary coil of the measurement setup and a rotating coil is a function of the frequency and the inductance set on the rotating part of the measurement setup. In particular, the signal attenuation and the phase position can be evaluated. A change in the inductance on the side of adjustment module results in a change in the frequency, at which the highest attenuation occurs. Therefore, the detection of a signal, fed back from the rotating part of the measurement setup to the stationary part of the measurement setup, is a clear indication of the setting of the camshaft adjuster. This applies not only when the internal combustion engine is running, i.e., when the camshaft is rotating, but also when the crankshaft is standing still.
With respect to the technical background reference is made to the German patent DE 10 2012 215 957 A1, which shows a compact resolver bearing, and to the worldwide patent WO 2011/134955 A2, which relates to a rolling bearing assembly with an angle sensor. Furthermore, with respect to the technical background reference is made to the German patent DE 10 2008 039 376 B4, which discloses a device for the inductive scanning of graduations of a mechanical roller counter.
According to a preferred embodiment, the measurement circuit, which is arranged on the side of the adjustment module, comprises two series-connected inductances. In this case a first inductance exhibits variable properties, which are a function of the setting of the camshaft adjuster, while a second inductance is not variable and is used exclusively to inductively couple between the measurement circuit and the signal generator. As in the case of the second inductance, a stationary inductance, which can be allocated to the signal generator, is also not variable. The stationary inductance and the second inductance, which is arranged on the side of the adjustment module, are preferably designed in terms of their geometry in such a way that small changes in the distance between the stationary and rotating parts of the measurement setup or eccentricities between the parts of interest have hardly any impact on the electrical properties of the resonant circuit. This feature can be achieved, for example, if one of the two said coils has a smaller diameter than the other coil, so that a displacement of the smaller coil relative to the larger coil has hardly any effect on the coupling between the coils.
The resonant circuit component, in particular, a coil, electrical resistance or capacitance, the electrical properties of which are a function of the setting of the camshaft adjuster, may be formed by several sub-components, where in this case a first sub-component is securely connected to the drive element of the adjustment module; and a second sub-component is securely connected to the output element of the adjustment module. In the case of an adjustable coil as the resonant circuit component having variable properties, one of the sub-components is configured as a current-carrying component; and the other sub-component, as a non-current carrying component.
According to a first possible embodiment, the variable inductance is a coil with a three dimensional structure in the case of the current-carrying sub-component; and in the case of the non-current carrying sub-component said variable inductance is an iron core, which dips into this coil and can be pivoted relative to the coil.
According to a second possible embodiment of the variable inductance, the current-carrying sub-component is designed as an essentially flat structure, in particular, as a so-called printed circuit, while in the case of the non-current carrying sub-component it is a sheet metal ring, which can be pivoted relative to the coil, which is present, for example, as a printed circuit or as a populated printed circuit board, and has at least one section having a width that is variable in the circumferential direction of the sheet metal ring. In this case the coil and the sheet metal ring are located in planes that are parallel to each other. In principle, a composite board having energizable windings, which act as a coil, is known, for example, from the European patent EP 2 225 816 B1.
In a preferred embodiment an electric motor is provided as the actuator of the camshaft adjuster. The stationary inductance, which can be allocated to the signal generator, is fastened preferably to an end face of the housing of the electric motor. The adjustment module, which can be actuated by the electric motor as an actuator, is designed preferably as a triple shaft transmission, where in this case the resonant circuit component with variable electrical properties is arranged preferably on the end face, which faces the electric motor, of the transmission housing of the triple shaft transmission.
Particularly advantageous is the fact that with the aid of the method of the invention the angle between two mutually pivotable, mutually rotatable elements, i.e., between the drive element and the output element of the adjustment module, can be measured, irrespective of whether and optionally at which speed the two said elements rotate together. The properties of the rotatable elements that can be detected from the stationary part of the measurement setup depend exclusively on the angular position of the two rotatable elements relative to each other, but not on the angular position or the state of motion of the arrangement of the rotatable elements altogether.
Various embodiments are disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
At the outset, it should be appreciated that like drawing numbers on different drawing views identify identical, or functionally similar, structural elements. It is to be understood that the claims are not limited to the disclosed aspects.
Furthermore, it is understood that this disclosure is not limited to the particular methodology, materials and modifications described and as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure pertains. It should be understood that any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of the example embodiments.
It should be appreciated that the term “substantially” is synonymous with terms such as “nearly,” “very nearly,” “about,” “approximately,” “around,” “bordering on,” “close to,” “essentially,” “in the neighborhood of,” “in the vicinity of,” etc., and such terms may be used interchangeably as appearing in the specification and claims. It should be appreciated that the term “proximate” is synonymous with terms such as “nearby,” “close,” “adjacent,” “neighboring,” “immediate,” “adjoining,” etc., and such terms may be used interchangeably as appearing in the specification and claims. The term “approximately” is intended to mean values within ten percent of the specified value.
Camshaft adjuster 1 comprises actuator 2, i.e., an electric motor with stationary housing 3, and adjustment module 4, which is also called a variator, which is designed as a triple shaft transmission. A shaft, which is provided with the reference numeral 5, is securely connected to the motor shaft of electric motor 2 and to an adjustment shaft of adjustment module 4 or is identical to at least one of these motor shafts or transmission shafts. A toothed gear acts as drive element 6 of adjustment module 4, with said toothed gear being securely connected to transmission housing 7 of adjustment module 4. An output element, which is labeled 8 and which is part of adjustment module 4, is securely connected to a camshaft of an internal combustion engine and rotates at the speed of drive element 6, as long as shaft 5 rotates at the same speed. If, on the other hand, the speed of shaft 5 deviates from the rotational speed of drive element 6, then output element 8 is adjusted at a high speed reduction ratio. This adjustment process constitutes an adjustment of the phase angle of the camshaft in relation to the crankshaft of the same internal combustion engine, which is not shown in greater detail. Variator 4 is designed, for example, as a wobble plate mechanism or a harmonic drive.
The components of a signal generator, which is marked in its entirety with the reference numeral 9, are attached to housing 3 of electric motor 2. In
An inductive coupling is provided between signal generator coil 10 and measurement circuit 11, which is integrated into adjustment module 4 and of which transmission coil 12 can be seen in
Possible configurations of signal generator 9 and measurement circuit 11, both of which can be integrated, according to
In the exemplary embodiment according to
The measurement setup, according to
The exemplary embodiment, according to
In each of the designs according to
According to the design of adjustment coil 15 shown at the top in
The design of adjustment coil 15, shown in the middle in
The design of adjustment coil 15, which is shown at the bottom in
It will be appreciated that various aspects of the disclosure above and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 212 319 | Jun 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2015/200221 | 3/31/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/197054 | 12/30/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3978829 | Takahashi | Sep 1976 | A |
5289805 | Quinn, Jr. et al. | Mar 1994 | A |
5522352 | Adachi | Jun 1996 | A |
20050253576 | Nyce | Nov 2005 | A1 |
20070101956 | Schafer | May 2007 | A1 |
20080284414 | Giovanardi et al. | Nov 2008 | A1 |
20140034000 | Baumann | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
101503971 | Aug 2009 | CN |
101548068 | Sep 2009 | CN |
4307010 | Oct 1993 | DE |
10108055 | Aug 2002 | DE |
102008039009 | Feb 2010 | DE |
102008039376 | Feb 2010 | DE |
102011083800 | Apr 2013 | DE |
102012213539 | Feb 2014 | DE |
102012215957 | May 2014 | DE |
2225816 | May 2011 | EP |
S61107101 | May 1986 | JP |
S62190414 | Aug 1987 | JP |
2007285774 | Nov 2007 | JP |
2012078238 | Apr 2012 | JP |
2005111383 | Nov 2005 | WO |
2011134955 | Nov 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20170145928 A1 | May 2017 | US |